INTRODUCTION

1. About this Manual VI
2. Intended Audience VII
SECTION 1
Basics of Electricity
1-1 Our Life and Electricity 2
1-2 What is a Electric Circuit 3
1-3 Current voltage resistance and their correlation. 4
1-4 Serial connection and Parallel connection for resistance. 6
1-5 Electric Power 7
1-6 Direct current and Alternating current 10
1-7 Frequency 12
1-8 Supply Voltage 13
1-9 How Electricity Reaches you 14
1-10 Symbols and Units 16
SECTION 2
Switches
2-1 What is a Switch? 18
2-2 What is a Contact? 19
2-3 Micro Switch 20
2-4 Useful Glossy about the Switch 21
2-5 Limit Switch 24
2-6 Operation Switch 26
2-7 Pointers of the Selection of Switches. 28
2-8 Omron Models 30
2-9 Application 38
SECTION 3
Relays
3-1 What is a Relay? 40
3-2 Types of Relay 41
3-2-1 General Relay (Hinged Relay) 41
3-2-2 Other Relays 43
3-3 Useful Glossary about the Relay 45
3-3-1 Contact of Relay 45
3-3-2 Relay Coil 47
3-3-3 Performance of Relays 47
3-4 Exercises 48
3-5 Pointers for Selection 49
3-6 Omron Models 51
3-7 Application 58

Introduction

SECTION 4
 Timer

4-1 What is a Timer? 60
4-2 Electronic Timers 61
4-3 Useful Glossary about the Timer 63
4-4 Exercises 67
4-5 Pointers for Selection. 69
4-6 Omron models 70
4-7 Application 75
SECTION 5
Counter
5-1 What is a Counter?. 77
5-2 Types of Counters. 78
5-3 Useful Glossary about the counter 79
5-4 Using the Counter. 83
5-5 Pointers for Selection. 84
5-6 Omron models 85
5-7 Application 90
SECTION 6
Power Supply
6-1 What is a Power Supply? 93
6-2 Regulated DC Power supplies 94
6-3 Switching Power Supplies 94
6-4 Linear Power Supplies 95
6-5 Linear Power Supplies versus switching power supplies. 96
6-6 Glossary 97
6-7 Pointers of Selection 99
6-7-1 Input Voltages. 100
6-7-2 Output Capacities. 101
6-7-3 Mounting Methods. 102
6-7-4 Safety Standards 103
6-8 Omron Models 106
6-9 Applications 110

Introduction

SECTION 7
 Sensor

7-1 What is a Sensor? 113
7-1-1 Sensor Field Usage 113
7-1-2 Example 113
7-1-3 Human 5 Senses and Sensor 113
7-1-4 Sensor Role In Automation 114
7-1-5 Classification of Sensors. 115
7-1-6 Types of Omron Sensors. 116
7-2 Photoelectric Sensor (PES) 117
7-2-1 Photoelectric Sensing Methods 118
7-2-2 Classification by Sensing Methods. 119
7-2-3 Typical Omron Built in Amplifier Photoelectric Sensors. 120
7-2-4 Optical Fiber Photoelectric Sensor 121
7-2-5 Three Common Types of Optic Fiber 122
7-2-6 Operating principle 123
7-2-7 Types of Fiber Optic 123
7-2-8 Typical Omron Fiber Optic Photoelectric Sensors 124
7-3 Proximity Sensor 125
7-3-1 Inductive 125
7-3-2 Typical Omron Inductive Sensors 126
7-3-3 Capacitive. 127
7-3-4 Typical Omron Capacitive Sensors 128
7-3-5 Features of Inductive Proximity Sensors 129
7-3-6 Features of Capacitive Proximity Sensors. 129
7-4 Comparison between Photoelectric Sensor \& Proximity Sensor 130
7-5 Pointers of Selection 131
7-5-1 Photoelectric Sensor 131
7-5-2 Proximity Sensors. 132
7-6 Omron Models 133
7-6-1 Photoelectric Sensors. 133
7-6 Application 137
7-7-1 Photoelectric Sensors. 137
7-7-2 Proximity Switch 138

Introduction

SECTION 8
 Temperature Controller

8-1 What is Temperature Control? 140
8-2 What is a Temperature Controller? 142
8-3 Temperature Control Methods 143
8-3-1 ON/OFF Control Action 143
8-3-2 Proportional (P) Control Action 144
8-3-3 Integral (I) or Reset Control Action. 146
8-3-4 Derivative (D) or Rate Control Action 147
8-3-5 PID Control Action 149
8-4 Temperature Sensors 150
8-4-1 Thermocouples 150
8-4-2 Resistance Thermosensors. 152
8-4-3 Thermistor. 153
8-4-4 Thermosensor Selection 154
8-4-5 Output Types. 157
8-5 Omron Models 158
8-6 Application 161
SECTION 9
Intelligent Signal Processor (ISP) \& Digital Panel Meter (DPM)
9-1 What is a Intelligent Signal Processor (ISP) / Digital Panel Meter (DPM)? 167
9-2 Features 168
9-3 Pointers of Selection (DPM) 170
9-4 Omron Models (DPM) 171
9-5 Pointers of Selection (ISP) 172
9-6 Omron Models (ISP) 173
9-7 Application (ISP/DPM) 174
SECTION 10
Vision Sensor
10-1 Introduction to Vision System 182
10-2 Why Use Vision System. 183
10-3 What Is A Vision System 183
10-4 Components of A Vision System 185
10-5 Basic Vision Sensor Configuration 194
10-6 OMRON Family of Vision System 195
10-7 Application Examples 199

Introduction

SECTION 11
 Programmable Logic Controller (PLC)

11-1 What is a Control System 202
11-2 What is a Programmable Logic Controller? 204
11-3 Mechanical \& Electrical Field Input Devices. 207
11-4 Conventional Control Panel and Its Difficulties 210
11-5 What a Programmable Controller can do? 214
11-6 Omron Models 215
11-7 Application 224
SECTION 12
Programmable Terminal (PT)
12-1 What is a PT? 226
12-2 System Configuration. 228
12-3 Communications 229
12-4 Support Tool 231
12-5 Omron Model 233
12-6 Application 235
SECTION 13
Inverter
13-1 What is an Inverter? 239
13-2 Basic Function of a Inverter 241
13-3 What is Pulse Width Modulation (PWM) 242
13-4 IGBT 243
13-5 Features of Inverter 244
13-6 Omron Models 245
13-7 Application 247
SECTION 14
Servo
14-1 What is a Servo System. 249
14-2 How does a servo system work 250
14-3 Positioning Mechanisms. 251
14-4 Types of Control System 252
14-5 Servo Motor 253
14-6 Servo Driver 256
14-7 Omron Models 259
14-8 Application 260

1. About This Manual

Hello, everybody! Welcome to the "Regulating" industry. Well I guess some explanation will be needed for everyone to understand what "Regulating" industry is . This manual provides information about the basics of electricity and the most fundamental FA \& CC products, such as switches, relays timers, PLC, Inverter, Touchscreen and others, for the benefit of newcomers to the industry.

Real-life examples are incorporated in the text. So, lets learn the basics one by one.

Introduction

2. Intended Audience

This manual is intended for the following personnel, who do not have any or little knowledge on Electricity, Basic Omron FA \& CC products.

- Customer Service Staffs
- Sales \& Support Staffs
- Administration staffs

SECTION 1 Basics of Electricity

1-1 Our Life Electricity 2
1-2 What is a Electric Circuit? 3
1-3 Current • Voltage • Resistance and their Correlation 4
1-4 Serial Connection • Parallel Connection for Resistance 6
1-5 Electric Power 7
1-6 Direct Current and Alternate Current 10
1-7 Frequency 12
1-8 Supply Voltage 13
1-9 How Electricity Reaches You 14
1-10 Symbols and Units 16

1-1 Our Life Electricity

Electricity is everywhere in our daily life. Just take a look at your house.
Press a switch and a light comes on. Press a button of the remote controller and the television comes to life. Tea made with hot water boiled using the electrical kettle and barbecue parties with hot-plate roasted meat! When the room gets stuffy or warm, simply switch on the air conditioner! Such is our life which is closely knitted with "Electricity".

Electricity has become an indispensable part of our life.
Well, most people understand that a machine moves when the switch is pressed but not the electricity that drives it.
From home electrical appliances to regulating equipment which we are going to study later, let's learn the basic knowledge of electricity so that we could make informed selections for safety use.

1-2 What is a Electric Circuit?

In the following diagram, the light bulb will come on when the switch is pressed.
When the switch is pressed, current flows from the Plus (+) end to the Minus (-) end of the battery through the light bulb.
The current makes a round trip and is therefore known as an Electric Circuit.

As shown in the above diagram, the bulb or anything that consumes electricity is known as the "Load". Load is expressed by —M- LOAI

1-3 Current • Voltage • Resistance and their Correlation

- Current and Voltage

The flow of electricity is not visible to human eyes. Let's compare it to the flow of water.

Some information on electricity and electric potential

	Unit	Designation
Volume of flowing electricity	A (ampere)	Electricity
Potential difference (strength of electricity flow)	V (Volt)	Voltage

- Electrical resistance

Inwarted water tiow

Thwarted water flow through a pipe, the flow will be weakened when the valve is tightened and increased when the valve is loosened.
Also, when the pipe is stained, water flow will be thwarted.

In the case of electricity,

	Unit	Designation
Obstruction to the flow of current in a circuit	Ω (ohm)	Resistance

- The rule of ohm

The size of current flowing through a electric circuit is directly proportional to the size of the voltage and indirectly proportional to the size of the resistance. This is known as the Rule of Ohm.

Voltage (V)	$=$ Electricity (A)	x Resistance Ω
E	$=\mathrm{I}$	$x \quad \mathrm{R}$

Let's compare it to water....

EXERCISE

A hot plate of 15Ω resistance is connected to a wall outlet of 100 V voltage.
What is the amount of electricity flowing to the hot plate?

Formula: \qquad Answer: \qquad

1-4 Serial Connection • Parallel Connection for Resistance

When two instances of resistance are linked via a serial or parallel connection, the combined value of the resistance is known as the Combined Resistance.

Serial Connection	Parallel Connection
Resistance $R=A+B$ Combined resistance is the sum of various resistances When all the three lamps are on, the light produced is dimmer than that produced when one lamp is on. As the supply voltage is divided among the lamps, these lamps are dimmer when all of them are switched on at the same time. The electricity which flows through the wire is $1 / 3$ smaller than that when only one lamp is on.	$R=\frac{1}{\frac{1}{A}+\frac{1}{B}}$ Combined resistance is the reciprocal sum of the reciprocals of various resistances When all the three lamps are on, the light produced is as bright as that produced when one lamp is on. Each lamp uses the supply voltage as-is. Thus, their brightness is not reduced. However, in this case, the electricity that flows through the wire has become larger to cater to the number of lamps.

1-5 Electric Power

All electrical appliances come with an indication of their power expressed by "Watt (W)". For example, light bulbs come in $100 \mathrm{~W}, 60 \mathrm{~W}$ and 30 W , etc. The higher the watt is, the brighter the light bulb will be. Hair dryers, for example, come in 1000 W and 1200 W , etc. Similarly, the higher the watt is, the stronger a hair dryer will blow.

As such, electricity is channeled to produce light, drive motors, produce heat and do a host of other jobs.

	Unit	Designation
Power of electricity per unit of time	W(Watt)	Electric power

- Correlation between electric power and current • voltage

If electric power is P , its correlation with current \bullet voltage is shown in the following formula.

```
wer (W)
P=EI E: Voltage (V)
    I: Current (A)
```

Example
To seek the current value when a 1200 W -hair dryer is in use.
The voltage for home-use electricity is AC200V, thus,

$$
\text { Current value }=\frac{1200 \mathrm{~W}}{200 \mathrm{~V}}=6 \mathrm{~A}
$$

Beware of current over-use
The volume of current required by a family is contracted with a power-supply company in terms of current value (ampere) in advance.
When too many electrical appliances are used at the same time which leads to the demand for more electricity than the contracted volume, a breaker function will automatically work to stop the supply of electricity.
There are various contracted current values including 10A, 15A, 20A and 30A, etc.

Exercise

In a family, for which the contracted current value is 30 A , can the following equipment be working at the same time?

- Stick to the power rating for safety use

Maximum current values and maximum voltage value are determined for all electrical equipment, including plugs and wall sockets. These are known as the allowable current and allowable voltage. All electrical appliances come with a power rating.

- Watch out for starburst connections!

When there are not enough built-in wall sockets, the use of extension cord, such as a table tap, allows electricity to be tapped easily.
Most of the power rating for extension cords is approximately 7A.
If a 600 W electric rice cooker and a oven toaster are used at the same time, the current value will be:

$$
\frac{600 \mathrm{~W}}{100 \mathrm{~V}}=6 \mathrm{~A} \text { and } 6 \mathrm{~A}+6 \mathrm{a}=12 \mathrm{~A} . \quad \text { When the total value goes beyond the power rating, such as this }
$$

case, it becomes dangerous.

1-6 Direct Current and Alternate Current

The flow of current can be direct or alternate. DC stands for direct current while AC, alternate current.
Sirect Current (DC)

For regulating equipment, the power consumption for DC and AC is expressed in different units.

	Unit	Name
AC	VA	VA
DC	W	Watt

- Alternate Current can be transformed into Direct Current.

In the case of a Walkman

1-7 Frequency

For AC, cyclical variations which reverse Plus and Minus at a fixed regular occur.
Each of these waves is known as a cycle and the number of waves returned in a second is known as the frequency.

	Unit	Designation
Frequency	Hz	Hertz

$1-$
1 second

1-8 Supply Voltage

A load requires a matching power source.
If inappropriate $\mathrm{AC} / \mathrm{DC}$ or voltage is used, the load will not function or may even be damaged. Let's check out the appropriate supply voltage for electrical appliances which we use daily.

Select the appropriate power sources that match the loads and link them with lines.

1-9 How Electricity Reaches You

So far, we have learnt something about electricity. But what are the routes taken by electricity before it reaches factories or houses?

The electricity delivered by power stations is high-voltage current of $\mathrm{AC} 15,000$ $50,000 \mathrm{~V}$. In order to lower the voltage to AC200V for home use, the electricity passes through several substations and distribution poles.
The voltage is reduced using the transformers at these locations to transform the electricity into an appropriate voltage
 for factory, building and home use.

AC25,000V

1-10 Symbols and Units

The symbols and units that we have learned so far are summarized in the following tables.

Electrical Units

Item	Abbr.	Unit		Symbol	Example
		Symbol	Designation		
Voltage	E	V	Volt	$\frac{1}{\text { TBattery }}$	AC100V, DC12V
Current	I	A	Ampere		$1 \mathrm{~A}, 120 \mathrm{~mA}$
Resistance	R	Ω	Ohm	$-W$	$100 \Omega, 10 \mathrm{k} \Omega$
Power	P	W(DC)	Waatt		100W
		VA(AC)	VA		1.2 Va
Electric energy		WH	Watt-hour		800WH, 24 kWH
Frequency	f	Hz	Hertz		$\begin{aligned} & 50 \mathrm{~Hz}, 60 \mathrm{~Hz} \\ & 1,280 \mathrm{kHz} \end{aligned}$

Numeric Unit

Unit	Designation	Symbol	Example	Unit	Designation	Symbol	Example
10^{12}	tera	T	-	10^{-1}	deci	d	-
10^{9}	giga	G	$\mathrm{GHZ}-$	10^{-2}	centi	c	-
10^{6}	mega	M	$\mathrm{M} \Omega, \mathrm{MHz}$	10^{-3}	mill	m	$\mathrm{mA}, \mathrm{mV}, \mathrm{m} \Omega$
10^{3}	kiro	K	$\mathrm{k} \Omega, \mathrm{Kv}, \mathrm{kW}$	10^{-6}	micro	μ	$\mu \mathrm{A}, \mu \mathrm{F}$
10^{2}	hecto	H	-	10^{-9}	nano	n	nS
10^{1}	deca	da	-	10^{-12}	pico	p	pF

SECTION 2 Switches

2-1 What is a Switch? 18
2-2 What is a Contact? 19
2-3 Micro Switch 20
2-4 Useful Glossary about the Switch 21
2-5 Limit Switch 24
2-6 Operation Switches 26
2-7 Pointers for the Selection of Switches 28
2-8 Omron Models 30
2-9 Application 38

2-1 What is a Switch?

Switches are one of the most common thing in our daily life nowadays. They come with different equipment, such as switches for radios, televisions and lamps.
There are also a wide variety of switches for regulating circuits. Let's take a closer look.

- Detection switches: Switches which function when an object arrives.

Micro switch
Limit switch
Photoelectric switch, proximity switch, level switch

- Operation switches: Switches which are operated by man.
- Push-button switch
- Illuminated push-button switch

Sum rotary switch
Dip switch
Mechanical key switch

Ticket vending machine

2-2 What is a Contact?

There are "contacts" in a switch. When a contact is switched over, current may flow or stop to flow.
The "contact" of a switch is switched over by force.

- Contact a and contact b

- Structure of a contact
* Meaning of the symbols of the terminals

COM Common Terminal
N.O Normally Open Terminal
N.C. Normally Close Terminal

Switches	
2-3 \quad Micro Switch	

- Structure

- Contact

- Characteristics
- Small
- High capacity make and break

- Example of uses

This kind of switch can be used to detect whether doors are open or close, e.g., electronic oven or cars. It can also be used to detect whether products are sold out, e.g., vending machines.

2-4 Useful Glossary about the Switch

There are many kinds of switches. How can we differentiate them?
They can be differentiated in many ways depending on their uses and installed locations. Let's first learn how to read a format which contains keywords needed to understand what a switch is.

4. Types of terminal

Some switches require predetermined terminals while others can select from several types.

Soldered terminal

Tab terminal (C)

* The symbols contain in the () are indicated in the format.

- Life Span

- Mechanical life span -

If a switch is switched on/off repeatedly under load-free state, how many times will it take before the innards of the switch gets damaged?

If a switch is switched on/off repeatedly with the rated load (predetermined load) of the switch applied, how many times will it take before the innards of the switch (especially the contact) gets damaged?
Q. Which life span is longer, mechanical or electrical?

- Operation Characteristics

The amount of force has been determined so that the switch can operate.

| Movement | PTForce required for operation (Operating Force)
 This is the force required to work the contact
 which is applied on the actuator.
 Force required for release (Release Force) This
 is the force required to loosen actuator of the movement (Pre Travel)
 operating switch so that the contact can be
 released. |
| :--- | :--- | :--- |
| and the operating bosition of the actuator. | |
| Post-operation movement (Over Travel) | |
| This is the distance for which the actuator is | |
| allowed to move after operation | |
| Differences in movement (Movement | |
| Differential) | |
| This is the distance between the operation | |
| position and the position. | |

Switches

2-5 Limit Switch

- Structure

- Contact

- Characteristics
- High mechanical intensity
- Oil-resistant, water and dustproof mechanism.
- Example of use

Cargo lift
Detection of stopping position of multi-level car park

Detection of life position

- Actuator

There are many types of actuators.

* Variable: The length of the lever is variable.There are renewable types as well, such as the D4A type.

$\frac{\text { Switches }}{2-6 \quad \text { Operation Switches }}$

- Push-button Switch

These switches can be switched on and off when pushed by an operator.

A3GJ type

- Illuminated Push-button Switch

These switches have built-in LED (or incandescent lamps) on the inside of the push-button switch. The on/off operation can be linked to the operation of the lamp.
With the lamp, it is easy to check whether the switch is on or off visually.

A3TP type

A3PJ type

A3DT type

Structure: Push-button + lamp

* It can be used as an indication lamp as well.

Momentary Operation : When the switch is pressed, it comes on. When the switch is released, it automatically resets to the initial state instantly.

Alternate Operation: When the switch is first pressed, it comes on and remains in the operating state. When it is pressed again, the lock will be released. "Push on, push off".

- Sum Rotary Switch

This kind of switch outputs force which matches the display and switches electric circuits.

Example of uses: Setting of temperature, time, frequency and dimension, etc. for measuring instruments.

- Dip Switch

This kind of switch is used on printed circuit board. It has a small operation section and is used for program setup and switching circuits.

It's purpose is similar to that of the sum rotary switch. The "sum rotary switch" is used when settings need to be changed frequently whereas the "dip switch" is used when changing of settings is less frequent.

- Mechanical Key Switch

This switch is small, thin and has simple structure. It is installed on a printed circuit board.

Example of uses: Office equipment, video, television, OA equipment and calculators.

2-7 Pointers for the Selection of Switches

| Size? |
| :--- | :--- |
| \square Big (limit SW) |
| \square Small (micro |

< Operation Switch >

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
What is it for?
Operation
Emergency
Others \\
Emergency \\
- Operation method -
\end{tabular} \& \begin{tabular}{l}
- Shape \(\bullet\) \\
1. Shape \\
\(\square\) Round \\
\(\square\) Square \\
2. Color \\
\(\square\) Red

Yellow
Green Others

3. inating

4. Size (Panel-cut dimension)
$\square \phi 8 \quad \square \phi 12 \quad \square \phi 16$
\end{tabular}

\hline | What kind of operation is required? |
| :--- |
| \square Momentary (self-respect) |
| \square Alternate (self-maintained) |
| \square Others | \& | Environment? © Environment - |
| :--- |
| \square Exposed to oil and water |
| \square Exposed to vibration and impact |
| Loosened \qquad |
| $\{3$ 年 |

\hline
\end{tabular}

2-8 Omron Models

Basic Switch

Switches \quad Section \quad 2-8

Limit Switch

Switches \quad Section \quad 2-8

Limit Switch

Basic Switch

Classification	Actuator And Their Functions: Basic Switch					
	Pin Plunger	Slim Spring Plunger	Short Spring Plunger	Panel Mounted Plunger	Panel Mounted (Cross) Roller Plunger	Hinge Lever
Shape						\square
Pretravel (PT)	Small	Small	Small	Small	Small	Large
Overtravel (OT)	Small	Medium	Medium	Large	Large	Medium
Operating Force (OF)	Large	Large	Large	Large	Large	Small
Accuracy	$\star \star / \star \star \star t$	$\star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star \star$	\star
Vibration/ Shock	$\star \star \star \star$	$\star \star$	$\star \star \star$	$\star \star \star$	$\star \star$	\star
Features	Ideal for straight movement with a short stroke. Best in detecting the position of an object in terms of accuracy. However, has the smallest overtravel (OT) of all actuators and thus need an accurate stopper.	Used in the same way as the pin plunger actuator, except the overtravel (OT) is larger than that of the pin plunger actuator. The plunger head size is designed a bit larger with respect to the actuator size. To avoid an unbalanced load, the operating force has to be applied to the shaft center.	Overtravel (OT) is the same as the slim spring plunger. The plunger height is short. The plunger head size is designed larger to simplify contact with the center of the plunger.	Has the largest overtravel (OT) of all straight movement plungers. Mount with the hex nut of lock nut to a panel. By adjusting these nuts, the desired mounting position can be achieved. Operated manually or mechanically.	A panel-mounting plunger actuator with a roller attached. Ideal for being driven by a cam or dog. The overtravel (OT) is slightly smaller than the panel mounting plunger but it can be adjusted by changing the mounting position in the same way as the panelmounting plunger. This plunger can also be mounted with the roller crossed.	Use with a lowspeed, lowtorque cam. The lever can be in various shapes but must be rigid enough.

Note: $\boldsymbol{\star}$ Fair, $\boldsymbol{\star} \boldsymbol{\star}$ Fine, G
*
Switches \quad Section \quad 2-8

Basic Switch

Classification	Actuator And Their Functions: Basic Switch				
	Hinge Roller Lever	One Way Operation Hinge Roller Lever	Reverse Operation Hinge Roller Lever	Reverse Operation Short Hinge Roller Lever	Flexible Rod
Shape			$Q \equiv Q$		
Pretravel (PT)	Large	Medium	Medium	Small	Large
Overtravel (OT)	Medium	Medium	Medium	Medium	Large
Operating Force (OF)	Small	Medium	Medium	Large	Small
Accuracy	\star	\star	\star	\star	\star
Vibration/ Shock	\star	\star	$\star \star$	$\star \star$	\star
Features	A hinge lever actuator with a roller. Ideal for being driven by highspeed cam.	Hinge roller lever type. Detection for only one way direction. Can be used for anti-reverse operation	Roller is added to the above type. Suitable for cam operation. Superior in antivibration and impact in a free condition.	Shorter type of reverse hinge/roller/lever type. Larger operation force. Suitable for short stroke cam operation. Superior in anti-vibration and impact in free condition.	Operates in all directions $360^{\circ} \mathrm{C}$ with a very light torque. Ideal for applications where high precision and high sensitivity are required.

Limit Switch

Classification	Actuator And Their Functions: Limit Switch					
	Roller Lever	Adjustable Roller Lever	Adjustable Rod Lever	Fork Lever Lock	Plunger	Roller Plunger
Shape			48		$\frac{Q}{\text { Q目 }}$	
Pretravel (PT)	Small-Large	Small-Large	Large	Large	Small	Small
Overtravel (OT)	Large	Large	Large	Medium	Medium	Medium
Operating Force (OF)	Medium	Medium	Medium	Medium	Medium	Large
Accuracy	$\star \star \star / \star t \star t$	$\star \star \star / \star \star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star$	$\star \star$
Vibration/ Shock	$\star \star$	$\star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star$	$\star \star$
Environmental Resistance	$\star \star \star \star$	$\star \star$	$\star \star$			
Features	The roller lever is convenient in that the lever stroke in the direction of rotation has a range of 45 to $90^{\circ} \mathrm{C}$. The lever can be set at any position within $360^{\circ} \mathrm{C}$. High sensitivity with a wide angle. This can be used with a wide range of positioning during work detection.	A roller lever actuator with an adjustable lever attached. When this feature is put to good use, the work can be detected roughly.	Convenient when the width of the work area is wide or the shape of the work is uneven. The rotating torque is lowest for the roller lever limit switches. The rod length and bending can be adjusted easily.	During operation the lever rotates by itself up to $55^{\circ} \mathrm{C}$, and holds that position. Can be operated by a single dog reciprocating operation or by two dogs when the position of the rollers is shifted.	Highly accurate in detecting the status of oil pressure and/or air cylinder operation. (Mount the switch securely avoiding an unbalanced load according to the movement of the operating object).	A wide range of uses when mounting with the auxiliary actuators and a cam, a dog, or a cylinder. Highly accurate in position detection.

Limit Switch

Classification	Actuator And Their Functions: Limit Switch				
	Ball Plunger	Coil Spring	Hinge Lever	Hinge Roller Lever	Roller Arm
Shape					
Pretravel (PT)	Small	Medium	Large	Large	Medium
Overtravel (OT)	Medium	Large	Medium	Medium	Medium
Operating Force (OF)	Large	Small	Small	Small	Medium
Accuracy	$\star \star \star$	\star	\star	\star	\star
Vibration/ Shock	$\star \star$	\star	\star	\star	\star
Environmental Resistance	$\star \star$	$\star \star \star$	$\star \star$	$\star \star$	$\star \star \star$
Features	Since the plunger is a steel ball, the operating direction is not restricted. Convenient when the mounted surface and operating direction vary, or when the cross-operation of the two are required. Since the dog angle is small, the work surface requires the proper frictional properties.	Able to operate in all direction $360^{\circ} \mathrm{C}$ except on the shaft center. The operating force required is the smallest available relative to the limit switches and thus effective for detecting works using different directions and shapes. The wide range of work is possible because the overtravel (OT) is absorbed by the actuator.	Used with a lowspeed, low torque cam. The lever can be in various shapes but must be rigid enough.	A hinge lever actuator with a roller attached. Ideal when being driven by a highspeed cam.	Can respond to a wide range of operating directions with the adjustable roller.

Note: \star Fair, $\star \star$ Fine, G $\downarrow \boldsymbol{*} \star \boldsymbol{\star}$

2-9 Application

SECTION 3 Relays

3-1 What is a Relay? 40
3-2 Types of Relay 41
3-2-1 General Relay (Hinged Relay) 41
3-2-2 Other Relays 43
3-3 Useful Glossary About The Relay 45
3-3-1 Contact of relay. 45
3-3-2 Relay Coil 47
3-3-3 Performance of relays 47
3-4 Exercises 48
3-5 Pointers for Selection 49
3-6 Omron Models. 51
3-7 Application 58

3-1 What is a Relay?

Imagine the track and field relay race we all participated during school sports days. In track and field competitions, a relay is a race whereby a runner runs to the next and hands him a baton, and the next runner repeats the process until the anchor runner gets hold of the baton and dashes across the finishing line.
The relay of regulating machines is exactly the same. Instead of baton, however, switches receive "electrical signals" and transmit them to output sections, e.g., motors.

Can you recall what you have learned about "electromagnet" in your science lessons? By coiling copper wire around a piece of iron core and charging it, the iron core becomes magnetic. In fact, this principle of "electromagnet" is being adopted for the relay.

- Electromagnet

3-2 Types of Relay

3-2-1 General Relay (Hinged Relay)

This is a small relay which is most widely used in industrial machines. Taking this type of relay as an example, let us study the relay in detail.

- Principles of the relay

When current flows to the coil in the relay, the iron piece will be attracted and the contact will be switched as a result.

- Structure and operation of the relay

Operation: When the coil section is charged, the movable iron piece will be attracted to the iron core of the coil section by the force of the electromagnetic, with the hinge serving as the fulcrum. As a result, movable contact c is switched from the position of stationary contact b to stationary contact a.
Reset: When the voltage to the coil section is cut off, the movable iron piece will be returned to the original position by the force of the reset spring. As a result, movable contact c is switched from the position of stationary contact a to stationary contact b.

- Characteristics of the relay

1. The coil section and the contact section are completely insulated. They are independent circuits.

2. A single input signal to the coil section triggers (control) the open-close action of multiple circuits simulanteously.

- The external appearance of general relays

MY2 type

LY4 type

These relays are small and suitable for small-medium load (1-10A). They are used for various purposes, e.g., they are used in control boards and incorporated in robots.

- Terminal placement/internal connection diagram

(BOTTOM VIEW)

3-2-2 Other Relays

1. Contactor (plunger-type relay)

2. Printed circuit board (PCB) relay

- Characteristics of PCB

As its installation is automated,

1. The cost is low (no need for manual wiring)
2. Reliable (no wiring error)

- Examples of application

Electronic carpet
Switch for heater

3. Solid State Relay (SSR)

SSR stands for Solid State Relay. It is different from conventional relays in that it uses semiconductor and is contact-less.

- Principle

- Characteristics
- As it is contact-less, it does not suffer from the wear and tear of a contact. So, it enjoys a longer life span (maintenance free).
- No operation sound as it has no mechanical movement.
- High-speed high-frequency operation* is possible as it has not mechanical movement (on/off by light).
- No faulty contact as it is contact-less.
- Example of application
* It means more frequency per unit of time.

I/O terminal series
Traffic light: on/off of red, green and yellow lamp.

I/O stands for Input and Output respectively. This compact terminal packs common relay (or SSR), transistor and socket for input or output.
The use of this terminal saves space and the need for wiring.

G7TC relay terminal

3-3 Useful Glossary About The Relay

3-3-1 Contact of relay

- Structure of a contact

* PCB relay: \qquad There are various types of contact 1 a 1 b , and contact 1 c .
General relay: \qquad There are so many combinations for contact $1 \mathrm{c}, 2 \mathrm{c}, 3 \mathrm{c}, 4 \mathrm{c}$ and c .
Contactor: ... There are also many combinations for contact a and contact b, such as contact $\mathbf{3 a + 1 a}, \mathbf{3 a + 1 b}$, etc.

- Number of contact poles

The number of contact poles determine how many circuit a relay can makes and breaks (e.g., 2 poles, 4 poles).

- Rated current

This refers to the amount of current allowed to flow to a contact.

- Shape and material of a contact

The basic shape and material for a relay contact is single contact (standard shape) and silver (Ag) respectively.

However, special shapes and materials are required for relays used to make and break a small amount of current.
(1) Shape of contact

(2) Materials of contact

- Apply gold (Au) on the contact surface of silver contact, or
- Use silver palladium (AgPd) for the contact, etc.
* On the other hand, to open-close large amount of current, silver indium tin (AgInSn) may be used for the contact.
- Load

| Resistance load | Inductive load |
| :--- | :--- | :--- |
| (A) | |

3-3-2 Relay Coil

3-3-3 Performance of relays

- Life Span

3-4 Exercises

Relay operation checks

Terminal placement/internal connection diagram

Contents of exercise
Carry out wiring with the relay (MY). Press the switch and consider the circuit of the lighted lamp.
At the same time, check the switch-over of the relay contact.
Method: 1. Consider the circuit of the lighted lamp which makes use of the relay. Carryout wiring as shown in the above diagram.
2. Carry out wiring.
3. Press the switch and check that the lamp comes on.

Check the movement of the contact of the relay at the same time.
Study: Try and build a circuit whereby the lighted lamp will be turned off when the switch is pressed.

3-5 Pointers for Selection

- Important pointers

- Important pointers

1. Environment

2. Life span

- System diagram of relays

We have seen and learned various types of relays so far. Let's stop for a while and look back. Indeed, the most critical factor for selecting a relay is the amount of current which flows to the contact.

3-6 Omron Models

Relays

Classification		General - Purpose Relays						
		MY			LY		MK-1	
Model					$\frac{+}{4}$			
Features		- Versatile relays, ideal for power and sequence control applications, meeting many other application requirement			- Compact, general-purpose relays equipped with arc barrier ideal for many applications.		- Exceptionally reliable relays which feature mechanical indicator/test buttons	
Coil Rating	Rated voltage	$\begin{aligned} & 6 \text { to } 100 / 110 \mathrm{VDC} \\ & 6 \text { to } 220 / 240 \mathrm{VAC} \end{aligned}$			6 to 100/110VDC 6 to 220/240VAC	6 to 100/110VDC 6 to 200/220VAC	$\begin{aligned} & 6 \text { to } 110 \mathrm{VDC} \\ & 6 \text { to } 240 \mathrm{VAC} \end{aligned}$	
	Power consumption	$\begin{aligned} & \text { DC:0.9W } \\ & \text { AC:0.9 to } 1.2 \mathrm{VA} \end{aligned}$			DC:0.9W AC:0.9 to 1.2 VA	$\begin{aligned} & \text { DC:15W } \\ & \text { AC:1.95 to } \end{aligned}$ $2.5 \mathrm{VA}$	$\begin{array}{\|l\|} \hline \text { DC: } 1.5 \mathrm{~W} \\ \text { AC:2.3VA } \end{array}$	
Contact Rating	Contact Form	DPDT	3PDT	4PDT	DPDT	4PDT	DPDT	3 PDT
	Material	Ag		Au- plated +Ag	AgCdO		Ag	
	Rated Load	5A at 24 VDC 5A at 220VAC		3A at 24 VDC 3A at 220 VAC	$\begin{aligned} & 10 \mathrm{~A} \text { at } 240 \mathrm{VDC} \\ & 10 \mathrm{~A} \text { at } 110 \mathrm{VAC} \end{aligned}$		10 A at 28 VDC 10A at 250VAC	
	Max. Switching Current	5A		3A	10A		10A	
Life Expectancy	Mechanical	$\begin{array}{\|l\|} \hline \begin{array}{l} 50 \times 10^{6}(\mathrm{AC}) ; 100 \times 10^{6} \\ (\mathrm{DC}) \end{array} \\ \hline \end{array}$			50×10^{6} (AC); 100×10^{6} (DC)		$10 \times 10^{6}(\mathrm{AC})$	
	Electrical	50×10		200×10^{3}	500×10^{3}	200×10^{3}	100 x	
Dielectric Strength	Between Coil and Contact	$2,000 \mathrm{VAC}$ for 1 min .			$2,000 \mathrm{VAC}$ for 1 min .		$2,500 \mathrm{VAC}$ for 1 min .	
	Between Contact of Same Polarity	1,000VAC for 1 min .			$1,000 \mathrm{VAC}$ for 1 min .		$1,000 \mathrm{VAC}$ for 1 min .	
Ambient Temperature		-55 to $70^{\circ} \mathrm{C}$			-25 to $55^{\circ} \mathrm{C}$	-25 to $40^{\circ} \mathrm{C}$	-10 to	
Variations		- Plug-in/Solder terminal - Plug-in/Solder terminal with LED indicator			- Plug-in/Solder terminal - Plug-in/Solder terminal with LED indicator		- Plug-in terminal with mechanical indicator	
Socket		PYF08A-E, PYF08A-P, PYF11A, PYF14A-E, PYF14A-P, PY08-0, PY14, PY14-0			PTF08A-E, PTF11A, PTF14A-E, PT08, PT14		PF083A-E, PF113A-E	
Weight (Approx.)		35g			40g	70 g	85g	
Approved Standard \& Markings		UL,CSA,LR,EN/IEC,CE			UL,CSA,SEV,IEC,VDE,L R,CE		UL,CSA,SEV,DEMKO,NE MKO,SEMKO,VDE,EN/IEC ,CE	

Relays

Classification		General - Purpose Relays			
		MYK	MKK	G4Q	G7L
Model					
Features		- Magnetic latching relays ideal for memory and data transmission circuits	- Special magnetic material ensures long continuous holding time	- Unique ratchet mechanism assures positive alternate transfer/switching operations - Quick response speed allows continuous use of the relay	- A high capacity, high withstand voltage relay compatible with momentary voltage drops
Coil Rating	Rated voltage	$\begin{aligned} & 6 \text { to } 24 \mathrm{VD} \\ & 6 \text { to } 1000 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6 \text { to } 100 \mathrm{VDC} \\ & 6 \text { to } 200 /(220) \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6 \text { to } 200 \mathrm{VDC} \\ & 6 \text { to } 200 /(220) \mathrm{VAC} \end{aligned}$	6 to 100 VDC 6 to 200/240VAC
	Power consumption	Set: DC:1.3W AC:0.6 to 0.9VA Reset: DC:0.6W AC:0.2 to 0.5 VA	Set: DC:2.3 to 2.7 W AC: 1.5 to 2VA Reset: DC:0.5 to 1.2 W AC: 0.1 to 0.7 VA	$\begin{aligned} & \mathrm{DC}: 3.9 \mathrm{~W} \\ & \mathrm{AC}: 6.4 \mathrm{VA} \end{aligned}$	$\begin{aligned} & \mathrm{DC}: 1.9 \mathrm{~W} \\ & \mathrm{AC}: 1.7 \text { to } 2.5 \mathrm{VA} \end{aligned}$
Contact Rating	Contact Form	DPDT	DPDT	DPDT	DPST-NO
	Material	Au-plated + Ag	Ag	Ag alloy	Ag alloy
	Rated Load	$\begin{aligned} & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \\ & 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \\ & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \\ & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \end{aligned}$	25 A at 220 VAC
	Max. Switching Current	3A	5A	5A	25A
Life Expectancy	Mechanical	100×10^{6}	5×10^{6}	5×10^{6} (Step)	1×10^{6}
	Electrical	200×10^{3}	500×10^{3}	500×10^{3} (Step)	100×10^{3}
Dielectric Strength	Between Coil and Contact	1,500VAC for 1 min .	$2,000 \mathrm{VAC}$ for 1 min .	$2,000 \mathrm{VAC}$ for 1 min .	$4,000 \mathrm{VAC}$ for 1 min .
	Between Contact of Same Polarity	$1,000 \mathrm{VAC}$ for 1 min .	1,000VAC for 1 min .	$1,000 \mathrm{VAC}$ for 1 min .	$2,000 \mathrm{VAC}$ for 1 min .
Ambient Temperature		-55 to $60^{\circ} \mathrm{C}$	-10 to $40^{\circ} \mathrm{C}$	-10 to $55^{\circ} \mathrm{C}$	-25 to $60^{\circ} \mathrm{C}$
Variations		- Solder terminal - Plug-in terminal with mechanical indicator	- Plug-in terminal with mechanical indicator	- Plug-in terminal	- Quick-connect terminals
Socket		PYF14A-E, PYF14A-P, PY14	PF113A-E	8PFA1, PL08	-
Weight (Approx.)		30 g	85 g	340 g	90 g
Approved Standard \& Markings		-	-	-	UL,CSA,EN/IEC, VDE,CE

Relays

Classification		PCB Power Relays					
		G2R		G5L	G6B		G6D
Model							F\%
Features		- A high withstand voltage generalpurpose PCB power relay		- A cubic, single-pole PCB power relay	- Subminiature relay that switches up to 5A		- Slim, miniature relay capable of relaying programmable controller and temperature controller outputs
Coil Rating	Rated voltage	$\begin{aligned} & 5 \text { to } 100 \mathrm{VD} \\ & 12 \text { to } 200 /(220) \mathrm{VAC} \end{aligned}$		5 to 24 VDC	5 to 24 VDC		5 to 24 VDC
	Power consumption	DC:530mW AC:900mVA		400 mW	200mW	300 mW	200mW
Contact Rating	Contact Form	$\begin{aligned} & \text { SPST-NO } \\ & \text { SPDT } \end{aligned}$	DPST-NO DPDT	SPST-NO	SPST-NO	DPST-NO	SPST-NO
	Material	AgCdO		AgCdO	AgCdO		AgCdO
	Rated Load	$\begin{aligned} & 10 \mathrm{~A} \text { at } \\ & 30 \mathrm{VDC} \\ & 10 \mathrm{~A} \text { at } \\ & 250 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } \\ & 30 \mathrm{VDC} \\ & 5 \mathrm{~A} \text { at } \\ & 120 \mathrm{VAC} \end{aligned}$	5Aat 30VDC 5 A at 120 VAC	$\begin{aligned} & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \\ & 5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \end{aligned}$		5 A at 30 VDC 5 A at 250 VAC
	Max. Switching Current	10A	5A	5A	5A		5A
Life Expectancy	Mechanical	DC:20x10 ${ }^{6}$, $\mathrm{AC}: 10 \times 10^{6}$		10×10^{6}	50×10^{6}		20×10^{6}
	Electrical	100×10^{3}		100×10^{3}	100×10^{3}		$100 \times 10^{3} \min (5 \mathrm{~A}$ load) $300 \times 10^{3} \mathrm{~min}(2 \mathrm{~A}$ load)
Dielectric Strength	Between Coil and Contact	$5,000 \mathrm{VAC}$ for 1 min .		$2,000 \mathrm{VAC}$ for 1 min .	$3,000 \mathrm{VAC}$ for 1 min .		$3,000 \mathrm{VAC}$ for 1 min .
	Between Contact of Same Polarity	1,000VAC for 1 min .		750 VAC for 1 min .	$1,000 \mathrm{VAC}$ for 1 min .		750 VAC for 1 min .
Ambient Temperature		-40 to $70^{\circ} \mathrm{C}$		-25 to $70^{\circ} \mathrm{C}$	-25 to $70^{\circ} \mathrm{C}$		-25 to $70^{\circ} \mathrm{C}$
Variations		- Flux-protection - Plastic-sealed - Plug-in terminal		- Flux-protection - Plastic-sealed - Plug-soldered type	- Double/singlewinding - Plastic-sealed - Plug-in terminal		- Plastic-sealed
Socket		P2RF-05-E, P2RF-08-E		-	P6B-04P,P6B-26P		P6D-04P
Weight (Approx.)		17 g		12 g	3.5 g		3 g
Approved Standard \& Markings		UL,CSA,SEV,SEMKO, EN/IEC,VDE,CE		UL,CSA,IEC,VDE,CE	UL,CSA,IEC,VDE, SEV,CE		UL,CSA,IEC,VDE

Relays

Classification		Solid State Relay		
		G3F/G3FD	G3NA	
Model				
Features		- Wide voltage range - Terminal compatible with MY relays	- Built-in varistor absorbs external surges Operation indicator enables monitoring operation	
Rated Input voltage		$\begin{aligned} & \text { 4 to } 24 \mathrm{VDC}, \\ & 100 / 110 \mathrm{VAC}, 200 / 220 \mathrm{VAC} \end{aligned}$	5 to 24 VDC 200 to 240 VAC	5 to 24VDC 100 to 240 VAC
Output	Insulation	Photocoupler	Phototriac	Photocoupler
	Load voltage	75 to 264VAC	19 to 264VDC	180 to 528VAC
	Max. Switching Current	3A	40A	
	Leakage current	at 100VAC:5mA max. at $200 \mathrm{VAC}: 10 \mathrm{~mA}$ max.	at 100 VAC : 5 mA max. at 200 VAC : 10mA max.	at 200 VAC : 10 mA max. at 400 VAC : 20 mA max.
Dielectric Strength (Between input and output terminals)		1,500VAC, $50 / 60 \mathrm{~Hz}$ for 1 min .	$2,500 \mathrm{VAC}$, $50 / 60 \mathrm{~Hz}$ for 1 min .	
Ambient Temperature (Operating)		-30 to $80^{\circ} \mathrm{C}$	-30 to $80^{\circ} \mathrm{C}$	
Variations		- Plug-in terminal	- Panel mounting - Screw Terminal	
Socket		PYF08A-E, PY08,PYF08A-P	-	
Weight (Approx.)		50 g	60g	80 g
Approved Standard \& Markings		-	UL,CSA,EN/IEC,VDE,CE	

Relays

Classification		Solid State Relay					
		G3PA					G3J-S
Model							
Features		- Extremely thin relays integrated with a heart sink - Subminiature, thin profile - Replaceable power cartridge					- Motor starts smoothly with the soft-start function.
Rated Input voltage		5 to 24VDC					12 to 24VDC
Output	Insulation	Phototriac coupler			Photocoupler		Phototriac
	Load voltage	19 to 264VAC			180 to 528 VAC		200 to 400VAC
	Max. Switching Current	10A	20A	40A	20 A	30A	11.1A
	Leakage current	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { at } 1001 \\ 5 \mathrm{~mA} \mathrm{~m} \\ \text { at } 2001 \\ 10 \mathrm{~mA} \\ \hline \end{array}$		at 100VAC: 10mA max. at 200VAC 20 mA max. 20 mA max			at $400 \mathrm{VAC}: 10 \mathrm{~mA}$ max.
Dielectric Strength (Between input and output terminals)		4000 VAC , $50 / 60 \mathrm{~Hz}$ for 1 min .					2,500VAC, $50 / 60 \mathrm{~Hz}$ for 1 min .
Ambient Temperature (Operating)		-30 to $80^{\circ} \mathrm{C}$					-20 to $60^{\circ} \mathrm{C}$
Variations		- Track mounting - Screw Terminal					- Track mounting - Screw Terminal
Socket		-					-
Weight (Approx.)		260g	34	g $\quad 460 \mathrm{~g}$	380g	500g	730 g
Approved Standard \& Markings		$\begin{aligned} & \text { UL,CSA,EN/IEC, } \\ & \text { VDE,CE } \end{aligned}$			UL,CSA		-

- Product Positioning

Relays		Section	3-7
3-7	Application		

SECTION 4
 Timer

4-1 What is a Timer? 60
4-2 Electronic Timer 61
4-3 Useful Glossary about the Timer 63
4-4 Assembly Exercise 67
4-5 Pointer for Selection 69
4-6 Omron Models. 70
4-7 Application 75

4-1 What is a Timer?

A timer keeps track of time and provides certain notifications or carries out certain functions at a predetermined time.

As shown in the following drawing, when a timing is input, the built-in contact executes a switch-over at the programmed time (operation time). (=time up)

Timer Section

4-2 Electronic Timer

An electronic timer makes use of electronic circuits to keep track of time.

- Principle of structure and operation

The contact switches over at programmed time.

- Programming method

Select one of the two programming methods according to the purpose.

- A timer is useful in the following situations

A timer serves to fulfill various purposes.

4-3 Useful Glossary about the Timer

A timer does more than keep track of time and outputs. It has various functions. Let's take a look at what a timer can do here.

- Operation

Various operations can be performed depending on when the timer starts counting the time.
On-delay operation
After the power is on, the contact is switched over after a lapse of time (delay).

Off-delay operation

After the power is off, the contact is switched over after a lapse of time (delay).

* There are other operations which are not triggered by the power. Instead, on-delay operations and offdelay operations are executed based on start signals received (on-delay operation signal, off-delay operation signal).

* Time Chart

All timer operations are expressed by \qquad
This is known as the "Time Chart" or the "Operation Chart".
*For the time chart, the y axis indicates the "operation state" while the x axis, the "passage of time" (second, minute, and hour).

Operation State

Flicker Operation
After the power is on, the contact switches over repeatedly at a constant cycle.

Multiple Operation
A single unit of timer can handle multiple operation functions.

H3CR type

- Time

Time Specification
This refers to the time which can be counted by a unit of timer.

Multi-time
By changing to a switch with a scale numbers or time unit, a single unit of timer can also be used to handle a wide range of time specifications.

H3CR-A type

$\begin{array}{\|c} \text { Time unit } \\ \text { Scale number } \end{array}$		sec	min	hrs	$\times 10 \mathrm{~h}$ (hours)
1.2		0.05~1.2	$0.12 \sim 1.2$		1.2~ 12
3		$0.3 \sim 3$			$3 \sim 30$
12		1.2~12			$12 \sim 120$
30		$3 \sim 30$			$30 \sim 300$

By switching to scale number display and time unit display, which are located at the lower left and lower right of the timer (at the front) respectively, 16 combined time specifications can be selected.

- Power

Rated voltage
There are dedicated AC timers and DC timers. An appropriate format must be selected according to the power used.

Free power source
There are also some timers, known as AC/DC free power source, which can be used for AC and DC.

4-4 Assembly Exercise

- Power on delay

Contents of exercise:
To understand the operation of power on delay timer using the time chart.
Methods:

1. Make use of H3CR-A8 type power on delay timer and set the operation time to 3 seconds.
2. Wire it up as shown in the connection diagram.
3. Switch on and off the timer power source PB1 and operate it as shown in the following time chart.
4. Record the result in the following timer chart (operation of output contact a)

Study:

1. Please explain the power on delay timer operation using the time chart.
2. How should it be wired so that the lighted lamp will go off after the operation time.
3. Change it to the digital timer and study it (H5CL type).

- Power off delay

Connection diagram

Contents of exercise:
To understand the operation of power off delay timer using the time chart.
Methods:

1. Make use of H3CR-H8L type power off delay timer and set the operation time to 3 seconds.
2. Wire it up as shown in the connection diagram.
3. Switch on and off the timer power source PB1 and operate it as shown in the following time chart.
4. Record the result in the following timer chart (operation of output contact a)

Study:

1. Please explain the power off delay timer operation using the time chart.
2. Why is the timer functioning after the power has been switched off?
3. What kind of devices uses off delay timers?

4-5 Pointer for Selection

- Operation • What kind of operations are required? $\begin{array}{ll}\text { On delay } & \text { Repetitive action } \\ \text { Off delay } & \text { Multi-operation }\end{array}$	- Time specification - What is the range of programmed time? \qquad Seconds, minutes, hours $\begin{aligned} & \text { Multi-time } \\ & \text { This is recommended if } \\ & \text { several types of time } \\ & \text { settings are to be } \\ & \text { programmed. } \end{aligned}$
- Program method - What kind of setting is better? High precision digital setup Simple analogue setup	- Price • What is your budget? 7 \qquad
1. Size? Slim 2. Body length? Short Others - Resolution -	1. AC or DC ? AC DC AC? DC Free Battery 2. Rated voltage? \qquad (V)
What is the smallest time division required? 0.001 s 0.01 s 0.05 s 0.1 s 1.0s	The Accuracy of Operating Time varies differently for different models. e.g. $\pm 0.01 \%$ e.g. $\pm 0.05 \%$

4-6 Omron Models

Classification	Solid State Timer					
Model	H3CR-A	H3CR-F	H3CR-G		H3CR-H	
	Multi-function Operation	Twin Operation	Star-delta Operation		OFF Delay Operation	
Appearance						
Dimension ($\mathrm{W} \times \mathrm{HxD}$) mm	$48 \times 48 \times 52.3$	$48 \times 48 \times 52.3$	$48 \times 48 \times 63.7$		$48 \times 48 \times 63.7$	
Features	- Wide range of AC or DC supply voltage - Enable sequence checks through instantaneous contact.	- Independent ON and OFF settings enable Long ON and short OFF or vice versa	- $\begin{aligned} & \text { Long Power-OFF delay } \\ & \text { time range }\end{aligned}$		- Long Power-OFF delay time range	
Operation Modes	ON Delay, Flicker OFF/ON start,	Flicker OFF start, Flicker ON start	--		OFF Delay	
Time Range	0.05 sec . to 300 hrs .	0.05 sec . to 30 hrs .	0.05 sec . to 120 sec .		0.05 sec to 12 min .	
Accuracy of Operating Time	$\pm 0.3 \%$ FS max.	$\pm 0.3 \%$ FS max.	$\pm 0.3 \%$ FS max.		$\pm 0.3 \%$ FS max.	
$\begin{aligned} & \text { Supply Voltage (AC: } \\ & 50 / 60 \mathrm{~Hz} \text {) } \end{aligned}$	$\begin{aligned} & \text { 100 to 240VAC, } \\ & \text { 24VAC/DC, 12VDC, } \\ & \text { TO 125VDC } \end{aligned}$	100 TO 240VAC, 24VAC/DC, 12VDC, 48 to 125 VDC	100 to 120 VAC , 200 to 240 VAC		100 to $120 \mathrm{VAC}, 200$ to $240 \mathrm{VAC}, 24 \mathrm{VAC} / \mathrm{DDC}$, $48 \mathrm{VDC}, 100$ to 120 VDC	
Power Consumption	$10 \mathrm{VA}, 2 \mathrm{VA}, 1 \mathrm{~W}, 1.5 \mathrm{~W}$	$10 \mathrm{VA}, 2 \mathrm{VA}, 1 \mathrm{~W}, 1.5 \mathrm{~W}$	6VA/2.4W,12VA/2.6W		$0.18 \mathrm{VA}, 0.25 \mathrm{VA}$, $0.24 \mathrm{VA} / 140 \mathrm{~W}, 130 \mathrm{~mW}$, 300 mW	
Input Signal	Start, Reset, Gate	---	---		---	
Contact ${ }^{\text {a }}$ (Time-limit	DPDT ${ }^{\text {L }}$ SPDT	DPDT	SPST-NO	STST-NO	DPDT	SPST
Configuration ${ }^{\text {Instantaneous }}$	---	$---$	SPST-NO	---	---	
Control Output	5A at 250VAC	5 A at 250 VAC	5 A at 250 VAC		5 A at 250 VAC	
Life Expectancy (mechanical)	20×10^{6} operations	20×10^{6} operations	20×10^{6} operations		10×10^{6} operations	
Weight (approx.)	100 g	100 g	120 g		120 g	
Approved Standards \& Markings	UL,CSA, VDE,CE	UL,CSA,VDE,CE	UL,CSA,VDE,CE		UL,CSA,VDE,CE	

Classification	Solid State Timer			
	H3RN	H3Y		H3G
Model	Miniature Multi-function operation	Subminiature ON Delay Operation		Economical ON Delay Operation
Appearance				
Dimension (W x HxD) mm	$28 \times 12.8 \times 47.4$	$28 \times 21.5 \times 52.6$		$30 \times 36 \times 60$
Features	- Multi-operation modes and time range - Ultra-slim with pin configuration compatible with Omron slim G2R Power Relay	- Semi-multi supply voltage - Large transparent time setting knob - A flat blade provided for time setting with Philips screwdriver - Pin configuration compatible with Omron slim G2R Power Relay		- Time limit operation with automatic resetting
Operation Modes	ON Delay, Flicker OFF/ON start, Signal ON/OFF delay, Interval	ON Delay		ON Delay
Time Range	0.1 sec. to 0.1 min to 1 min. 10 hrs.	0.04 sec. to 3 hrs		0.1 sec. to 3 hrs.
Accuracy of Operating Time	$\pm 1 \%$ FS max.	$\pm 1 \%$ FS max.		$\pm 2 \%$ FS max.
$\begin{aligned} & \text { Supply Voltage (AC: } \\ & \mathbf{5 0 / 6 0 H z} \text {) } \end{aligned}$	24VAC/DC, 12VDC, 24VDC	$\begin{aligned} & 24,100 \text { to } 120,200,230 \mathrm{VAC}, \\ & 12,24,48,100 \text { to } 110,125 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & \text { 100/110/120VAC, } \\ & 200 / 220 / 240 \mathrm{VAC}, 24 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \\ & \hline \end{aligned}$
Power Consumption	0.8VA, $0.4 \mathrm{~W}, 0.5 \mathrm{~W}$	$1.5 \mathrm{VA}, 1.8 \mathrm{VA}, 0.9 \mathrm{~W}, 1 \mathrm{~W}, 1.3 \mathrm{~W}$		$2.2 \mathrm{VA}, 1.5 \mathrm{~W}$
Input Signal	---	---		---
Contact Time-limit col	SPDT, DPST-NO	DPDT	4PDT	SPDT ${ }^{\text {S }}$ (DPDT
Configuration ${ }^{\text {Instantaneous }}$	-	$5 \mathrm{~A} \text { at } 250 \mathrm{VAC}$		---
Control Output	3 A at 250 VAC		3 A at 250VAC	5 A or 7A at $120 / 250 \mathrm{VAC}$
Life Expectancy (mechanical)	10×10^{6} operations	10×10^{6} operations		10×10^{6} operations
Weight (approx.)	18 g	50 g		55 g
Approved Standards \& Markings	UL,CSA, VDE,CE	UL,CSA,VDE,CE		UL,CSA, SEV

Classification	Solid State Timer	
Model	H3DE	H3CA
	Multi-function Operation	Multi-function Operation
Appearance		
$\begin{aligned} & \text { Dimension } \\ & (\mathbf{W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm} \end{aligned}$	$79 \times 22.5 \times 100$	$48 \times 48 \times 89$
Features	- Programmable contact enables the building of a self-holding relay circuit - Easy sequence checks through instantaneous contacts - Wide AC/DC power supply - Incorporate environment-friendly cadmium-free contacts	- Dual AC/DC supply voltage - ON/OFF indicator for control output - Bar indicator for remaining time - Eight operation modes selectable
Operation Modes	ON Delay, One Shot, Interval, Flicker OFF start, Flicker ON start, Signal ON/OFF delay, Signal OFF delay	ON Delay, Flicker OFF/ON start, Signal ON/OFF delay, Interval, One shot
Time Range	0.1 sec. to 120 hrs.	0.1 sec. to 999 hrs.
Accuracy of Operating Time	$\pm 1 \%$ FS max.	$\pm 0.3 \%$ FS max.
Supply Voltage (AC: 50/60Hz)	$\begin{aligned} & 24 \text { to } 230 \mathrm{VAC}, \\ & 24 \text { to } 230 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 24 \text { to } 240 \mathrm{VAC}, \\ 12 \text { to } 240 \mathrm{VDC} \end{array}$
Power Consumption	2.75 VA max.	$\begin{aligned} & \hline 2 \text { to } 10 \mathrm{VA}, \\ & 1 \text { to } 2 \mathrm{~W} \text { max. } \\ & \hline \end{aligned}$
Input Signal	Start	Start, Reset
Contact Time-limit	SPDT DPDT	SPDT ${ }^{\text {S }}$ SPDT, DPDT
Configuration ${ }^{\text {Instantaneous }}$	SPDT	SPDT
Control Output	5 A at 250 VAC	3 A at 250VAC
Life Expectancy (mechanical)	10×10^{6} operations	10×10^{6} operations
Weight (approx.)	50 g	55 g
Approved Standards \& Markings	UL,CSA, VDE,CE	UL,CSA,VDE,CE

Classification	Digital Timer		
Model	H5AN	H5F	H5S
	Multi-function Operation	Daily Operation	Weekly Operation
Appearance			

4-7 Application

SECTION 5
 Counters

5-1 What is a Counter? 77
5-2 Types of Counters 78
5-3 Useful Glossary about the Counter 79
5-4 Using the Counter 83
5-5 Pointers for Selection 84
5-6 Omron Models. 85
5-7 Application 90

5-1 What is a Counter?

Literally, a counter counts. It counts signals transmitted by switches.
The counters, which we will be learning later, can,

- display the number of counts
- send notifications when the predetermined count is up.

Counter \quad Section 5

5-2 Types of Counters

Based on their functions, counters can be broadly divided into the "total counter" and the "preset counter".

Total Counter

This kind of counter counts and displays input signals only.
"Total" means the total number of counts.

Preset Counter

This kind of counter counts input signals against a value, which is programmed in advance (preset). When the preset value is up, the contact in the counter will be switched and signals is output.

5-3 Useful Glossary about the Counter

A counter does more than counts and outputs when a preset value is up. Let's see what else is capable of.
(1) Common glossary for total counter • preset counter

Operation method

When an input signal comes in, counter may increase or decrease a value.

Some counters can be used both ways.

It can be used to stop a single instance of input (gate), which is useful when counting defective products.

Speed of Counting

Speed of counting refers to the number of counting which can be executed in one second. It indicates the highest speed which is expressed in Hz .
30 Hz means 30 counts are done in one second while 1 kH means 1000 counts per second.
Selecting speed of counting
It is important to select an optimal speed of input counting speed.

High speed counting (1kHz, 5kHz...)	Low speed counting (30Hz)
When count input is executed by contact- less switch, such as photoelectric switches or proximity switches, which are to use to handle high-frequency on/off action, the counter must be capable of high-speed counting.	When count input is executed by contact switches, such as switches or relays, which may take in extra counts due to the bouncing of the contact, the counter must be a low-speed 30Hz counter.

(2) Preset Counter

Number of stages

1-stage counter	

Reset

A reset action restores the counting section, display section and the output section to the initial stage before starting a counting operation. There are 4 methods to do a rest.

Power-off reset	Reset by switching off the power.
External reset	Reset by sending signals to the reset input terminal.
Manual reset	Reset manuallyy (by pressing the front button).
Auto reset	Automatic rest triggered by the signal generated by the counter.

Operation Mode

An operation mode is the way an output or the changing pattern of a display is produced when the set value is up. There are many types of modes but the two most common ones are described below.

- Standard format

An output is executed when the set value is up. The contact remains as is until it is reset. To restart a counting process, it must be reset.

- Repetitive format

Output is executed all at one go until the set value is up. At the same time, auto-reset signals are sent out internally. So, the counter will be restarted.

5-4 Using the Counter

H7CR Type

Methods

1. Please execute the wiring based on the connection diagram.
2. Please set it up as follows based on the setup method.

Output mode: Additive mode
Input mode: N
Counting speed: $30 \mathrm{~Hz}(\mathrm{cps})$
3. Check the following:
(1) Input counts and check the display.
(2) Check gate input operations.
(3) How to set up the subtractive counter?
(4) When the counting speed is set to 5 Hz and a reset signal is input, what will happen?
(5) When a reset signal is input while the counting is being displayed, when will happen?
(6) When the output mode is changed to C operation, how will the lamps be lighted?

Study

1. How many reset methods are there?
2. What are the differences between the N operation and the C operation?

5-5 Pointers for Selection

- Speed of counting •

5-6 Omron Models

Classification	Electromagnetic	Self-powered Counter	
Model	CSK		

Classification	Self-powered Counter	LCD Display with LED Backlight	
	H7ER	H7GP	H7HP
	Tachometer	Totalizing/Time Counter	Totalizing/Time Counter
Appearance			
$\begin{array}{\|l\|} \hline \text { Dimension } \\ (\mathbf{W} \times \mathbf{H} \times \mathrm{D}) \mathrm{mm} \end{array}$	$48 \times 24 \times 56$	$48 \times 24 \times 80$	$72 \times 36 \times 66$
Features	- Subminiature tachometer - No external power required - Display of encoder revolution in $\mathrm{rpm} / \mathrm{rps}$ is possible with DC power model - AC/DC voltage, DC voltage and No-voltage inputs available	- Compact totalizing counters and time counter - Switch between NPN and PNP operation - Both external and manual resets provided - Negative transmittive LCD display with built-in red LED backlight for high visibility and power saving - IP66/NEMA4 water and oil resistance	- Compact totalizing counters and time counter - Switch between NPN and PNP operation - Both external and manual resets provided - Negative transmittive LCD display with built-in red LED backlight for high visibility and power saving - IP66/NEMA4 water and oil resistance
Operation Modes	Up type	Up type	Up/Down type
Counting Speed	---	$30 \mathrm{cps} / 5 \mathrm{kcps}$	$30 \mathrm{cps} / 5 \mathrm{kcps}$
Number of Digits Displayed	4 or 5	6	6 or 8
Display	Digital display: LCD	Digital display: LCD	Digital display: LCD
Supply voltage (AC:50/60Hz)	---	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \end{aligned}$	100 to 240 VAC , 12 to 24 VDC
Power Consumption (approx.)	---	$6.5 \mathrm{VA}, 0.6 \mathrm{~W}$	$6.5 \mathrm{VA}, 0.6 \mathrm{~W}$
Input Mode	Up	$\begin{aligned} & \hline \text { Up (Counter)/ } \\ & \text { Accumulative (Timer) } \\ & \hline \end{aligned}$	Up/Down (Counter)/ Accumulative (Timer)
Input Signal	Encoder/Pulse	Count,Reset,Key protection	Count,Reset,Key protection
Input Method	No-voltage/voltage input*	No-voltage/voltage input*	No-voltage/voltage input*
Control Output	---	---	---
Power source for External Supply	---	50 mA at 12 VDC	50 mA at 12 VDC
Weight (approx.)	80g	76 g	106g
Approved Standards \& Markings	UL,EMC,CE	UL,CSA,EMC,CE	UL,CSA,EMC,CE

Classification	Multi-function	Thumbwheel Setting	
Model	H8CA-S	H7AN	H7CN
	Counter/Timer	LED Counter	LED Counter
Appearance			
Dimension ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) mm	$48 \times 48 \times 78$	$72 \times 72 \times 115$	$48 \times 48 \times 97.6$
Features	- Counter and timer function modes switch selectable. - Selectable operating modes N,F,C,R* - Large easy-to-read LCD display - Wide range of power supply - Non-significant zeros suppressible	- LED display - Up/Down/Reversible counter with an option of 1 or 2 Pre-set value. - Selectable operating modes N,F,C,R,K,P,Q* - Simultaneously produce control output of both contact and solid-state - Draw-out construction for ease of maintenance	- Up/Down/Reversible counter - High speed counting: 5 kcps - Model with memory backup function against power failure available
Operation Modes	Reversible type	Up/Down/Reversible type	Up/Down/Reversible type
Counting Speed	Contact and solid-state input: 30cps Solid state input: 1kcps	$30 \mathrm{cps} / 3 \mathrm{kcps} / 5 \mathrm{kcps}$	Contact and solid-state input: 30cps Solid-state input: 5kcps
Number of Digits Displayed	6	2,4,6 or 8	4
Display	Digital display: LCD	Digital display: LED	Digital display: LED Indicator:Count-up indicator
Supply voltage (AC:50/60Hz)	$\begin{aligned} & 24 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24,100 \text { to } 240 \mathrm{VAC} \\ & 12 \text { to } 24,48,100 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & 24,100 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 48 \mathrm{VDC} \\ & \hline \end{aligned}$
Power Consumption (approx.)	2.2VA, 1W	10VA, 5W	12VA, 2.5 W
Input Mode	Up/Down (Selectable A,B,C mode), Time limit, Integration	Up,Down, Up/Down (Selectable A,B,C,D,E,F, mode)	Up, Down, Up/Down (Selectable A, B mode)
Input Signal	Count 1, Count 2, Reset, Gate, Start	Count 1, Count 2, Reset and Key protection	Count 1, Count 2, Reset and Key protection
Input Method	No-voltage/voltage input*	No-voltage/voltage input*	No-voltage/voltage input*
Control Output	Contact: SPDT 3A at 250VAC Open collector: 100 mA max. at 30VDC max.	Contact: SPDT or SPST-NO 3A at 250 VAC (One per stage) Open collector: 100 mA max. at 30 VDC max.	Contact: SPDT or SPST-NO 3A at 250 VAC (One per stage) Open collector: 100 mA max. at 30VDC max.
Power source for External Supply	---	80 mA at 12 VDC	---
Weight (approx.)	130 g	360 g	150 g
Approved Standards \& Markings	UL,CSA	UL,CSA	UL,CSA

Classification	Multi-function		
Model	H7CL	H7CR	H7BR
	LED Digital Counter	LCD Digital Counter	LCD Digital Counter
Appearance			
Dimension ($\mathrm{W} \times \mathrm{HxD}$) mm	$48 \times 48 \times 72.5$	$48 \times 48 \times 100$	$72 \times 72 \times 100$
Features	- Simple setting with Incremental Decremental keys - Operating modes include N,F,C,K* - High speed response: 5 kcps - Large, high visibility LED display - IP66/NEMA4 water and dust protected	- Designed with an emphasis on ease of operation - Up/Down/Reversible counter with optional 1 or 2 pre-set value - Selectable operating modes N,F,C,R,K,P,Q,A,D,L,H* - Pre-scale function to display actual physical parameters (length, volume etc.) - High speed response: 5 kcps - On-line change of set value possible	- Designed with an emphasis on ease of operation - Up/Down/Reversible counter with optional 1 or 2 pre-set value - Selectable operating modes N,F,C,R,K,P,Q,A,D,L,H* - Pre-scale function to display actual physical parameters (length, volume etc.) - High speed response: 5 kcps - On-line change of set value possible
Operation Modes	Up/Down type	Up/Down type	Up/Down Reversible type
Counting Speed	30cps/5kcps	$30 \mathrm{cps} / 1 \mathrm{kcps} / 5 \mathrm{kcps}$	$30 \mathrm{cps} / 1 \mathrm{kcps} / 5 \mathrm{kcps} / 10 \mathrm{kcps}$
Number of Digits Displayed	-3 to 4	6 or 4	± 6
Display	Digital display: LED	Digital display: LCD with backlight	Digital display: LCD with backlight
Supply voltage (AC:50/60Hz)	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 24,100 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 24,100 \text { to } 240 \mathrm{VAC}, \\ & 12 \text { to } 24 \mathrm{VDC} \end{aligned}$
Power Consumption (approx.)	10VA, 3W	6.5VA, 3.2W	10VA, 6W
Input Mode	Up/Down	Up, Down, Up/Down (selectable A,B,C mode)	Up, Down, Up/Down (Selectable A, B,C mode)
Input Signal	Count, Gate, Reset and Key protection	Count 1, Count 2, Reset and Key protection	Count 1, Count 2, Gate, Reset, Batch Count Reset and Key protection
Input Method	No-voltage input: NPN transistor or switching contact*	No-voltage/voltage input*	No-voltage/voltage input*
Control Output	Contact: SPDT 3A at 250VAC Open collector: 100 mA max. at 30 VDC max.	Contact: SPDT 3A at 250VAC Open collector: 100 mA max. at 12 VDC max.	Contact: SPST-NO 3A at 250VAC Open collector: 100 mA max. at 30VDC max.
Power source for External Supply	50 mA at 12 VDC	50 mA at $12 \mathrm{VDC}, 100 \mathrm{~mA}$ at 24VDC	160 mA at $12 \mathrm{VDC}, 80 \mathrm{~mA}$ at 24VDC
Weight (approx.)	110 to 130 g	120 to 230 g	270 g
Approved Standards \& Markings	UL,CSA,EMC,CE	UL,CSA,EMC,CE	UL,CSA,EMC,CE

Classification	Intelligent Signal Processor	Multi-maintenance	Cam Positioner	
Model	K3TC	H8BM	H8PS	H8PR
	High Speed Counter	Counter/Timer	LCD Counter	LED Counter
Appearance			Hance	
Dimension ($\mathbf{W} \times \mathrm{Hx}$ D) mm	$48 \times 96 \times 130$	$75 \times 75 \times 85.7$	$96 \times 96 \times 65$	$144 \times 192 \times 60$
Features	- High-speed Up/Down counting for an input range of 50 kcps - Wide selection of output:relay transistor, BCD, linear or - Pre-scale function to display physical parameters (length, volume, etc.) - Built-in power supply - Banks with four set values and pre-scale values - Five stage outputs	- Nine built-in counter/ timers to measure equipment utilization - Can be used as a multistage counter - Individual output to indicate maintenance timing - Pre-forecast/Forecast and machine stoppage output provided - Directly connectable to 2-wire sensors - IP54 enclosure rating for resistance to water and oil	- Economical electronic high-performance 8- - Easy setting - Accepts 330 rpm input for easy compatibility - Functions for switching encoder direction, designating encoder origin etc. - Up to 16 -cam control input adapter and two H8PS	- Low cost highperformance electronic cam switch - Control outputs can be programmed to turn ON/OFF in 1° units of otary encoder shaf rotation A single control output can be programmed to turn ON/OFF up to 10 times - Functions for switching encoder direction, designating encoder origin etc. - Quick response of 5 kHz max.
Operation Modes	Up/Down type	Up type	---	---
Counting Speed	30cps (contact), 50 kcps (solid state)	30cps	330rpm	833rpm
Number of Digits Displayed	-4 to 5	6	3 (0 to 359°)	3 (0 to 359°)
Display	Digital display: LED	Digital display: LCD with backlight	Digital display: LCD with backlight	Digital display: LED
Supply voltage (AC:50/60Hz)	$100 \text { to } 240 \text { VAC, }$ $12 \text { to } 24 \mathrm{VDC}$	24 VDC	24 VDC	100 to 240 VAC
Power Consumption (approx.)	15VA, 10W	1.8W	4W	10W
Input Mode	Up/Down (selectable B, C mode)	Up/Down (F mode)	---	---
Input Signal	Control input, Sensor A, Sensor B	Count Reset,Re-monitor, Counter select, I/O inhibit	Rotary encoder (Omron E6CP/E6F)	Rotary encoder (Omron E6F), inhibit, Forced Run
Input Method	No-voltage: Contact and solid state	No-voltage/voltage input*	---	---
Control Output	Relay contact (5 output): 5 A at 250 VAC , Open collector: 50 mA at 24VDC, Parallel BCD, Linear output and Communication	Open collector NPN/PNP Forecast (9 lines): 100 mA max. at 30 VDC max. Machine stoppage: 100 mA max. at 30 VDC max. Run: 100 mA at 30 VDC max.	Open collector NPN/PNP: 100 mA max. at 30 VDC max. Cam: 8 outputs Tachometer: 60-ppr signal out	Open collector NPN/PNP 8/16/24 points: 100 mA max. at 30 VDC max.
Power source for External Supply	---	---	---	---
Weight (approx.)	450 g	290g	300 g	1.3kg
Approved Standards \& Markings	UL,CSA,EMC,CE	UL,CSA	UL,CSA,EMC,CE	UL,CSA

5-7 Application

SECTION 6 Power Supply

6-1 What is a Power Supply 93
6-2 Regulated DC Power Supplies 94
6-3 Switching Power Supplies 94
6-4 Linear Power Supplies 95
6-5 Linear Power Supplies vs. Switching Power Supplies 96
6-6 Glossary 97
6-7 Points of Selection 99
6-7-1 Input Voltages 100
6-7-2 Output Capacities 101
6-7-3 Mounting Methods 102
6-7-4 Safety Standards 103
6-8 OMRON Models 106
6-9 Applications 110

6-1 What is a Power Supply

Commercial AC power distributed from power plants cannot be supplied directly to ICs or other electronic components built into Office Equipment and factory Machinery/Equipment. It is because the higher voltage of Commercial AC power supply will destroy/damage them.

Therefore devices called Power supplies (specifically, regulated DC Power Supplies) are thus required to convert Commercial AC power into Regulated DC Power to drive these equipments.

There are a full Range of Power Supplies available from OMRON.

6-2 Regulated DC Power Supplies

There are three kinds of regulated DC power supplies: switching power supplies, linear power supplies, and CVT (constant voltage transformer) power supplies. Of these, switching power supplies and linear power supplies are generated referred to as power supplies. CVT power supplies, though reliable and limited in the number of internal parts, are large and heavy, and are usually treated separately from power supplies in general.

6-3 Switching Power Supplies

Switching power supplies convert commercial AC power into high-frequency DC power using the high-speed switching of semi-conductors built into the switching power supply. Switching power supplies are so compact, light, and efficient that they are used as power supplies by most electronic devices.

Advantages

- Highly efficient, compact, and light.
- A wide input voltage range is available.
- The output is maintained for a certain for a certain period after input power is turned off.

Disadvantages

- Switching noise is generated.

Market Share

90% or more of power supplies are switching power supplies.

6-4 Linear Power Supplies

Linear power supplies convert commercial AC into DC power via a step-down transformer (50 or 60 Hz) and a variable resistor. Linear power supplies are so large and heavy that they are used only in special applications.

- Output voltage is very stable.
- No noise is generated.

Disadvantages

- The transformer is heavy.
- Excessive heat is generated by the power transistor for linear control.

6-5 Linear Power Supplies vs. Switching Power Supplies

Characteristic	Meaning	Linear power supplies	Switching power supplies
Input fluctuation	Output voltage fluctuation resulting from input voltage fluctuation	Good (0.1\%)	Fair (0.5\%)
Load fluctuation	Output voltage fluctuation resulting from load current fluctuation	Good (0.3\%)	Fair (1\%)
Ripple noise	Output ripple and noise	Excellent (0.04\%)	Fair (1\%) Due to highfrequency switching
Input voltage range	Permissible input voltage range	Fair ($\pm 10 \%$)	Excellent $(+32 \% /-15 \%)$
Efficiency	(Output power/Input power) x 100%	Fair (40\%) - The transformer and transistor built into a linear power supply are so large that the heat generated by the power supply is twice as great as that for switching power supplies. - The efficiency of a linear power supply is 40% due to power lost through transformer coils and magnetic cores.	Excellent (75\%) - A switching power supply is nearly twice as efficient as a linear power supply.
Output holding time	Time between power supply input turning off and a drop in power supply output.	Fair (2 ms)	Good (20 ms)
Weight	-	- Very heavy due to the transformer built into the linear power supply.	- A switching power supply is five times lighter than a linear power supply.

6-6 Glossary

Item	Definition
Constant voltage accuracy	The fluctuation of the output voltage due to a change in input, load, or temperature.
Efficiency	Efficiency (output power/input power) $\times 100(\%)$ Inrush current supply. The inrush current is caused by the charge current flowing into the high- capacity electrode capacitors of the power supply when the power supply is turned on.
Leakage current	The current leaking to the ground from the input lines through the casing of the power supply.
Noise terminal voltage	The leakage current is checked as shown in the above diagram. A bypass capacitor is used in accordance with the UL standards.
A kind of electromagnetic interference. The high-frequence noise voltage	
generated from the input terminals of the power supply.	

Overload protection	Turns off the output so that the output current will not be more than the value that has been specified to protect the power supply from damage when the load is short-circuited.
Overvoltage protection	Turns off the output to protect the load when the power supply output is excessive. Usually, the output is turned off if the output voltage reaches approx. 120% of the rated output voltage.
Parallel operation	More than one power supply can be connected in parallel. In which case, the total output current is obtained by adding the output current of each power supply connected in parallel.
Power factor	Power factor $=$ Effective power/Apparent power $=$ Effective power/(Root mean square of voltage \times root mean square of current)

Item	Definition
Rated I/O conditions	The conditions required to operate the power supply at its rated AC input (50/60 Hz), rated output voltage, and rated output current at an ambient temperature of $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and an ambient humidity of $65 \% \pm 5 \%$ are called rated I/O conditions.
Rated input voltage	Nominal input voltage such as 100,110 , or 120 VAC
Rated output voltage	Nominal output voltage such as 5, 12, or 24 VDC
Remote control	Remote control function turns the output of the power supply on or off from a distance.
Remote sensing	The remote sensing function compensates for voltage drop caused by the lead wires between the output terminals and load. The voltage drop is fed back to the voltage sensing terminal of the power supply to increase the voltage supply by calculating the difference between the set value and the actual voltage supplied to the load.
Remote voltage adjustment	Remote voltage adjustment function is used to adjust the output voltage externally.
Ripple noise	The combined value of ripple noise added to the output voltage. *The ripple voltages mentioned in specification sheets include high-frequency noise.
Serial operation	More than one power supply can be connected in series. In which case, the total output voltage is obtained by adding the output voltage of each power supply connected in series.

6-7 Points of Selection

The input voltage and output capacity (voltage \times current) are the most important factors for selecting the most suitable power supply for any application. These and other basic selection points are shown in the following illustration. Confirm all points before selecting a power supply.

Input Voltage

Each power supply has an input voltage range. Select the power supply according to the available input voltage.

Output Capacity (Voltage \times current) The maximum load capacity must be less than the maximum output capacity of the power supply.

Safety Standards

UL-, CSA-, or VDE-approved power supplies are available.

Main Selection Points:

1. Input Voltage
2. Output Capacity (voltage \times current)

Shape and Mounting Method
Power supplies of various shapes are available. Use the most suitable power supply according to the application. Various mounting brackets are also available.

6-7-1 Input Voltages

1 Permissible Input Voltage Range

The voltage of commercial AC power varies between different regions of the world as shown in the following diagram.

AC Voltages Used Around the World

The following table lists the rated input voltages and permissible voltage ranges of OMRON power supplies.

Rated input voltage	Permissible AC voltage range	Models		
100,110, and 120 VAC	85 to 132 VAC	S82J, S8E1, S82R		
200,220, and 240 VAC	170 to 264 VAC	S82J, S82R		
100,110, and 120 V or 200,220, and 240 V	85 to 132 V or 170 to 264 V	S82F, S82H, S82L,		
(selectable)			\quad	S82D, S82F-P, S82V,
:---				
S82G, S82K (30,50, or 100, 110, 120, 200, 220, and 240 V				

2 Precautions

Switching power supplies rectify the full waves of AC input to output DC using a circuit like the one shown below.

V_{DC} is obtained by multiplying the AC input by $\sqrt{ } 2$ (approximately 1.414). If the input is DC , V_{DC} will be obtained in the same way by inputting V_{DC}.

Rectangular pulses are output from uninterruptive power supplies or inverters, and they thus cannot be connected to linear power supplies. Before connecting an uninterruptive power supplies or inverter to a switching power supply, check the input voltage. Inverters generate regenerative voltage, which must be taken into consideration.

6-7-2 Output Capacities

1 Rated Output Currents

The rated output current of a power supply is computed as follows:
Load current $\mathrm{I}_{0}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \ldots+\mathrm{I}_{\mathrm{n}}$
Select a power supply with a sufficient rated output current for the required load current I_{0}.

2 Overcurrent Protection

Overcurrent protection in a power supply reduces or cuts off the output voltage to protect the power supply and load from being damaged.

Item	Voltage drop	Hook Drop	Shut Off
Characteristic			
Feature	Automatically resets easily after inrush current flows into the load connected to the power supply.	Lowers the current when subjected to overcurrent. Difficult to reset for loads into which inrush current flows.	Power supply output is interrupted if overcurrent continues for a specified period. Protects the lower supply and load when there is a short circuit.

6-7-3 Mounting Methods

There are various mounting brackets available for OMRON power supplies, including panel mounting and DIN-track mounting.

Model		Mounting Bracket
S82K-series models	Not required	
S82S-series models	Not required	
S82V-series models	Not required	
S82J	10 W	S82Y-01N
	25 W	S82Y-03N
	50 W	S82Y-05N
	$100 / 150 \mathrm{~W}$	S82Y-10N
S82H	15 W	S82Y-01N
	30 W	S82Y-03N
	50 W	S82Y-05N
S82R-series models	S82Y-05N	
S8E1	10 W	S82Y-01N
	15 W	S82Y-01N
	25 W	S82Y-03N
	50 W	S82Y-05N

Mounting Brackets

Item		F models		B models	S models		Purpose
		$\begin{gathered} \text { Rear } \\ \text { mounting } \end{gathered}$	Front mounting		Left-side mounting	Right-side mounting	
S82J-series models		Provided with	pply.	None	None		Panel-
S82J (100/150 W)		S82Y-J01F		None	None		mounting
S82L-series models		Provided with Supply		Provided with Supply	Provided with Supply		
S82H	15 W	S82Y-H01F		S82Y-H01B	S82Y-H01S		
	30 W	S82Y-H03F		S82Y-H03B	S82Y-H03S		
	50 W	S82Y-H05F		S82Y-H05B	S82Y-H05S		
	100 W	S82Y-H10F		S82Y-H10B	S82Y-H10S		
S82G	30 W	None		S82Y-G03B	None		
	60 W	None		S82Y-G06B	None		
	100 W	None		S82Y-CM1B	None		
	150 W	None		S82Y-C15B	S82Y-CM1S		
S82F (150/300 W)		None		Provided with Supply	Provided with Supply		
S82D	300 W	None		S82Y-D30B	S82Y-D30S		
	600 W	None		S82Y-D60B	S82Y-D60S		
S82R-series models		Provided with Supply		None	None		
S8E1-series modelsexcept PCB models		None		None	None		Built-in
S82F-P (120/240 W)		None		Provided with Supply	Provided with Supply		Peak loads

6-7-4 Safety Standards

Various safety standards have been established to prevent electric shock or fire. For details on each, refer to reference books available on the safety standards.

OMRON's Power Supplies Approved by Safety Standards

Model	UL	CSA	VDE
S82J	UL1012	CSA EB 1402	---
S82K	UL508	CSA C22.2 No.14	VDE 0160
S82S	UL508	CSA C22.2 No.14	---
S82V	UL508	CSA C22.2 No.142	VDE 0160
S8E1	UL1950-D3	CSA C22.2 No.0, EB 1402C	---
S82F	UL1012	CSA EB 1402	---
S82L	UL1012	CSA EB 1402	VDE 0160
S82D	UL1012	CSA EB 1402	---
S82H	UL1012	CSA EB 1402	---
S82G	UL1012	CSA EB 1402	---
S82R	UL1012	CSA EB 1402	---
S82F-P	Approved	Approved	VDE 0160

Safety Standards

Today, safety is required from all equipment including power supplies. Strict rules and regulations have been established for safety, such as the USA's UL standards, Canada's CSA standards, and Germany's VDE standards. To protect people and property from electric shock, fire, and other accidents, these standards stipulate the construction and capabilities of individual products. The following table lists the main standards related to power supplies.

Type of standard		International	North America	Europe
Safety standards North America: Protects human life and properly. European: Protects people from death caused by electric shock or prevents electrical fire.		IEC	UL (USA) CSA (Canada)	VDE (Germany) SEV (Switzerland) SEMKQ (Sweden) NEMKQ (Norway) DEMKQ (Denmark) KEMA (Holland) BS (UK) USE (France) CEI (Italy) CEBEC (Belgium) CEE (Europe)
Manufacturing standards (compatible)		ISO	ANSI (USA)	DIN (Germany)
Maritime standards		---	ABS (USA)	$\begin{aligned} & \hline \text { LR (UK) } \\ & \text { GL (Germany) } \\ & \text { BV (France) } \\ & \hline \end{aligned}$
Others	Radio interference	CISPR	FCC (USA) DOC (Canada)	FTZ (Germany)
	Industrial standards	---	$\begin{aligned} & \hline \text { NEMA (USA) } \\ & \text { ASTM (USA) } \\ & \hline \end{aligned}$	---

2 Terminology

The following chart shows the relationship between the terms that are often found in approval reports on power supplies and safety standards, including the EMI standards. EMI standards, reflecting contemporary computer proliferation, were established to prevent radio interference.

3 Insulation

Example of Class-II Equipment

*Basic insulation (1) + extra insulation (2) = double insulation, the insulation distance of which is twice as large as that of basic insulation and equivalent to high insulation (3).

Note 1. The terminals of the primary coil of the transformer are functionally insulated from each other.
2. Basic insulation (1), double insulation, or high insulation may be required of relays depending on how they are used. Relays from which double insulation or high insulation are required are called class-II relays.

6-8 OMRON Models

This section provides tables for selecting OMRON Power Supplies and converting model numbers.

High-grade Power Supplies

High-capacity Power Supplies

Appearance	Input voltage	Output capacity	Output current/voltage and model number			$\mathbf{W} \times \mathbf{H} \times \mathbf{D}$	Features	Applicatio ns
S82D	$\begin{aligned} & 100 \text { or } \\ & 200 \mathrm{VAC} \\ & \text { (switchable) } \end{aligned}$	300W	$\begin{aligned} & \hline \mathbf{6 0 A} \text { at 5V } \\ & \text { S82D-3005 } \end{aligned}$	$\begin{aligned} & \text { 27A at 12V } \\ & \text { S82D-3012 } \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 4 A} \text { at 24V } \\ & \text { S82D-3024 } \end{aligned}$	$120 \times 92 \times 190$	- Forced cooling - Built-in fan with an alarm	- Largescale control panels - Moldin
		600W	$\begin{aligned} & \hline \text { 120A at 5V } \\ & \text { S82D-6005 } \end{aligned}$	$\begin{aligned} & \text { 53A at 12V } \\ & \text { S82D-6012 } \end{aligned}$	$\begin{aligned} & \text { 27A at 24V } \\ & \text { S82D-6024 } \end{aligned}$	$190 \times 92 \times 200$		
582 F	100 to 200VAC (switchable)	150W		$\begin{aligned} & \hline \mathbf{1 3 . 5 A} \text { at } 12 \mathrm{~V} \\ & \mathrm{~S} 82 \mathrm{~F}-1512 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~A} \text { at } \mathbf{2 4 V} \\ & \text { S82F-1524 } \\ & \hline \end{aligned}$	$74 \times 120 \times 230$	- Natural air cooling - Automatic input selection	es - Factory machin es - Robots - Largescale LED indicat ors
		300W			$\begin{aligned} & \text { 14A at 24V } \\ & \text { S82F-3024 } \end{aligned}$	$146 \times 120 \times 230$		
S82F-P	100 to 200 VAC (switchable)	$\begin{aligned} & \hline 120 \mathrm{~W} \\ & (240 \mathrm{~W}) \end{aligned}$		5 A (a peak current of 10 A) at 24 V S82F-1224P		$74 \times 120 \times 230$	- Ideal for peak loads - Automatic input selection - VDE approved	 - Robots Molding machin - es Lab system
		$\begin{aligned} & \hline 240 \mathrm{~W} \\ & (480 \mathrm{~W}) \end{aligned}$		10A (a peak cu		$146 \times 120 \times 230$		

Direct DIN Track-mounting Power Supplies

Economical, 100/200 VAC-input Power Supplies

Appearance	Input	Output	Output current/voltage and model number				$\mathbf{W} \times \mathbf{H} \times$ D	Features	Applicatio
S82J	100VAC	10W	$\begin{aligned} & \hline \text { 2A at 5V } \\ & \text { S82J-0105 } \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 A} \text { at 12V } \\ & \text { S82J-0112 } \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 7 A} \text { at 15V } \\ & \text { S82J-0115 } \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 A} \text { at } 24 \mathrm{~V} \\ & \mathrm{~S} 82 \mathrm{~J}-0124 \\ & \hline \end{aligned}$	$35 \times 97 \times 90$	model provided with a mounting bracket for mounting to a control panel DIN track mounting brackets available (sold separately	- Medium-andsmall-scalecontrolpanels
		25W	$\begin{aligned} & \hline \mathbf{5 A} \text { at 5V } \\ & \mathrm{S} 82 \mathrm{~J}-0205 \end{aligned}$	$\begin{aligned} & \text { 2.1A at 12V } \\ & \text { S82J-0212 } \end{aligned}$	$\begin{aligned} & \text { 1.7A at 15V } \\ & \text { S82J-0215 } \end{aligned}$	$\begin{aligned} & \text { 1.1A at } 24 \mathrm{~V} \\ & \text { S82J-0224 } \end{aligned}$	$40 \times 97 \times 124$		
		50W	$\begin{aligned} & \hline \text { 10A at 5V } \\ & \text { S82J-0505 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 4.2A at 12V } \\ & \text { S82J-0512 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2.1A at 24V } \\ & \text { S82J-0524 } \end{aligned}$	$40 \times 97 \times 161$		
		100W	$\begin{aligned} & \hline \text { 20A at 5V } \\ & \text { S82J- } \\ & 10005 \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \hline 8.5 \mathrm{~A} \text { at 12V } \\ & \text { S82J- } \\ & 10012 \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { 7.0A at } 15 \mathrm{~V} \\ & \text { S82J- } \\ & \text { 10015A1 } \end{aligned}$	$\begin{aligned} & \text { 4.5A at } 24 \mathrm{~V} \\ & \text { S82J-1024 } \end{aligned}$	$\begin{aligned} & \hline 5-, 12-, 15-\mathrm{V} \\ & \text { models: } \\ & 50 \times 97 \times 198 \\ & \hline 24-\mathrm{V} \text { model: } \\ & 50 \times 97 \times 170 \\ & \hline \end{aligned}$		
		150W				$\begin{aligned} & \hline \mathbf{6 . 5 A} \text { at } \mathbf{2 4 V} \\ & \text { S82J- } \\ & 15024 \mathrm{~A} 1 \\ & \hline \end{aligned}$	$50 \times 97 \times 198$		
S82J	100VAC	10W	$\begin{aligned} & \hline \text { 2A at 5V } \\ & \text { S82J-5105 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1A at 12V } \\ & \text { S82J-5112 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 0.7A at 15V } \\ & \text { S82J-5115 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0 . 5 A} \text { at } 24 \mathrm{~V} \\ & \text { S82I- } 5124 \end{aligned}$	$35 \times 97 \times 90$		
		25W	$\begin{aligned} & \hline \mathbf{5 A} \text { at 5V } \\ & \text { S82J-5205 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2.1A at 12V } \\ & \text { S82J-5212 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1.7A at 15V } \\ & \text { S82J-5215 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~A} \text { at } 24 \mathrm{~V} \\ & \text { S82J-5224 } \\ & \hline \end{aligned}$	$40 \times 97 \times 124$		
		50W	$\begin{array}{r} \text { 10A at } 5 \mathbf{V} \\ \text { S82J-5505 } \\ \hline \end{array}$	$\begin{aligned} & \text { 4.2A at 12V } \\ & \text { S82J-5512 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2.1A at } 24 \mathrm{~V} \\ & \text { S82J-5524 } \\ & \hline \end{aligned}$	$40 \times 97 \times 161$		
		100W	$\begin{aligned} & \text { 20A at 5V } \\ & \text { S82J- } \\ & \text { 10005D1 } \end{aligned}$	$\begin{aligned} & \hline 8.5 \mathrm{~A} \text { at 12V } \\ & \text { S82J- } \\ & \text { 10012D1 } \end{aligned}$	$\begin{aligned} & \text { 7.0A at } \mathbf{1 5 V} \\ & \text { S82J- } \\ & \text { 10015D1 } \end{aligned}$	$\begin{aligned} & \text { 4.5A at } 24 \mathrm{~V} \\ & \mathrm{~S} 82 \mathrm{~J}-5024 \end{aligned}$	5-,12- and $15-$ V models: $50 \times 97 \times 198$ $24-\mathrm{V}$ model: $50 \times 97 \times 170$ $50 \times 97 \times 198$		
		150W				$\begin{aligned} & \hline \mathbf{6 . 5 A} \text { at } 24 \mathrm{~V} \\ & \text { S82J- } \\ & \text { 15024D1 } \\ & \hline \end{aligned}$	$50 \times 97 \times 198$		
	200VAC	10W	$\begin{aligned} & \hline \text { 2A at 5V } \\ & \text { S82J-2105 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 A} \text { at 12V } \\ & \text { S } 82 \mathrm{~J}-2112 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 7 \mathrm { A }} \text { at } 15 \mathrm{~V} \\ & \text { S82J-2115 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 0.5A at 24V } \\ & \text { S82J- } 2124 \\ & \hline \end{aligned}$	$35 \times 97 \times 90$	- Each model provided with a mounting bracket for mounting to a control panel - DIN track mounting brackets available (sold separately)	Medium-andsmall-scalecontrolpanels
		25W	$\begin{aligned} & \hline \mathbf{5 A} \text { at 5V } \\ & \text { S82J-2205 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2.1A at 12V } \\ & \text { S82J- } 2212 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1.7A at 15V } \\ & \text { S82J-2215 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1.1A at 24V } \\ & \text { S82J-2224 } \\ & \hline \end{aligned}$	$40 \times 97 \times 124$		
		50W	$\begin{array}{r} \text { 10A at } \mathbf{5 V} \\ \text { S82J-2505 } \\ \hline \end{array}$	$\begin{aligned} & \text { 4.2A at 12V } \\ & \text { S82J- } 2512 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2.1A at } 24 \mathrm{~V} \\ & \text { S82J-2524 } \\ & \hline \end{aligned}$	$40 \times 97 \times 161$		
		100W	$\begin{aligned} & \hline \text { 20A at } 5 \mathrm{~V} \\ & \text { S82J- } \\ & 10005 \mathrm{~A} 2 \end{aligned}$	$\begin{aligned} & \hline 8.5 \mathrm{~A} \text { at 12V } \\ & \text { S82J- } \\ & 10012 \mathrm{~A} 2 \end{aligned}$	$\begin{aligned} & \hline 7.0 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S82J- } \\ & 10015 \mathrm{~A} 2 \end{aligned}$	$\begin{aligned} & \hline \text { 4.5A at } 24 \mathrm{~V} \\ & \text { S82J-2024 } \end{aligned}$	5-,12-,and $15-$ V models: $50 \times 97 \times 198$ $24-\mathrm{V}$ model: $50 \times 97 \times 170$ $50 \times 97 \times 198$		
		150W				$\begin{aligned} & \hline \mathbf{6 . 5 A} \text { at } \mathbf{2 4 V} \\ & \text { S82J- } \\ & 15024 \mathrm{~A} 2 \\ & \hline \end{aligned}$	$50 \times 97 \times 198$		
	200VAC	10W	$\begin{aligned} & \hline \text { 2A at 5V } \\ & \text { S82J-6105 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1A at 12V } \\ & \text { S82J-6112 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S82J-6115 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 A} \text { at } 24 \mathrm{~V} \\ & \text { S82J-6124 } \\ & \hline \end{aligned}$	$35 \times 97 \times 90$		
		25W	$\begin{aligned} & \hline \mathbf{5 A} \text { at 5V } \\ & \text { S82J-6205 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2.1A at 12V } \\ & \text { S82J-6212 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.7 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S82J-6215 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1.1A at 12V } \\ & \text { S821J-6212 } \\ & \hline \end{aligned}$	$40 \times 97 \times 124$		
		50W	$\begin{aligned} & \hline \text { 10A at 5V } \\ & \text { S82J-6505 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4.2A at } 15 \mathrm{~V} \\ & \text { S82J-6215 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2.1A at } 24 \mathrm{~V} \\ & \text { S82J-6524 } \end{aligned}$	$40 \times 97 \times 161$		
		100W	$\begin{aligned} & \text { 20A at 5V } \\ & \text { S82J- } \\ & \text { 10005D2 } \end{aligned}$	$\begin{aligned} & \text { 8.5A at 12V } \\ & \text { S82J- } \\ & \text { 10012D2 } \end{aligned}$	$\begin{aligned} & \text { 7.0A at 15V } \\ & \text { S82J-6024 } \end{aligned}$	$\begin{aligned} & \text { 4.5A at } 24 \mathrm{~V} \\ & \text { S82J-2024 } \end{aligned}$	$5-, 12-$, and $15-$ V models: $50 \times 97 \times 198$ $24-\mathrm{V}$ model: $50 \times 97 \times 170$ $50 \times 7 \times 198$		
		150W				$\begin{aligned} & \hline \mathbf{6 . 5 A} \text { at } 24 \mathrm{~V} \\ & \text { S82J- } \\ & \text { 15024D2 } \\ & \hline \end{aligned}$	$50 \times 97 \times 198$		

Built-in Power Supplies

Appearance	Input	Output	Output current/voltage and model number				$\mathbf{W} \times \mathbf{H} \times \mathrm{D}$	Features	Applications
	$\begin{aligned} & 100 \mathrm{VA} \\ & \mathrm{C} \end{aligned}$	10W	$\begin{aligned} & \hline 24 \mathrm{~A} \text { at } 5 \mathrm{~V} \\ & \text { S8E } 1-01005 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~A} \text { at } 12 \mathrm{~V} \\ & \text { S8E1-01012 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S8E1-01015 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \mathrm{~A} \text { at } 24 \mathrm{~V} \\ & \text { S8E1-01024 } \\ & \hline \end{aligned}$	$24 \times 69 \times 85$	- Twice as compact	- Measuring equipment
		15W	$\begin{aligned} & \hline 3 \mathrm{~A} \text { at } 5 \mathrm{~V} \\ & \text { S8E1-01505 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \mathrm{~A} \text { at } 12 \mathrm{~V} \\ & \mathrm{~S} 8 \mathrm{E} 1-01512 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S8E1-01515 } \end{aligned}$	$\begin{aligned} & \hline 0.7 \mathrm{~A} \text { at } 24 \mathrm{~V} \\ & \text { S8E1-01524 } \\ & \hline \end{aligned}$	$34 \times 69 \times 94$	as the S82J	- Chemical equipment
		25w	$\begin{aligned} & 5 \mathrm{~A} \text { at } 5 \mathrm{~V} \\ & \text { S8E1-02505 } \end{aligned}$	$\begin{aligned} & 2.1 \mathrm{~A} \text { at } 12 \mathrm{~V} \\ & \mathrm{~S} 8 \mathrm{E} 1-02512 \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \mathrm{~S} 8 \mathrm{E} 1-02515 \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~A} \text { at } 24 \mathrm{~V} \\ & \text { S8E1-02524 } \end{aligned}$	$\begin{aligned} & 35 \times 69 \times \\ & 123 \end{aligned}$	- A total of 128	- Terminals - Automobil
		50W	$\begin{aligned} & \text { 10A at 5V } \\ & \text { S8E1-05005 } \end{aligned}$	$\begin{aligned} & \hline 4.2 \mathrm{~A} \text { at } 12 \mathrm{~V} \\ & \text { S8E1-05012 } \end{aligned}$	$\begin{aligned} & 3.4 \mathrm{~A} \text { at } 15 \mathrm{~V} \\ & \text { S8E1-05015 } \end{aligned}$	$\begin{aligned} & \hline 2.2 \mathrm{~A} \text { at } 24 \mathrm{~V} \\ & \text { S8E1-05024 } \end{aligned}$	$\begin{aligned} & 37 \times 69 \times \\ & 161 \end{aligned}$	models available for a variety of applicatio ns	e parking systems - Home security systems - Built-in power supplies for electronic devices.

Multi-point Power Supplies

Appearance	Input voltage	Output capacity	Output current/voltage and model number		$\mathbf{W} \times \mathbf{H} \times \mathbf{D}$	Features	Applications
S82R	100VAC	30W	$\begin{aligned} & \text { 2A at 5V and 2A at 12V } \\ & \text { S82R-0321 } \end{aligned}$	2 A at 5 V and 1A at 24V S82R-0322	$40 \times 97 \times 161$	- Same depth and mounting method for all	- Measuring equipment - Chemical
			1.7 A at 12 V and 0.8 A at 12V S82R-0327	$\begin{aligned} & \text { 1A at } \pm \mathbf{1 5 V} \\ & \text { S82R-0328 } \end{aligned}$		models - Mountable in any of three	equipment - Built-in power
		50W	$\begin{aligned} & \hline \text { 3A at } 5 \mathrm{~V} \text { and } 3 \mathrm{~A} \text { at } \mathbf{1 2 V} \\ & \mathrm{S} 82 \mathrm{R}-0521 \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 A} \text { at } 5 \mathrm{~V} \text { and } \\ & \text { 2A at } 24 \mathrm{~V} \\ & \mathrm{~S} 82 \mathrm{R}-0522 \\ & \hline \end{aligned}$	$40 \times 112 \times 161$	directions	supplies for electronic devices.
			$\begin{aligned} & \hline \text { 3A at 12V and 1.2A at 12V } \\ & \text { S82R-0527 } \end{aligned}$	$\begin{aligned} & \hline \text { 1.7A at } \pm \mathbf{1 5 V} \\ & \text { S82R-0528 } \end{aligned}$			
		75W	$\begin{aligned} & \hline \text { 5A at 5V and 2A at 24V } \\ & \text { S82R-5722 } \\ & \hline \end{aligned}$		$44 \times 123 \times 161$		

6-9 Applications

7-1 What is a Sensor? 114
7-1-1 Sensor Field Usage 114
7-1-2 Example 114
7-1-3 Human 5 Senses and Sensor 114
7-1-4 Sensor Role In Automation. 115
7-1-5 Classification of Sensors. 116
7-1-6 Types of Omron Sensors. 117
7-2 Photoelectric Sensor (PES) 118
7-2-1 Photoelectric Sensing Methods 119
7-2-2 Classification by Sensing Methods 120
7-2-3 Typical Omron Built in Amplifier Photoelectric Sensors 121
7-2-4 Optical Fiber Photoelectric Sensor 122
7-2-5 Three Common Types of Optic Fiber 123
7-2-6 Operating principle 124
7-2-7 Types of Fiber Optic 124
7-2-8 Typical Omron Fiber Optic Photoelectric Sensors 125
7-3 Proximity Sensor 126
7-3-1 Inductive 126
7-3-2 Typical Omron Inductive Sensors 127
7-3-3 Capacitive 128
7-3-4 Typical Omron Capacitive Sensors 129
7-3-5 Features of Inductive Proximity Sensors 130
7-3-6 Features of Capacitive Proximity Sensors 130
7-4 Comparison between PES and Proximity Sensor 131
7-5 Pointers of Selection 132
7-5-1 Photoelectric Sensor 132
7-5-2 Proximity Sensors 133
7-6 Omron Models 134
7-6-1 Photoelectric Sensors 134
7-7 Application 138
7-7-1 Photoelectric Sensors 138
7-7-2 Proximity Switch 139

7-1 What is a Sensor?

An equipment use to capture the outer changes (information) like power, heat, lightning, magnetic, sound waves and convert it to a electric signal and then transmit it to the related control components.

7-1-1 \quad Sensor Field Usage

Sensor is not only use in the control business. But also in other field. So, what is the objective and in what way is it use for.

7-1-2 Example

7-1-3 Human 5 Senses and Sensor

Human is using its 5 senses in order to capture the other changes. Let's think about the corresponding of sensor with human's 5 senses.

5 Senses	Outer Changes	Sensor
Vision	Brightness and Darkness/ Object size/Style/Distance/Color	TV Camera
Touch	Pressure/Temperature/Pain/Itchin ess/Article contact/Approach	Thermometer Switch
Taste	Sweet/Spicy/Sour/Bitter/Salty	PH
Hearing	Air vibration Sound Strength/High Low/Tune	Microphone
Smelling	Gas Chemical Content	Alcohol Detection Gas Detection

7-1-4 Sensor Role In Automation

1 Corresponding Relation Within Human \& Machine

1 Sensor is taking up a responsibility to call [Input] in the 3 elements in automation

| Sensors | Section $7-1$ |
| :--- | :--- | :--- |

7-1-5 Classification of Sensors

Sensors \quad Section 7-1

7-1-6 Types of Omron Sensors

Laser Micro Meter

Photomicro Sensor

Level Sensor

7-2 Photoelectric Sensor (PES)

What is PES (Photoelectric Sensor)?
An equipment which uses [Light] as signal media, to detect the changes of condition without any contact, and then convert it to a electrical output signal.

Concept
There will be little changes depending on the type. Basically detects through the following concept.

1. Usually light emit out from received
2. If an object passed through path, the light interrupted.
3. Receiver will change the pass information

received wilitbe

Eg) Escalator

7-2-1 Photoelectric Sensing Methods

7-2-2 Classification by Sensing Methods

TYPE	DEFINITION	FEATURES
Separate Type		- Longest Range - Highest light/dark ratio - Not effected by target colour or surface
Retroreflective Type		- Long Range - High light/dark ratio - Adhesive and sticker reflector available
Diffuse reflective Type		- Detecting distance max. 2M - Easy installation - Light/dark ratio is more critical than the above

7-2-3 Typical Omron Built in Amplifier Photoelectric Sensors

E3S-R	E3V3	E3F2
Transparent Object Detection	Vibration Resistance	Cylindrical Size

E3J2	E3T
Low- cost	Mini-mini Sensor

E3S-A	E3S-B	E3S-C
Standard Size	Compact Size	Heavy-duty Plug-in

7-2-4 Optical Fiber Photoelectric Sensor

What is Optical Fiber Photoelectric Sensor?
In the earlier session the PES has a built in Amplifier and the Transmitter \& Receiver utilises lenses. And Optical Fiber PES actually replaces these lenses with Fiber Optics

Configuration Diagram

Application Example

IC lead bent \& slipped pin detection (Use Diffuse Reflective)

Sensors \quad Section 7 7-2

7-2-5 Three Common Types of Optic Fiber

1 Separate/Thru-Beam

2 Retroreflective

3 Diffuse Reflective

Emitter \& Receiver

- General used in most fiber sensors

- High precision type
- Operating position is not affected by the direction of target entering the detecting area.

Sensors	Section	7-2

7-2-6 Operating principle

- The Optical Fiber consists of the Core and the Cladding.
- The light beam, which travels through the Core at a bouncing angle of approx. 60-degree, was emitted to the target without any loss in light intensity.

7-2-7 Types of Fiber Optic

A) Plastic Filament Fiber

- The Core of the plastic-fiber consists of one or more fibers 0.25 to 1.5 mm in diameter, encased in plastic or polyethylene sheath.
- Used in most of the optical fiber sensor
- Features: Light, flexible \& cost-effective

B) Glass Filament Fiber

- Consists of glass fiber encased in stainless steel tubing.
- Best to use at high operating temperatures $\left(400^{\circ} \mathrm{C}\right)$.

7-2-8 Typical Omron Fiber Optic Photoelectric Sensors

E3X-N		E3X				
Teaching Optical Fiber	Fine Tuning Fiber	E3X-A	E3X-F	E3X-VG		
General-						
Purpose						Shorter
:---:						
Response						
Time	\quad Mark-Sensing					

7-3 Proximity Sensor

What is a Proximity Sensor?

Proximity sensor is a device for detecting objects by making use of the changes in the magnetic/electric field without any contact to the object.
There are basically 2 types of Proximity Sensor available:

1. Inductive
2. Capacitive

7-3-1 Inductive

- High Frequency Magnetic Field is Generated by the Coil.
- Metallic Target Approaches the Detecting Coil will Dampen the Oscillation Around the Detecting Coil.
- The Changes of Condition Thus Causes the Switching Circuitry to Change State.

Familiar application

[Car Park Vehicle Detector]
In front of the entrance gate, a big proximity sensor was set underground and it detect the on ground vehicle by sending the signal to the closing gate motor.

Note: Some car park uses PES
Sensors \quad Section 7 7-3

7-3-2 Typical Omron Inductive Sensors

E2E	E2EC	TL-W
Cylindrical Type	Subminiature Cylindrical Type	Flat Type

TL-N	TL-Q/TL-G
Square type	Subminiature Square Type

7-3-3 Capacitive

- Approach of object will cause electrostatic capacitance of the base electrode to change.
- Electrostatic capacitance increases as the object approaches.
- Oscillator circuit changes the amplitude of oscillation proportionally.
- Increase in oscillation increases the output voltage of the rectifier circuit, thus causes the switching circuit to change state.

Familiar application

Milk Detection (in carton)

The use of a capacitive proximity switch ensures that the contents of opaque containers are present.

Capacitive Proximity Switch

7-3-4 Typical Omron Capacitive Sensors

E2K	
E2K-C	E2K-F
Cylindrical Type	Square Type

7-3-5 Features of Inductive Proximity Sensors

- No Physical Contact.
- Reliable in Hazardous.
- Long Service Life.
- Fast Response.

7-3-6 Features of Capacitive Proximity Sensors

- Senses Almost Every Kind of Object, Metallic and Nonmetallic (Glass, Water, Oil, Plastic, Etc).
- Indirectly Senses Object Buried in a Nonmetallic Wall or Placed in a Nonmetallic Container.
- Protection Against Dust and Jets of Water.
- LED Operation Indicator.

7-4 Comparison between PES and Proximity Sensor

It is because both PES and Proximity Sensor works on "NO CONTACT" detection method, therefore both will have a very long life span, and fast response performance.

Features	PES	Proximity Sensor (Inductive)
Detection object	Can detect almost/any object	Metal only (even conceal/hide also can be detected)
Detection distance	Long Sensing Distance	Short Sensing Distance
Protect structure	Also provided with IP67 protection but generally it is not so superior	(also excel in oil resistance)
Shock resistance Vibration resistance	Weak	Strong
Price	High cost	Low cost

7-5 Pointers of Selection

7-5-1 Photoelectric Sensor

1. Points for good selection

Thru-Beam type and retro-reflective type	Reflective type	
Sensing object 1. Size and shape (length \times depth \times height $)$ 2.Transparent ratio (non-transparent, half- transparent, full-transparent) Movement speed V $(\mathrm{m} / \mathrm{s}$ or pcs/min)	Sensing object	1. Size and shape (length \times depth \times height) 2. Color 3. Materials (Steel, timber, paper, etc). 4. Surface (rugged, luster) 5. Movement speed V (m/s or $\mathrm{pcs} / \mathrm{min}$)
	Sensor	1. Sensing distance (distance to object) (L) 2. Restrictions on shape and size 3. Use of several sensors (a) Quantity (b) Installation pitch 4. Restrictions on installation (Install at certain angle to object)
Environment 1. Surrounding temperature 2. Use of water, oil, chemicals 3. Others	Background	1. Color 2. Materials (Steel, timber, paper, etc) 3. Surface (rugged, luster)
Application	Environment	1. Surrounding temperature 2. Use of water, oil, chemicals 3. Others
	Application Backgro	

7-5-2 Proximity Sensors

Conditions	Review Points	
Applications		Detection distance Temperature voltage Response (response frequency) Detection distance Shape of detection point (prism, cylinder, piercing or gutter) Temperature voltage Surrounding metal (shield or unshield type) Prism, cylinder, piercing or gutter Surrounding metal (shield or non-shield type)

(2) Environment/installation

Conditions	Review Points
Environment	Anti-environment feature of proximity switch is superior to other switches. However, enough review is necessary for use in special environment.
Installation	Installation method should be decided considering restriction from the machine, maintenance, and interaction with other sensors.
Others	

Sensors \quad Section 7 7-6

Proximity Sensors

7-7 Application

7-7-1 Photoelectric Sensors

Distance Measurement

(Upper/Lower Limit Detection)
Using E3SA and S3A2 medium range upper or
lower level distances can be detected.

Detection Subject: Liquid, powder, granules, etc.
Analog Photoelectric Sensor E3SA, Linear Sensor Controller S3A2

Capsule Length Judgement

Capsules and their contents come in many different colors, including transparent. A wafer sensor type is used to detect the capsule's length to decide if it is Good or No Good.

Fiber Unit E32-L25A
Amp Unit E3XR-CE4

Transparent Bottle Detection

An exclusive optical method for the detection of transparent objects is used. This enables accurate detec-tion of transparent bottles, test tubes, glass tubes, beakers and other transparent containers as well as cellophane tape.

Transmission Type Light passes through once.

Feedback Reflection Type Light passes through twice making detection easier.

Internal Amp Photoelectric Switch E3S-RS30E4-30

7-7-2 Proximity Switch

Why the need for Proximity Switch?

- No physical contact (i.e. no wear and tear)
- Reliable in hazardous environment (e.g. mist and air)
- Long service life
- Fast response time

Tank Level Control

The level of liquid in a tank is controlled by two proximity switches. A glass bypass tube is installed on the side of the tank so that the proximity switches can monitor the liquid level in the bypass tube.

Grinding Amount

Detection
This system uses a standard reference sensor and detection sensor in conjunction to prevent temperature and voltage drift. Accuracy is within $\pm 0.02 \mathrm{~mm}$ and it can be inspected online.

Proximity Switch Control Work Piece Sorting

Work pieces are placed on pallets, which are coded according to metal rods in the edge. When the pallets pass the inductive proximity sensors, they are sorted according to the code.

SECTION 8 Temperature Controller

8-1 What is Temperature Control? 140
8-2 What is Temperature Controller? 142
8-3 Temperature Control Methods 143
8-3-1 ON/OFF Control Action 143
8-3-2 Proportional (P) Control Action 144
8-3-3 Integral (I) or Reset Control Action 146
8-3-4 Derivative (D) or Rate Control Action 147
8-3-5 PID Control Action 149
8-4 Temperature Sensors 150
8-4-1 Thermocouples 150
8-4-2 Resistance Thermosensors 152
8-4-3 Thermistor 153
8-4-4 Thermosensor Selection 154
8-4-5 Output Types 157
8-5 Omron Models 158
8-6 Application 161

8-1 What is Temperature Control?

Control system can be classified into two types:
Feedback control systems and sequence control systems.
Temperature Control is actually a variation of the feedback control.

- Sequence Control Systems:

Sequence control is to perform control actions step by step according to some previously determined sequences.

As an example of sequence control, an electric light can be turned on at the desired time in the evening by a time switch. Even if the night falls early, the light will not illuminate until the set time arrives.

In this example, there is no self-correcting action, which checks whether the lights are actually on, or if the brightness is appropriate.

Example of Sequence Control

- Feedback Control Systems

Temperature control is a variation of the feedback control. The principle of temperature control is explained in the example of Furnace Control.

For example, to maintain the temperature in a furnace. Firstly, the temperature (set point) on the Temperature Controller (TC) must be set. e.g 150 degree Celsius.
The thermocouple (Temperature Sensor) relays the furnace temperature back to the TC as a feedback. This feedback is compared to the TC setpoint.
If the furnace temperature falls below 150 C , the TC must turn on the heater to heat up the furnace temperature to the set point.
In simplicity, the TC is use to raise or lower the furnace temperature to the setpoint.

8-2 What is Temperature Controller?

It is a device use for controlling or maintaining the setpoint Temperature of a Temperature Related Control System.

Typical Omron Temperature Controller

8-3 Temperature Control Methods

8-3-1 ON/OFF Control Action

The ON/OFF control action is to repeatedly turn on and off the controlled system according to the set point. For example, in this figure, the output relay is operated (ON) when the temperature in the furnace is below the set point, and is released (OFF) when the temperature reaches the set point.

The ON/OFF control action is also called "two-position control action" because two manipulated variables (0% and 100%) are used in relation to the set point.

If the output relay is turned on/off at one set point, chattering of the output may occur, causing the controlled system to be susceptible to the influences of noise. For this reason, a hysteresis between the ON and OFF is usually provided to the output. This hysteresis called "adjustment sensitivity" (also called "dead band (zone)" or "insensitive zone"). A higher adjustable sensitivity is required for such a device such as the air compressor of a freezer whose frequent ON/OFF operation must be avoided.

ON/OFF CONTROL

8-3-2 Proportional (P) Control Action

Proportional (P) control action is an action in which the manipulated variable (control output variable) is proportional to the deviation from the set point.

When the current temperature is lower than the lower limit of the proportional band, the manipulated variable is 100%. When the temperature is within the proportional band, the manipulated variable gradually decreases in proportion to the deviation and decreases to 50% when the present temperature becomes equal to the set point. Therefore, P action enables smoother temperature control with smaller hunting than the ON/OFF control action.

- Time-Division Proportional Control Action

A device that issues its output in the form of pulses indicating its ON and OFF states may be used as the output device of a temperature controller. These output include relay output, SSR (solid-state relay) output, and voltage output. The output device is repeatedly turned ON and OFF in the proportional band at a fixed cycle.

A cycle of ON and OFF operations of the output device is called "proportional period".

- Offset

In a proportional control action, a fixed deviation is created by the correlation between the thermal capacity of the controlled system and the capacity of a heating device that remains after the controlled system reaches a steady state. This deviation is called "offset". If the offset occurs in a temperature controller that performs only P action, it can be corrected with the variable resistor on the temperature controller.

Fig. 3 Proportional Band Adjustment

Selection of Proportional Period

If the proportional band is short, the hunting amplitude of the controlled temperature is narrowed and good results of the control action occur. Therefore, if an output device that can frequently repeat is ON/OFF operations (such as an SSR or thyristor) is used, the proportional band should be set to be short. However, is a relay is used. The proportional period must be set to be long because too frequent operations will affect the service life of the relay.

8-3-3 Integral (I) or Reset Control Action

Offset is likely to occur in P action. To diminish and eliminate the offset so that the controlled temperature agrees with the set point, the P action is used in combination with a reset or integral (I) control action. This combinations is called PI action.

- Reset Time

Reset time is a quantity, which expresses the strength of reset action. This is the time required for the manipulated variable of the integral to reach the same manipulated variable as in P action when the change in the deviation takes place. Therefore, the shorter the reset time, the more effective the reset action being performed. However, too short reset time may cause hunting to occur.

Fig. 2 PI Control Action and Reset Time

8-3-4 Derivative (D) or Rate Control Action

Follow-up control of P or I action will be delayed because both actions use the manipulated variable related to the present or past deviation. Derivative or Rate Action is required to compensate. It performs a corrective action with the manipulated variable proportionally to the slope at which the deviation is generated. A large value of manipulated variable is given to quickly reestablish a normal control state after a rapid change caused by external disturbances.

- Rate (Derivative) Time

Rate time is a quantity, which expresses the strength of rate action. This is the time required for the manipulated variable or the rate action to reach the same manipulated variable as in proportional action when a change in the deviation occurs.

Fig. 2 PD Control Action and Reset Time

- Differential Effect

In case a sudden deviation occurs in time-division proportional action, the first ON or OFF time of the output relay is prolonged by performing a certain control to reach the set point (set temperature) sooner. This referred to as "differential effect".

Fig. 3 Differential Effect

8-3-5 PID Control Action

PID Control Action is a combination of P , I and D control action. The best results of the control can be obtained when the PID control action is performed on a controlled system having a long idle time. Of the three actions, the P action enables control to be performed free from hunting while I action is used to automatically correct the offset. Additionally, D action quickly corrects the change in the manipulated variable caused by external disturbances. This interaction of the 3 control actions assures optimum control.

The strong and weak points of different control actions are summarized in the following table:

Control Action	Advantages	Disadvantages	
On-Off	$-\quad$Control is simple No offset occurs	$-\quad$ Overshoot and hunting occurs	
Proportional (P)	-Overshoot and hunting are small	$-\quad$A long time is required until the controlled variable is stabilized Offset occurs Reset (Integrate (I)) Rate (Derivative (D)) Offset is eliminated The response is quickened.-A longer time is required than P action until the controlled variable is stabilized. PID This control action can not be performed alone.The best control action can be performed.	-Setting the PID parameters is necessary.

8-4 Temperature Sensors

8-4-1 Thermocouples

The thermocouple is made of two different metals (element wire) whose ends are welded to each other so that a voltage is developed when the two junctions are at different temperatures. This developed voltage is referred to as "thermoelectromotive force".

Normally, a special conducting wire is used as substitute wire at the other end of the thermocouple. That wire is called compensating conductor. A shielded type of wire should be used to prevent noise induction. Also one of the edges of the conductor should be earthed.

Temperature controller normally has a built-in cold junction compensating circuit, which develops an electromotive force between $0^{\circ} \mathrm{C}$ and room temperature.

1. General Type Thermocouple

This type has a thermocouple element wire in a ceramic-insulating pipe enclosed in protective tubing. The protective tubing is made mainly from stainless steel and must not be bent.
2. Sheathed Thermocouple

- Exposed type: The thermocouple element wire is exposed, has fast thermal response and short service life.
- Ungrounded type: The thermocouple wire is externally shielded. This type is widely used.
- Grounded type: The thermocouple wire is welded to the sheath, has faster thermal response than the ungrounded type.

The protective tubing is a thin stainless steel tube and can be bent, so the thermocouple can be inserted to hardly accessed places.

General Type Thermocouple

Sheathed Thermocouple

8-4-2 Resistance Thermosensors

Because the electric resistance of some metals is directly related to temperature, it is possible to determine a temperature by measuring changes in the resistance of some metals. The most popular metal used is platinum.

Platinum RTD Sensors are divided into groups as follows:

1. General purposes:

- Exposed terminal type
- Enclosed terminal type

2. Sheathed type:

- Exposed lead wire type
- Enclosed terminal type

8-4-3 Thermistor

A thermistor is a temperature sensor, which is metal oxide, and is a resistor element with a negative temperature coefficient.

Element interchanging type thermistor

8-4-4 Thermosensor Selection

Selecting the right sensor for your control application assures reliable input to your Omron temperature controller.

The decision to select thermocouple, platinum RDT (resistance temperature detector), or thermistor is based on the optimum range, accuracy, and response time of the sensor.

Operating Temperature Range of Omron Temperature Sensors							
Scale		Thermocouples			$\begin{aligned} & \text { Platinum } \\ & \text { RTD } \end{aligned}$	Thermistor	
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	Type K	Type J	$\begin{gathered} \text { Types } \mathbf{R}, \\ \mathbf{S} \\ \hline \end{gathered}$			
2912	1600			$\bigcirc \times$			
	1500			$\times \times$			
	1400			$\triangle \times$			
	1300						
2192	1200	7					
	1100	1					
1832	1000	\square		77			
	900			\%			
1472	800		¢ \times	\%			
	700		$+\infty$	\%			
1112	600		$\xrightarrow{\square}$	\%			
	500		\%	\%	$\triangle \times \times$		350
752	400		\square	,	$\triangle \times$		
572	300			\%			
392	200			\%		100	
212	100			\square		\square	H0
32	0		\%				
-148	-100		\square			-50	
-328	-200						

Legend: Optimum operating range

Normal range

Overheat limit

- Comparison of Temperature Sensor Performance

Sensor type	Thermocouple	Platinum RTD	Thermistor
Temperature range	0° to $1,600^{\circ} \mathrm{C}$	-100° to $400^{\circ} \mathrm{C}$	-50° to $350^{\circ} \mathrm{C}$
Accuracy	Ordinary	Good	Fair
Advantage	Good thermal response Self-powered Simple Rugged Inexpensive Wide variety Wide temperature range	Most accurate Most stable More linear than thermocouple	Fast thermal response Small error due to resistance of conductor
Disadvantage	Compensating cinductor necessary Non-Linear Low voltage Least stable Least sensible	Likely to be affected by conductor resistance Slightly slow thermal response because the heat sensing element is long Expensive	Non-linear Limited temperature range Fragile

－TYPES AVAILABLE

Temperature sensor		$\begin{aligned} & \text { Os:put } \\ & \text { terminal } \end{aligned}$	Length of protective tub：ng tmal									
		50	65	100	150	200	350	500	750	1.000		
FT	Plat：num resisiancie ：hęrmometer IP： 1002 s ；		A			－	FA15A	－PT20A	．${ }^{-} \times 35 \mathrm{~A}$ ．	－PT50A	－	－
		E	－	－	－	－－	－PT20E	－PT35	PT50	－PT75E	P11008	
		C					－PT70¢	PT356－	－PT60\％${ }^{\circ}$	PT756＊	FT100	
CAK	ch•omel al ithel thermocoupre	A		cons	－CA10AS	－Сん15～ 	$\begin{aligned} & 620 \mathrm{~A} \\ & -620 \mathrm{As} \end{aligned}$	C4J5A	－СА50Д．		－	
		B	－		－．．．	\cdots	CA20B		CA508＊	－CA75E＊	－6a100E	
		C			－	．	－cn20C	－64350＊	CAEOC＊	CA75C＊	－6A100C	
ICJ	Iran． corstantan thermocouple	A	－－	－ICEAS	1610.45	$\begin{aligned} & -1 C 75 \mathrm{~A} \\ & -1615 \mathrm{AS} \end{aligned}$	$\begin{aligned} & 1020 \mathrm{~A} \\ & 1020 \mathrm{AS} \end{aligned}$	－1635A	－1C50A	－	－	
		F	－－		，		－1020	－1035 ${ }^{+}$	－1050日	$\therefore 6758^{\prime \prime}$	161008	
		C			．		－16206	－16356	IC500．	$1575{ }^{\circ}$	－16700C	
PR R	Patimumplat． inum－hodium ：Hermocouple	5			－	－	－	－	－PF9500	－PR750．	－PF10，C	
－ H	Thermistor	A	TH5A	－			－T゙н20A	－TH35A	－		－	
		E	－		．．＇		－Tr20日	－ T H35	－TH5CE	－	－	
		C	－	－	－	\cdots	TH2OC	－TH35C	TH50C	．	－	

8-4-5 Output Types

Selection of the output is made depending upon the type, capacity, and operation frequency of the load. The voltage output is $5 \mathrm{VDC}(10$ to 20 mA$)$; current output is continuous and in the range of 4 to 20 mA .

8-5 Omron Models

Classification	Economical Temperature Controllers			General Purpose Temperature ControllersE5 W
	E5EM	E5C2	E5CS	
Appearance				
Dimensions $(\mathbf{H} \times \mathbf{W} \times \mathbf{L}) \mathrm{mm}$	$96 \times 48 \times 100$	$48 \times 48 \times 96$	$48 \times 48 \times 100$	E5AW: $96 \times 96 \times 100$ E5BW: $72 \times 72 \times 100$ E5CW: $48 \times 48 \times 100$ E5EW: $96 \times 48 \times 100$
Features	- P control - Thumbwheel switch setting - Maximum heater current: AC 5A/20A/30A single phase (SW selectable) - Deviation indication (meter)/LED PV display	- ON/OFF or PD control - Economical plug-in unit - Panel adapter supplied	- PID or ON/OFF control - Compact, panel mount or socket mount unit - Large, easy to read LED display - Selectable temperature ranges - Input shift - Self diagnostics - 8 alarm modes - ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable - Key protect function	- Automatic tuning PID or ON/OFF control - Selectable temperature ranges - Displays Present Value and Set Value simultaneously - Input shift - Self diagnostics - 8 alarm modes - ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable - Key protect function
Model Variations	- Heater burnout alarm - Digital indication - Deviation indication (meter)	---	---	- Heater burnout alarm
Indication Accuracy	$\pm 1.5 \%$ max. of full scale	$\pm 2 \%$ max. of full scale (setting)	$\pm 0.5 \%$ of full scale, ± 1 digit max.	$\pm 0.5 \%$ of full scale, ± 1 digit max.
Control Modes	P	ON/OFF or PD	ON/OFF or PID	ON/OFF or PID
Temperature Sensors and Input Ranges	Type K Thermocouple: 0 to $399^{\circ} \mathrm{C}$	- Type K Thermocouple: 0 to $1,200^{\circ} \mathrm{C}$ (7 scales) - Type J Thermocouple: 0 to $400^{\circ} \mathrm{C}$ (3 scales) - JPt100: -50 to $400^{\circ} \mathrm{C}$ (7 scales) - Thermistor: -50 to $300^{\circ} \mathrm{C}$ (5 scales)	- Type K Thermocouple: 0 to $999^{\circ} \mathrm{C}$ (6 ranges) - Type J Thermocouple: 0 to $500^{\circ} \mathrm{C}$ (5 ranges) - JPt100, Pt100: -50 to $400^{\circ} \mathrm{C}$ (9 ranges) - Thermistor: -50 to $300^{\circ} \mathrm{C}$ (10 ranges)	- Type K Thermocouple: 0 to $999^{\circ} \mathrm{C}$ (6 ranges) - Type J Thermocouple: 0 to $500^{\circ} \mathrm{C}$ (4 ranges) - JPt100, Pt100: -50 to $400^{\circ} \mathrm{C}$ (9 ranges)
Supply Voltage	$\begin{aligned} & 100 / 110 \text { or } 200 / 220 \mathrm{VAC}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 100 / 110 \text { or } 200 / 220 \mathrm{VAC}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ or 24VDC/AC	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \text { or } 24 \mathrm{VAC} / \mathrm{Dc} \end{aligned}$
Control Outputs	- Relay: SPDT, 3A,250VAC (Resistive load)	- Relay: SPDT, 3A, 250VAC (Resistive load)	- Relay: SPDT, 3A, 250VAC (resistive load) - Voltage: 12VDC, 20mA - Alarm: SPST-NO, 1A, 250VAC (Resistor load)	- Relay: SPDT, 3A, 250VAC (Resistive load) - Voltage: 12VDC, 20 mA - Alarm: SPST-NO, 1A, 250VAC (Resistive load)
Weight (approx.)	340 g	200 g	170 g	150 to 300 g
Front Panel Approval	---	---	IEC IP50	---
Approved Standards \& Markings	---	UL, CSA, CE	UL, CSA, CE	UL,CSA

Classification	Advanced Temperature Controllers		Digital Controllers E5 K	Special Purpose Temperature Controllers E5 F
	E5 J	E5 X		
Appearance				C 8888 *(4)a
Dimensions $(\mathbf{H} \times \mathbf{W} \times \mathrm{L}) \mathrm{mm}$	E5AJ: 96× 96x 98 E5BJ: $72 \times 72 \times 98$ E5CJ: $48 \times 48 \times 100$ E5EJ: $96 \times 48 \times 98$	$\begin{aligned} & \hline \text { E5AX: } 96 \times 96 \times 89 \\ & \text { E5BX: } 72 \times 72 \times 89 \\ & \text { E5CX: } 48 \times 48 \times \times 7.5 \\ & \text { E5EX: } 96 \times 4 \times 89 \\ & \hline \end{aligned}$	E5AK: $96 \times 96 \times 100$ E5CK: $53 \times 53 \times 100$ E5EK: $96 \times 48 \times 100$	$\begin{aligned} & \text { E5AF: } 96 \times 96 \times 100 \\ & \text { E5EF: } 96 \times 48 \times 100 \end{aligned}$
Features	- Fuzzy advanced self-tuning. PID control with two degrees of freedom or ON/OFF control - Selectable temperature inputs - Plug-in output modules (except E5CJ) - Self diagnostics - 4-event inputs (E5AJ, E5EJ) - Heater burnout alarm - 9 alarm modes - ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable - Key protect function	- Advanced PID control with two degrees of freedom improves stability and response speed - Select from 7 temperature sensors for a total of 14 temperature ranges - 8 alarm modes - ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable - Key protect function	- Modular structure - Fuzzy self-tuning, advanced PID or manual control - Auto/manual operation - Heat \& cool control - Selectable temperature \& analog input - Multi-set point, SP ramp function - Event input - Plug-in control output \& optional units - Transfer output - 11 alarm modes - Key protect function	- Improve response to disturbance through Fuzzy logic - Hybrid Fuzzy-PID control with auto-tuning - Selectable temperature inputs - Plug-in control output modules - Displays Present Value and Set Value simultaneously - Input shift - Self diagnostics - Two alarm outputs with 9 modes each - Easily adjustable Fuzzy parameters - ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable - Key protect function
Model Variations	- Communication options (E5AJ,E5EJ only) RUN /STOP operation (E5AJ, E5EJ only)	- Position-proportional control - Heat \& cool control - Communication options (E5AX, E5EX only)	- Position-proportional control (E5AK, E5EK only) - Heater burnout alarm (E5AK, E5EK only) - Communication options - Remote set point (E5AK, E5EK only) - Loop break alarm (E5AK, E5EK only)	- Communication options - 8 memory banks (E5EF-B only) - heater burnout alarm
Indication Accuracy	$\pm 0.5 \%$ of set value or $\pm 1^{\circ} \mathrm{C}, \pm 1$ digit max.	$\pm .0 .3 \%$ of set value, 1 digit max.	$\pm 0.3 \%$ of indication value, ± 1 digit max.	$\pm 0 . .3 \%$ of set value, ± 1 digit max.
Control Modes	ON/OFF or PID	ON/OFF or PID	ON/OFF or PID	ON/OFF or PID
Temperature Sensors and Input Ranges	- Type K Thermocouple: -200 to $1,300^{\circ} \mathrm{C}$ - Type J Thermocouple: -100 to $850^{\circ} \mathrm{C}$ - Type T Thermocouple: - 199.9 to $400.0^{\circ} \mathrm{C}$ - Type N Thermocouple: -200 to $1,300^{\circ} \mathrm{C}$ - JPt100, Pt100: - 199.9 to $650^{\circ} \mathrm{C}$	- Type K Thermocouple: -200 to $1,300^{\circ} \mathrm{C}$ - Type J/L Thermocouple: -100 to $850^{\circ} \mathrm{C}$ - Type T/U Thermocouple: -200 to $400^{\circ} \mathrm{C}$ - Type E Thermocouple: 0 to $600^{\circ} \mathrm{C}$ - Type R/S Thermocouple: 0 to $1,700^{\circ} \mathrm{C}$ - JPt100, Pt 100: -99.9 to $450.0^{\circ} \mathrm{C}$	- Thermocouples types: K, J, T, E, L, U, N, R, S, B, W, PL II(-199.9 to $2,300^{\circ} \mathrm{C}$) - Platinum RTD: Pt100, JPt100 (199.9 to $650.0^{\circ} \mathrm{C}$ - Current: 4 to $20 \mathrm{~mA}, 0$ to 20 mA - Voltage: 1 to $5 \mathrm{VDC}, 0$ to 5 VDC , 0 to 10VDC	- Type K Thermocouple: -200 to $1,300^{\circ} \mathrm{C}$ - Type J Thermocouple: - 100 to $850^{\circ} \mathrm{C}$ - Type T Thermocouple: -200 to $400^{\circ} \mathrm{C}$ - Type N Thermocouple: 0 to $1,300^{\circ} \mathrm{C}$ - JPt100, Pt100: -99.9 to $450.0^{\circ} \mathrm{C}$ - Types E, R, S and B also applicable
Supply Voltage	100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \\ & 24 \mathrm{VAC} / \mathrm{VDC} \\ & \hline \end{aligned}$	100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Control Outputs	Plug-in Control Output Modules: - Relay: SPDT, 5A, 250VAC (Resistive load) - SSR: SPST-NO, 1A, 75250VAC - Voltage: $12 \mathrm{VDC}, \mathrm{NPN}, 40 \mathrm{~mA}$ 24VDC, NPN/PNP, 20mA - Linear: 4 to $20 \mathrm{~mA} / 0$ to 20 mA - 0 to $10 \mathrm{VDC} / 0$ to5VDC	Plug-in Control Output Modules: - Relay: SPDT, 5A, 250VAC (Resistive load) - SSR: SPST-NO, 1A, 75 to 250VAC - Voltage: 12VDC, NPN, 40 mA 24VDC, NPN/PNP, 20mA - Current: 4 to 20 mA DC	Plug-in Control Output Modules: - Relay: SPST, 3A(5A*), 250VAC (Resistive load) - SSR: 1A, 75 to 250 VAC * - Voltage: $12 \mathrm{VDC}, \mathrm{NPN}, 40 \mathrm{~mA}^{*}$ 24VDC, NPN/PNP, 20mA 12VDC, NPN/PNP, 20 mA (E5CK only) - Linear: 0 to $10 \mathrm{VDC}, 4$ to 20 mA 0 to $5 \mathrm{VDC}^{*}, 0$ to 20 mA - E5AK/E5EK only	Plug-in Control Output Modules: - Relay: SPDT, 5A, 250VAC (Resistive load) - SSR: SPST-NO, 1A, 75 to 250VAC - Voltage: $12 \mathrm{VDC}, \mathrm{NPN}, 40 \mathrm{~mA}$ 24VDC, NPN/PNP, 20mA - Current: 4 to 20 mA DC
Weight (approx.)	170 to 360 g	160 to 400 g	170 to 450 g	310 to 430 g
Front Panel Approval	IEC IP50	IEC IP50	IEC IP66	IEC IP50
Approved Standards \& Markings	UL, CSA, EN/IEC,CE	UL, CSA, SEV	UL, CSA, EN/IEC, CE	UL, CSA

E5CN/E5GN (Multifunctional Temperature Controllers)

Industry's smallest model ($48 \times 24 \times 100 \mathrm{~mm}$) offers high functionality for a wide variety of temperature control applications

E5CN/GN Standard Models

Size	Power supply voltage	No. of alarm points	Output	Thermocouple model	Platinum resistance thermometer model
$\begin{aligned} & \text { E5CN (note } 1 \& 2 \text {) } \\ & 1 / 16 \text { DIN } \\ & 48(\mathrm{~W}) \times 48(\mathrm{H}) \times \\ & 78(\mathrm{D}) \mathrm{mm} \end{aligned}$	100 to 240VAC	---	Relay	E5CN-RMTC-500	E5CN-RMP-500
			Voltage output (for driving SSR)	E5CN-QMTC-500	E5CN-QMP-500
		2	Relay	E5CN-R2MTC-500	E5CN-R2MP-500
			Voltage output (for driving SSR)	E5CN-Q2MTC-500	E5CN-Q2MP-500
	24VAC/VDC	---	Relay	E5CN-RMTC-500	E5CN-RMP-500
			Voltage output (for driving SSR)	E5CN-QMTC-500	E5CN-QMP-500
		2	Relay	E5CN-R2MTC-500	E5CN-R2MP-500
			Voltage output (for driving SSR)	E5CN-Q2MTC-500	E5CN-Q2MP-500
$\begin{aligned} & \text { E5GN (note 3) } \\ & 1 / 32 \text { DIN } \\ & 48(\mathrm{~W}) \times 24(\mathrm{H}) \times \\ & 100(\mathrm{D}) \mathrm{mm} \end{aligned}$	100 to 240 VAC	---	Relay	E5GN-RTC	E5GN-RP
			Voltage output (for driving SSR)	E5GN-QTC	E5GN-QP
		1	Relay	E5GN-R1TC	E5GN-R1P
			Voltage output (for driving SSR)	E5GN-Q1TC	E5GN-Q1P
	24VAC/VDC	---	Relay	E5GN-RTC	E5GN-RP
			Voltage output (for driving SSR)	E5GN-QTC	E5GN-QP
		1	Relay	E5GN-R1TC	E5GN-R1P
			Voltage output (for driving SSR)	E5GN-Q1TC	E5GN-Q1P

8-6 Application

* Injection Molding Machine

To dissolve the raw material (i.e., plastics) from the hopper, the respective parts of the cylinder are heated by a band heater. At the most, 15 temperature controllers are employed to change the temperatures of the respective parts of the cylinder in stages. The dissolved raw material is in-jected into a mould and made into the end product.
The set temperature generally ranges from 200 to $230^{\circ} \mathrm{C}$. As the temperature sensor, CA is usually employed but IC is also employed in many cases.

* Compression Molding Machine

Compression molding is performed by oil pressure with a mold placed between the movable and fixed heating plates. Usually, 2 to 4 temperature controllers are employed to keep the temperature of the metal mold constant. In addition, the temperature controller is also used to turn on or off the cooling water pump for the mold heated by the dissolved raw material.

* Constant Temperature Humidity Oven

This machine is employed in laboratories, etc., for the equality testing of electronic parts, precision parts, etc. Two temperature controllers are used for drybulb and wetbulb temperatures respectively to control the freezer, heater, and humidifier.

* Commercial Electric Oven

A temperature controller is used to keep constant the temperature within a cooking oven. This internal temperature is held at about $250^{\circ} \mathrm{C}$ with a heater load of 10 to 70 kW .

* Outdoor Liquor Storage Tank

To prevent the temperature of liquor within the tank from abnormally rising due to sunlight, etc., water is sprinkled against the tank with the use of a temperature controller. The set temperature is usually 25 to $30^{\circ} \mathrm{C}$ and the temperature sensor is puttied to the outside wall of the tank.

* Automatic Washer

Shown below is an example of hat water temperature control. For washing the empty bread pans of the baking machine, the hot water temperature is maintained at $80^{\circ} \mathrm{C}$ to facilitate washing the dirt off.
In this case, a temperature controller is used for proportional control of the pipe heater $(3 \mathrm{~kW})$.

* Cold Storage for Apples

Apples harvested in autumn are kept in cold storage for supply at any time in winter, spring and summer. The temperature within the cold storage is set to $-1^{\circ} \mathrm{C}$ with a temperature controller for ON-OFF control of the compressor.

* Sizing Machine

As the auxiliary pre-processing machine for a weaving machine, this sizing machine is employed to size and dry warp. Since the workmanship of a woven cloth depends upon the sized condition of warp, a temperature controller is employed for control of the sizing and drying temperatures, respectively. The temperature of the size is set to $98^{\circ} \mathrm{C}$, while the temperature of the drying roller is set to 130 to $150^{\circ} \mathrm{C}$.

* Dye Testing Machine

The dye testing machine for yarns, cloths, knits, etc., is available in two types: steam heating type and electric heating type. In either type, the heating-cooling control is effected with a temperature controller.

* Smoke-consuming Type Incinerator

In incinerators such as in factories, schools, housing developments, etc., low combustion temperatures cause smoke to occur excessively, thus resulting in environmental pollution. To avoid this problem, complete combustion is made possible by control of the burner with a temperature controller so that the temperature within the incinerator can be maintained at $800^{\circ} \mathrm{C}$. The automatic control of this temperature enables oil saving.

* Temperature Control of Motor Bearings

Temperature are detected at the four respective points to prevent the motor bearings from overheating, and watercooling control or motor stop is effected with temperature controllers through the valves. The set temperatures differ with the temperature detecting sections and are usually within a range of 150 to $550^{\circ} \mathrm{C}$.

Food processing

Semiconductor Manufacturing

Assembly Line

SECTION 9 Intelligent Signal Processor/Digital Panel Meter

9-1 What is a Intelligent Signal Processor (ISP)/Digital Panel (DPM) 167
9-2 Features 168
9-3 Pointers of Selection (DPM) 170
9-4 Omron Models (DPM) 171
9-5 Pointers of Selection (ISP) 172
9-6 Omron Models (ISP) 173
9-7 Application (ISP/DPM) 174

9-1 What is a Intelligent Signal Processor (ISP)/Digital Panel (DPM)

1. A (DPM) is a device that displays various values (eg. Length mm, speed rpm voltage volt) measured from the input, for easy readability and monitoring purposes.
2. A (ISP) is a device that is similar to the DPM, but it is equipped with an Intelligent Signal Processor that can process the Input (read in value) and then make decision to generate a required output.

The ISP/DPM of Omron are designed to solve many advanced and complex applications. They are types available for measurement and control of current, voltage, load cell signals, temperature, standard analog signals and pulses.

Typical view of ISP/DPM

9-2 Features

- High accuracy/high speed processing
- Excellent water \& dust protection IP66 (NEMA-4) front panel
- Can be used under hard Industrial conditions
- High visibility 14.2 mm high, five digit display
- Minimum \& maximum storage of measured values
- Wide selection of plug in output boards
- Relay, Transistor, BCD, linear, or communication board and label (Combine board also possible)
- Enhanced programming features allow easy setup \& calibration
- Programmable via front panel or by means of serial port RS-232C, RS485, or RS-422
- Programmable decimal point selection
- Single \& dual display models available
- Scaling function to easily adjust display range
- Field calibration (for the K3NX/K3NV/K3NH models)
- EN/IEC conformity with CE marking and UL/CSA approval

Communications, Output Options \& Output Cards

Serial communication
The serial communications boards allow easy data logging and remote setting/monitoring functions.

- Communication to PC: By plugging a communication card in the K3N ISP's a network can be created so connecting the ISP's to a personal or central computer system.
- Connection to PLC systems: When the Sysmac C200H PLC's are used data can easily be exchanged between the ISP's and PLC directly from the ladder instructions, using the Protocol Macro Function.

Easy to use plug-in output options and communication boards
The above mentioned ISP's can be equipped with one of the following boards to output alarm signals, linear transfer signals, or to add communication functions:

- Relay output boards
- Transistor output boards
- Linear output boards
- BCD communication boards
- Serial communication boards (RS232/R422 or RS485)
- Also combined boards are available, to suit your applications in the best way

Available output cards for above K3N models
By means of output cards the above mentioned ISP's can be equipped with relay, transistor or linear outputs. Also serial communication boards are available. Combined output cards are also available; for example 5 Transistor outputs can be combined with a serial port.

9-3 Pointers of Selection (DPM)

Digital Panel Meter is mainly utilise for various Monitoring and Measurement purposes.
The selection of a DPM, depends also on what measurements the application requires, whether it is a linear input, Temperature input, AC voltage Input, AC current input or DC voltage input.
Below is a quick guide for selecting the appropriate OMRON DPM.

9-4 Omron Models (DPM)

Easy-to-use, Low-cost Digital Panel Meter that Accepts DC Input

- Compact DIN-size (96 x 48 (W x H)) body.
- Mounting thickness of only 3.5 mm required.
- Highly visible display with 14.2 -mm-high LEDs.
- Easy-to-mount snap-in construction.
- Water-resistance (IP51) construction (optional)

Low-cost, High-quality Digital

Thermometer with Built-in Microcomputer

- Compact DIN-size (96 x 48 (W x H x D)) body.
- Mounting thickness of only 3.5 mm required.
- Highly visible display with 14.2 -mm-high LEDs.
- Multi-temperature range incorporated.
- Upper or lower limit selectable (models with alarm output).

K3TJ

Water-resistance (IP51) construction (optional).

Highly Functional Scaling Meter with Versatile, Easy-to-read Red or Green Display

- Red or green display color available.

K3TL

- Wide range of scaling settings, including negative scaling.
- Simple average and movement average processing methods allow 4 s max. to display the process value, thus reducing display blinking and making it easier to read the display.
- Step display setting adjusts the step of the displayed rightmost digit to 2 , or 5 . It is possible to fix the displayed rightmost digit to 0 .
- Zero limit setting enables the K3TJ to display zero for any value less than the set value and is ideal for water depth display.
- Display brightness can be adjusted.

9-5 Pointers of Selection (ISP)

Each ISP model is dedicatedly built for a specific function, for example K3NH is for Temperature Processes.
Below is a quick selection on the appropriate OMRON ISP Model.

Input signal	Measurement/Available Intelligent Signal Processor:
Current, Voltage, or Standard analog signals	Analog Process Meter: K3NX series - For measurement and control of Voltage or current, AC or DC. - Also equipped with inputs for standard industrial analog signals, like $4-20 \mathrm{~mA}, 0$ $10 \mathrm{VDC}, 0-5 \mathrm{VDC}$ etc. - Easy to scale the measured values to your standard needs.
Load cell signal	Weighing Meter: K3NV series - For a large variety of weighing applications. - Easy set-up and calibration. - Tare function allows zero adjustment at the reference position. - With built-in 10VDC loadcell power supply.
Thermocouple, Pt100, or standard analog signals	Temperature Meter, Analog Process Meter: K3NH series - For accurate measurement and control of process temperatures. - Multifunction input can accept signal from Pt100, basically all thermocouples and also the standard industrial analog signals, like 4$20 \mathrm{~mA}, 0-10 \mathrm{VDC}$, $0-5 \mathrm{VDC}$ etc.
Pulses, NPN/PNP or open collector signals	Frequency/Rate meter: K3NR series - Multifunction processor for the measurement and control of rotation speed, flow rate, ratio or passing time.
	Time/Period meter: K3NP series - Advanced processor for the measurement and control of interval time.
	Up/Down counting meter: K3NC series - High speed Up/Down counting processor

Output Modules

Easy to use plug-in output options and communication boards.
The above mentioned ISP's can be equipped with one of the following boards to output alarm signals, linear transfer signals, or to add communication functions:

- Relay output boards \bullet Transistor output boards \bullet Linear output boards \bullet BCD communication boards • Serial communication boards (RS232/RS422 or RS485) • Also combined boards are available, to suit your applications in the best way.
Available output cards for above K3N models.
By means of output cards the above mentioned ISP's can be equipped with relay, transistor or linear outputs. Also serial communication boards are available. Combined output cards are also available so that for example 5 Transistor outputs can be combined with a serial port.

| ISP/DPM |
| :--- | :--- |
| $9-6 \quad$ Omron Models (ISP) |

- $\pm 0.1 \%$ rdg ± 1 digit max. accuracy
- Wide selection of DC/AC voltage ranges and DC/AC current ranges
- Scaling
- Forced-zero
- 80 mA at 12 VDC sensor load

- Thermocouple, RTD, and analog inputs available in one model
- ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ indication
- $100-\mathrm{ms}$ sampling for analog input
- Input shift

K3NR

Frequency/Rate Meter

- Up to $50-\mathrm{kHz}$ counting
- Prescaling
- Up/Down counting mode
- Four bank settings for set values and linear output ranges
- 80 mA at 12 VDC sensor load

9-7 Application (ISP/DPM)

1 Detecting A Leakage Current

The K3NX can be used as a monitoring device for a low-voltage power panel at a construction site. Combined with lamp and voice alert systems, it can be used to inform the workers of a leakage for accident prevention at the construction site.

Example: Mounted in a crane for use at a construction site.

2 Detecting The Fluid Level Of A Tank

The K3NX converts the fluid level of a tank in food processing by scaling, and displays the level. At the same time, the meter sends upper-limit or lower-
limit signals to the controller.

3 Beer Brewing System

The K3TJ monitors the pressure of carbon dioxide in a beer brewer.

Industry: Food processing

4 Monitoring The Pressure Of Gas In A Gas Supply System For A

The K3TJ constantly monitors the pressure of gas in a special gas supply system for semiconductor production.

Industry: Semiconductor manufacturing

5 Measuring The Weight Of A Liquid Nitrogen Tank

The weight of a liquid nitrogen tank is first measured with a load cell. The measured value is

Industry: Measuring instruments then converted to the amount of fluid (weight) using the scaling function of K3NV.

6 Measuring The Fluid Level Of A Tank

The K3TG displays the fluid level of a tank when interlocked with a float that resets on the surface of

Industry: Measuring instruments the fluid.

7 Monitoring The Fluid Surface Condition Of A Tank

The K3NX performs constant linear monitoring of
the fluid level position using a pressure sensor for the fluid level position using a pressure sensor for level detection.

8 Monitoring The Fluid Level Of A Tank And Displaying Its Flow Rate

The K3NX measures the flow rate of fluid being exhausted from the tank, and displays the measured flow rate using its scaling function. The K3TX can also be used to measure the flow rate of coolant and for other controlling processes.

9 Detecting The Cylinder Position Of An Injection Molding Machine

The K3NX converts the amount of movement of the injection cylinder in an injection molding machine and the resistance of the potentiometer to voltage values (or current values) so that the injection cylinder can be moved according to the preset values.

Industry: Injection molding machine

10 Determining The Height Of A Trivet In A Gas Heater

The K3NX measures the height of a trivet using the linear sensor to determine the acceptance/rejection of each heater product.

11 Discrimination By Height

12 Displaying The Rpm Of A Servomotor

13 Interfacing Large External Display

14 Centralized Temperature Monitoring For Industrial Furnaces

SECTION 10 Vision

10-1 Introduction to Vision System 182
10-2 Why Use Vision System 183
10-3 What Is A Vision System 183
10-4 Components of a Vision System. 185
10-5 Basic Vision Sensor Configuration 194
10-6 OMRON Family of Vision System 195
10-7 Application Examples 199

10-1 Introduction to Vision System

How can Vision help you?

10-2 Why Use Vision System

1. Replace Human Inspection

```
\(\checkmark\) Human visual inspection is prone to error
\(\checkmark\) Human visual depend on physical condition of the workers
\(\checkmark\) The constant repetition of simple operations and the need to concentrate for long periods can cause fatigue
\(\checkmark\) Safety condition
\(\checkmark\) Speed
```


1-1-2 Wide Application

\checkmark is part of the CIM application
\checkmark Stand-alone System
\checkmark Robotics Guidance

1-1-3 Visual Inspection Requirements Are Getting Tougher

\checkmark Due to the Demand for higher quality products
\checkmark The need for more precise inspections

10-3 What Is A Vision System

1. Human Vision

Human Eye	\star	Analog image
Brain	\star	Process the analog image
Parallel Processing	\star	To see an entire scene To form an immediate impression
	\star	

2. Visual Inspection System

Camera $\quad \star \quad$ Digital image

Microprocessor / Controller
$\star \quad$ Process the digital image processing
$\star \quad$ One bit at a time
3. Visual Inspection Process

3-1 Image Formation
$>$ Illumination
$>$ Camera
\star Photosensor in two dimensional arrays format
\star Create two dimension image
> Output : voltage signal

3-2 Image Preprocessing

> A / D converter
$>$ Produce an array of digital numbers which represent the light intensity distribution over the image area.
$>$ One pixel is allow up to 256 different values
$>$ Histogram \& Thresholding
$>$ Output : digitized image

3-3 Image Analysis

$>$ Windowing
> Measure item
> Template Matching \& position compensation
$>$ Output: image description

3-4 Image Interpretation

> Decision making
> Inspection result
$\star \mathrm{OK}$
\star NG
> Measurement result
\star position
\star dimension

10-4 Components of a Vision System

In summary the physical components of a machine vision system can be considered to comprise of the following:

1. Illumination, Illumination Control and Scene Structuring Elements.
2. Optics, Imaging Sensors and Cameras.
3. Frame Grabbers/Image Digitizers, Scanners, and Video Multiplexers.
4. Image Processing Computer or Vision Computer/Processor.
5. External Process Coupling: Interfaces to PLC's Robots, XY-Table, Parts Indexer etc.
6. Development Platform: PC's, Workstations, Software Development Environment including Image Processing Tools and Software Libraries.

1. Camera

The camera forms an important equipment in a Visual Inspection System. There is a wide range of Cameras to select from depending on the Application requirements. Important Points to take note when selecting a camera: 1. Picture Element
2. Effective Pixels
3. Synchronization
4. Shutter Speed
5. Lens Mounting

* Camera with Light Source

F150-SL20
(20-mm field of view)

F150-SL50
(50-mm field of view)

${ }^{\star}$ Camera

2. Lighting (Illumination)

The importance of Illumination
Object illumination plays a key role in the machine vision process. The purpose of imposing controlled constant illumination is to enhance visually the parts to be imaged so that their flaws, defects, and other features are highlighted and so that their identification and classification by the vision system becomes somewhat easier.

Good image quality is the result of proper illumination, lens selection, camera and lens placement, and object positioning.

- Remember the first law of machine vision:

"If you can't see it clearly in the video monitor, you can't inspect it with the vision system."

To operate the vision system most effectively, a well-formed image must be received by the vision system. A well-formed image is easier to process and is less likely to create future analysis and interpretation problems.

You must select the type of illumination that best suits your application. Evaluate the object's features, color and reflectivity as well as the color of the background in order to determine which type of lighting works best. It may require as much as 30% of the application effort. However, it is far easier to control the illumination in order to attain a good quality image than to process and filter a poorly illuminated object. So there are no general lighting for every applications, i.e., need to customize the lighting for each application (or applicationdependent).

It is recommended to have light shield to prevent environmental lighting from affecting the image quality. Other factors affecting the lighting are:

- Voltage change resulting from activation of nearby equipment.
- Change of room temperature.

It is necessary to continue monitoring light level to ensure smooth running of vision processing.

Needs:

- To overcome fluctuations in ambient lighting conditions.
- To provide sufficient contrast in the image so that features can be revealed.
- A key parameter affecting the input to a machine vision system since it directly affects the quality of the input data.
- To reduce the amount of image processing significantly.

When light strikes a surface, it can be:

- Absorbed
- Transmitted
- Reflected

Absorbed, dark objects absorbed great deal of light. Light objects absorb very little light; most of it is reflected.

Transmitted, light passes through many types of glasses and plastics. The light path is often radically modified by this transmission; this light is called transmitted light.

Reflected, light that is not absorbed or transmitted is reflected. The 2 types of reflected light are: Specular, and Diffuse. The figure below illustrates both type of reflection.

Figure 1. Types of reflected light.

Light Sources

Ambient Light, too uncontrolled for available technology to work reliably. Usually a source of noise.

Types of Light Sources: SPOT Sources

- Incandescent - halogen, vacuum
- Strobe Lamp
- Laser
- Light Emitting Diode (LED)

EXTENDED Sources

- Fluorescent
- LED array
- Fiber Optics
- Neon

Incandescent, light is obtained from a tungsten metal filament heated to $2000-2500 \mathrm{~K}$ by passing an electrical current. They are economical and their intensity can be easily adjusted. However, ordinary incandescent lamps are not recommended since they exhibit a constant degradation in light during their operating life.

Quartz halogen bulbs contain a small amount of halogen gas, generally iodine. The iodine combines with the cool tungsten on the inside of the wall. This allows the tungsten to be operated at a higher temperature, resulting in a more efficient source with more white light emission. Care must be taken with bulb, it must not be scratched or handled.

Fluorescent, for most machine vision applications, a diffuse source of light is the most suitable. Diffuse lighting is non-directional and produces a minimum amount of shadow. Fluorescent lighting is the simplest and most common method of obtaining diffuse illumination. It produces much less heat than an incandescent lamp yet produces the same amount of light. Fluorescent lamps, in multiple lamp fixtures, provide large, diffuse Strobe lamp, when an object is moving past the camera, the strobe lamp can 'freeze' the image so processing can be done. The strobe produces a high intensity light for a very short time. The timing of the flash must be synchronized so that the part is present when the camera scans the area. It reduces the effects of image blur that occurs while photons are accumulated by the vision sensor during its finite scan period as the object moves through its Field-of-View (FOV).

Light-Emitting Diode (LED), semiconductor LEDs emit light in a rather narrow band of wavelength in the IR, red, yellow, and green. The total energy is low. This is not a consideration in backlighting arrangements.

Laser, lasers are monochromatic and coherent sources and they produce a spectrally pure light useful for illuminating small areas. The beam can be focused to a very small spot with enormous energy density and that it can be perfectly collimated. They are used for special imaging applications, such as structured light, or as a means of measuring the distance to an object. Several types of lasers have been developed: gas, solid-state, injection, and liquid lasers. The most popular one is the $\mathrm{He}-\mathrm{Ne}$ gas, it provides very bright points or lines of illumination that are visible to the eye.

Fiber optic, a bundle of such thin fibers made of glass or plastic provides a channel for convenient translation of light to small constricted areas and hard-to-get-at places. The source of light is typically a small quartz halogen bulb. It should coupled efficiently to the entrance end of the bundle and the bundle exit end efficiently coupled to the illuminated.

Others, Polarized, ultraviolet, and arc lamps are also occasionally used.
3. Lens

FA Lenses-High Resolution/Low Distortion

B7514C(C27509) 75mm F1.4 1" c-m w/Iris/Focus	S1253 12.5mm F1.3 1" c-m w/Iris/Focus
S2509 25mm F0.95 1" c-m w/Iris/Focus	S2514 25mm F1.4 1" c-m w/Iris/Focus
S5013 50mm F1.3 1" c-m w/Iris/Focus	S5018 50mm F1.8 1" c-m w/Iris/Focus
S7513 75mm F1.3 1" c-m w/Iris/Focus	S12575K 12.5~75mm F1.8 2/3" c-m w/6X Zoom/Iris/Focus

Attachment Accessories for Zoom / Fixed Lenses

4. Monitor

PM-509 (5-inch)/PM-909 (9-inch)/PM-129 (12-inch)
 PM Series Black and White Video Monitors [EIA/CCIR]

Specifications

	PM-509	PM-909	PM-129
Picture tube	$\begin{gathered} \text { S1402PS20N1W1 } \\ \text { or equivalent } \\ \hline \end{gathered}$	S2311PS20N1H34 or equivalent	$\begin{gathered} \text { S3112PS20N1L21 } \\ \text { or equivalent } \end{gathered}$
Video input level	VS 1.0Vp-p Video:0.7Vp-p (positive)/Sync.:0.3Vp-p (negative)		
Video output level	$25 \mathrm{Vp}-\mathrm{p}$	$30 \mathrm{Vp}-\mathrm{p}$	$30 \mathrm{Vp}-\mathrm{p}$
Sync. input level	$4.0 \mathrm{Vp}-\mathrm{p}$ (negative) [EIA:Option/CCIR:Standard]	$\left[\begin{array}{c} 4.0 \mathrm{Vp}-\mathrm{p}(\text { negative }) \\ {[\text { Option }]} \end{array}\right]$	
Sync. input impedance	High or 75Ω Switchable [EIA:Option/CCIR:Standard]	$\left[\begin{array}{c} \text { High or } 75 \Omega \text { Switchable } \\ {[\text { Option }]} \end{array}\right.$	
Video frequency response	$60 \mathrm{~Hz} \sim 80 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ or less (100 kHz reference)		
Horizontal resolution	700 lines or more at center	700 lines or more at center	750 lines or more at center
S/N ratio	Hum noise:- 60dB or less / Sync noise:- 40dB or less		
Video amp linearity	10% or less (by the DG method)		
Scanning system	EIA: $525 / 60 \mathrm{~Hz} /$ CCIR: $625 / 50 \mathrm{~Hz}^{*}$		
Power requirement	EIA:AC120V/60Hz / CCIR:AC230V/50Hz		
Environment temperature	-19 C~+45 ${ }^{\circ}$		
Dimensions (WHD)	$147 \times 153.5 \times 221 \mathrm{~mm}$	$219.5 \times 217.5 \times 240 \mathrm{~mm}$	$304 \times 285 \times 305 \mathrm{~mm}$
Weight (Standard Type)	Approx.3kg	Approx.5kg	Approx.9kg
Power consumption	16W or less	20W or less	25 W or less
Rack mount (option)	XRME-7069 (Triple type)	XRME-7079 (Dual type)	XRME-7099 (Single type)

* Non switchable

Controls

- Power Switch
- V. hold control
- H. hold control
- Brightness control
- Contrast control
- Video termination switch (75Ω / HIGH)
- AFC mode switch (FAST-SLOW)
- Sync. termination switch (Only PM-509[CCIR]) (75Ω / HIGH)
- Sync. mode switch (Only PM-509[CCIR]) (INT-EXT)

Dimensions

10-5 Basic Vision Sensor Configuration

10-6 OMRON Family of Vision System

F10 Pattern Matching Sensor

Industry's first in high speed pattern detection The low cost F10 pattern matching sensor bridges the gap between vision systems and photoelectric sensors. The F10 can recognize patterns instead of simple spots and may be used in applications previously requiring multiple photoelectric sensors. The guide light and one push "Teach" button makes the F10 extremely easy to set up while fast and precise detection make it suitable for the most demanding of applications.

Key Features - 4 easy steps to inspection with guide light and "Teach" button

- Detects patterns instead of spots
- High speed pattern matching in 3.6 ms

Easy Setup

Pattern Matching Principle

The F10 checks the degree of conformity of the sensing object pattern to the registered pattern.

2. F30 Vision Sensor

Compact vision sensor redefines "easy to use" The low cost and easy to use F30 vision sensor offers a vision solution to a whole new range of users. It offers the function of high end vision systems but does away with difficult lighting adjustments by combining the camera, light source and controller into one compact unit. The F30 also eliminates time consuming programming thanks to its easy to use "Auto Teach" function which memorizes image data and automatically sets high/low limits. In sum, the low cost and ease of use make the F30 an effective vision solution possible for users previously unable to invest the time or money in one.

Key Features

- Easy installation with array camera, light sour
 (70 x $72 \times 139 \mathrm{~mm}$)
- Easy setup with "Auto teach" function which memorizes image data and automatically sets high/low limits
- Stable sensing with Omron's unique optical construction makes it possible to detect glossy objects

Easy Setup

Simple System Configuration

 identified.

3. F150 Vision System

High performance, low cost vision system

The F150 vision system is a sophisticated vision solution that through its low price and ease of use provides significant cost reduction to users. The system's 3 step "Auto Menu" function makes it easy for user's to register up to 23 images in memory for more accurate inspections. The "Expert Menu" unleashes the full power of the F150 for multiple and complex inspections. The F150 is also easy to install with its compact body and camera with built-in light source and lens. The F150 is the best solution for vision applications where high function is necessary but high price is not.

Key features • "Auto Menu" enables 3 step setup while "Expert Menu" enables complex and multiple inspections

- Large CCD ($1 / 3$ inch) with built-in lens and LED lighting in compact body for easy mounting
- Fast and precise gray scale processor highlights defect area and stores up to 23 images in memory

Simple System Configuration

Automatic and Expert Menus

AUTO MENU FUNCTION

Register up to 23 sample images to automatically set measurement parameters.

INSPECTION
The F150 is ready to begin inspection.

EXPERT MENU FOR MULTIPLE AND COMPLEX INSPECTIONS

POSITIONING
Ability to capture measurement values makes F150 ideal for positioning applications.

CALCULATIONS
Calculations using measurement values makes F150 ideal for dimension measurement applications.

AREA IDENTIFICATION
Inspection results obtained by region enable quick identification of failed area.

10-7 Application Examples

1. Application of F10 (Gray Scale Pattern Matching)

The operation of the Sensor in wide mode is recommended.

Battery Rotation Position Adjustment

Missing Mark Check

2. Application of F30 (Binary Processing of Inspection Area)

3. Application of $\mathbf{F 1 5 0}$ ($\mathbf{2 5 6}$ Level Gray Scale Processing)

SECTION 11 Programmable Logic Controller (PLC)

11-1 What is a Control System? 202
11-2 What is a Programmable Logic Controller? 204
11-3 Mechanical \& Electrical Field Input Devices. 207
11-4 Conventional Control Panel and Its Difficulties 210
11-5 What a Programmable Controller can do? 214
11-6 OMRON Models 215
11-7 Application 224

11-1 What is a Control System?

In general, a Control System is a collection of electronic devices and equipment which are in place to ensure the stability, accuracy and smooth transition of a process or a manufacturing activity. It takes any form and varies in scale of implementation, from a power plant to a semiconductor machine. As a result of rapid advancement of technology, complicated control tasks accomplished with a highly automated control system, which may be in the form of Programmable Controller (PLC) \& possibly a host computer, etc. Besides signal interfacing to the field devices (such as operator panel, motors, sensors, switches, solenoid valves and etc.), capabilities in network communication enable a big scale implementation and process coordination besides providing greater flexibility in realizing distributed control system. Every single component in a control system plays an important role regardless of size. For instance, as shown in Fig 1.1 the PLC would not know the happenings around it without any sensing devices. It is also unable to activate any moving mechanism if there is no motor installed. And if necessary, an area host computer has to be in place to coordinate the activities in a specific area at the shopfloor.

It could also be an application as small as a single PLC controlling a single or some output devices.

Gantry Robot Control System
(Courtesy of Gintic)
(Courtesy of Gintic)

Typical Programmable Logic Controller-based Control System

This picture is a typical application of a Gantry Robot Control Machine. It is used in a pick and place operation. The whole process sequence is controlled by a PLC. The various input devices such as selector switches, push buttons, toggle switches, sensors are connected to the input of the PLC via the input terminal block. The output devices such as the revolving light, indicators, relays, contactors and solenoid valves are connected to the output terminals of the PLC. The whole process is controlled by a ladder program loaded into the PLC CPU memory. The program will execute a sequence automatically according to the pre-defined sequence of operations. Manual operation are also provided to allow operator to activate the machine manually by the switches, emergency push-button for the purpose of safety in case you need to stop the operation abruptly. In this application, the control system operates as a stand-alone operation.

11-2 What is a Programmable Logic Controller?

1. A Typical Control System

2. PLC

A PLC consists of a Central Processing Unit (CPU) containing an application program and Input and Output Interface modules, which is directly connected to the field I/O devices. The program controls the PLC so that when an input signal from an input device turns ON, the appropriate response is made. The response normally involves turning ON an output signal to some sort of output devices.

Central Processing Unit

The Central Processing Unit (CPU) is a microprocessor that coordinates the activities of the PLC system. It executes the program, processes I/O signals \& communicates with external devices.

Memory

There are various types of memory unit. It is the area that holds the operating system and user memory. The operating system is actually a system software that coordinates the PLC. Ladder program, Timer and Counter Values are stored in the user memory. Depending on user's need, various types of memory are available for choice:
(a) Read-Only Memory (ROM)

ROM is a non-volatile memory that can be programmed only once. It is therefore unsuitable. It is least popular as compared with others memory type.

(b) Random Access Memory (RAM)

RAM is commonly used memory type for storing the user program and data. The data in the volatile RAM would normally be lost if the power source is removed. However, this problem is solved by backing up the RAM with a battery.
(c) Erasable Programmable Read Only Memory (EPROM)

EPROM holds data permanently just like ROM. It does not require battery backup. However, its content can be erased by exposing it to ultraviolet light. A prom writer is required to reprogram the memory.
(d) Electrically Erasable Programmable Read-Only Memory (EEPROM)

EEPROM combines the access flexibility of RAM and the non-volatility of EEPROM in one. Its contents can be erased and reprogrammed electrically, however, to a limited number of times.

3. Programmable Logic Controller

In the present state of intense industrial competition, production efficiency is generally regarded as the key to success. Production efficiency covers a wide field such as:
a) The speed at which production equipment and production line can be set up to manufacture a product
b) Lowering material and labour cost of a product
c) Improving quality and lowering rejects
d) Minimizing downtime of production equipment
e) Low cost production equipment

The Programmable Logic Controller meets most of the above needs and is a key factor in furthering production efficiency in the industries.

Traditionally, automation is only applicable to single item high volume production. It is now necessary to automate production of multiple variety of goods, in moderate quantity, as well as achieving higher overall productivity and requiring minimum investment in plant and equipment.

The Flexible Manufacturing System answers these needs. The system includes such automatic equipment as NC machines, industrial robots, automatic transports and computerizes control of production. You will find the Programmable Logic Controller in the use of automated production equipment.

4. Background and Development

Before the introduction of Programmable Logic Controllers, there have been many sequence control devices, including those using cam shafts and drums. When electromagnetic relays appeared, relay control panels become the mainstay of sequence control. When transistors appeared, they were also applied in fields where electromagnetic relays are inadequate, such as high-speed control response.

Nowadays, the control field is expanding to include the complete factory and total control systems combined with feedback control, data processing and centralized monitoring systems.

Conventional wired logic control systems cannot perform total control and Programmable Logic Controllers or microcomputers are necessary.

Let us make a comparison between wired logic and Programmable Logic Controllers.

	WIRED LOGIC	PROGRAMMABLE CONTROLLER
Controlled Device (Hardware)	Specific purpose	General purpose
Control Scale	Small and Medium	Medium and Large
Change or addition to specification	Difficult	Easy
Delivery period	Several days	Almost immediate
Maintenance (by makers and users)	Difficult	Easy
Reliability	Depends on design and manufacture	Very high
Economic efficiency	Advantage on small scale operation	Advantage on small, medium and large scale operation

11-3 Mechanical \& Electrical Field Input Devices

1. Input Devices

FIELD DEVICE CONFIGURATION	DESIRED CIRCUIT CONFIGURATION	PROPER PLC INSTRUCTION

Normally Open		Normally Open
$\underbrace{\bullet}_{\text {Normally Open }}$		Normally Closed
	$\underbrace{\bullet}_{\substack{\text { Normally Open } \\ \text { held closed }}}$	Normally Closed
		Normally Open
No.	N onally Clos	- Normally Open -
Normally ${ }_{\text {cosed }}$	$\text { Normally/Closed } \begin{gathered} \text { held open } \end{gathered}$	Normally Closed
$\underset{\substack{\text { Normally Closed } \\ \text { held open }}}{ }$	Normally ${ }^{\text {a }}$ sed	Normally Closed
$\begin{gathered} \text { Normally Closed } \\ \text { held } \mathrm{tpen} \end{gathered}$	$\begin{gathered} \text { Normally } \\ \text { held optosed } \end{gathered}$	Normally Open

2. Output Devices

3. Conventional Circuit

11-4 Conventional Control Panel and Its Difficulties

In the beginning of the Industrial revolution, especially in the $1960 \& 1970$, automated machines were controlled by electromechanical relays. These relays were all hardwired together inside the control panel. In some cases, the control panel was so huge that it could cover the entire wall. Every connections in the relay logic must be connected. Wiring is not always perfect, it takes time to troubleshoot the system. This is a very time consuming affair. On top of that, the relays have limited contacts. If modification is required, the machine has to be stopped, space may not be available and wiring has to be traced to accommodate changes. The control panel can only be used for that particular process. It cannot be changed immediately to a new system. It has to be redone. In terms of maintenance, an electrician must be well trained and skillful in troubleshooting the control system. In short, conventional relay control panel are very inflexible.

Typical Conventional Control Panel

Disadvantages of Conventional Control Panel

In this panel we can observe the following points

- There are too many wiring work in the panel
- Modification can be quite difficult
- Troubleshooting can be quite troublesome as you may require a skillful person
- Power consumption can be quite high as the coil consumes power.
- Machine downtime is usually long when problems occur, as it takes a longer time to troubleshoot the control panel
- Drawings are not updated over the years due to changes. It causes longer downtime in maintenance and modification.

Programmable Controller Control Panel and Their Advantages

With the arrival of programmable controllers, the control design and concept improve tremendously. There are many advantages in using the programmable controllers.

Typical PLC Control Panel

Advantages of PLC Control Panel

Here are the major advantages that can be distinguishably realized.

- The wiring of the system usually reduces by 80% compared to conventional relay control system.
- The power consumption is greatly reduced as PLC consume much less power.
- The PLC self-diagnostic functions enable easy and fast troubleshooting of the system.
- Modification of control sequence or application can easily be done by programming through the console or computer software without changing of I/O wiring, if no additional Input or Output devices are required.
- In PLC System spare parts for relays and hardware timers are greatly reduced as compared to conventional control panel.
- The machine cycle time is improved tremendously due to the speed of PLC operation is a matter of milliseconds. Thus, productivity increases
- It cost much less compared to conventional system in situation when the number of I/Os is very large and control functions are complex.
- The reliability of the PLC is higher than the mechanical relays and timers.
- An immediate printout of the PLC program can be done in minutes. Therefore, hardcopy of documentation can be easily maintained.

Conversion of Conventional Control Circuit to PLC

Example 1: Starting and Stopping of a 3-phase motor.

When the push-button PB1 is pressed, current I will flow through the circuit and energize magnetic contactor Mg which in turn closes the Mg contacts. The contact Mg parallel the push-button PB1 is for self-holding so that PB1 can be released. The other Mg contacts closes to switch on the 3-phase motor.

To connect the above circuit in a PLC system to PLC wiring circuit, we need to identify the input and output devices. The input devices are start push-button (PB1) and stop push-button (PB2) and the output device in this case is only one magnetic contactor that controls the 3phase motor.

Assignment

$$
\begin{aligned}
& \text { Input }=\text { Channel } 00 \\
& \text { Output }=\text { Channel } 10
\end{aligned}
$$

Magnetic Contactor
Fig. 1 Hard Wire Ciralit for PLC Connection

Fig. 2 Ladder diagram

Fig 1. Shows the wiring circuit of the I/O devices.
Fig 2. Is the ladder diagram for the conversion. It must be programmed into the PLC.

11-5 What a Programmable Controller can do?

CONTROL TYPE
FUNCTIONS

$\frac{P L C}{11-6} \quad$ OMRON Models

C200HX/HG/HE

CQM1

CPM1A

SRIM1

CPM1A Programmable Controllers

Suitable as a Relay Control Panel or Sensor Controller

For a relay output model conforming to the EC Directives, use the CPM1 Series.

CQM1 Programmable Controllers

Suitable for Controlling Small-scale Machines
 Number of I/O Points Increased from 192 to 256

Innovative packaging, high-speed response, and a wide variety of high-function I/O make OMRON's CQM1 PC's the ideal solution for small machine control applications with up to 256 I/O. The unique, rackless connect-and-lock design allows configuration of a PC that meets your exact application requirements. Choose from seven CPU Units and more than twenty Standard and Dedicated I/O Units including those for analog I/O, temperature control, and communications. All CPU Units feature a built-in $5-\mathrm{kHz}$ high-speed counter and accept quadrature inputs. Higher performance CPU Units feature dual absolute encoder interfaces, dual high-speed (50 kHz) interfaces with pulse outputs for two-axis position control applications, or built-in analog I/O.

- Compact, connect-and-lock design
- Wide variety of CPU Units, Power Supply Units, and discrete, analog and special I/O modules
- Four built-in hardware interrupts for managing high-priority signals
- 137-instruction set for sophisticated programming

COM1-CPU11-E
High-performance, High-capacity Models (256 Poins Max.)

COM1-CPU42-EV1

COM1-CPU43-EV1 (with High-speed Pulse Input \mid / F)

Memory Cassettes (Optional)

Clock Function
Calenclar and clock data can be used or the program by mounting a Mermory Cassette with clock funtition,

High-end Performance and Connectivity for Advanced Machine Control and Data Management

OMRON's new SYSMAC α C200HX/HG/HE PCs offers the advantage of large PC performance and I/O versatility in a mid-sized package and price range. It is the flagship of the OMRON line of PCs and is the most advanced of a long line of C200H models with more memory, more powerful instruction set, faster processing speeds, and more communications options for more integrated control. New features that include the Protocol Macro Function and optional PCMCIA slots for direct Ethernet connections make the SYSMAC α C200HX/HG/HE PCs a powerful on-site data processing system and help turn your manufacturing site into a highly responsive information-based operation, of course, the SYSMAC α C200HX/HG/HE PCs can be programmed, set up, and debugged using OMRON's easy-to-use Windows-based programming and documentation software.

Power and Modularity for Improved Application Flexibility

Choose from eleven CPU Units that support up to $1,184 \mathrm{I} / \mathrm{O}, 32 \mathrm{~K}$ words of user memory, 24 K words of data memory, or that feature a built-in real-time clock, RS-232C port, and expanded communications. The SYSMAC α C200HX/HG/HE PCs accept all C200H-series Standard and Special I/O Units, and now can accept up to sixteen Special I/O Units per CPU Unit. Versatile communications options allows the PC to connect to supervisory to MES computers via the host link or Ethernet, or directly to any of OMRON' advance control or I/O bus networks.

Enhanced Serial Device Communications

OMRON's unique Protocol Macro Function provides built-in protocol support for many common serial devices or allows customization of one of your own for RS-232C, RS-422, and RS-485 communications.

CV/CVM1 Programmable Controllers

Ideal for Improving Productivity of Factories Manufacturing

Diversified Products at Various Production Rates

With High Data Processing Requirements

- I/O capacity: 512 to 2,048 points
- Programming capacity: 62 K words max
- Basic instruction execution time: 0.125 to $0.15 \mu \mathrm{~s}$
- Applicable to any network with Ethernet for data processing systems, SYSMAC LINK Units and Controller Link Units for networks between PCs,

CPU Bus Units

Peripheral Devices Supporting SYSMAC Units

Programming Console (Handheld Type)

CVM1-PRS21-EV1

Programming
Console
(Handheld Type)

11-7 Application

Programmable Controller Applications

There are so many applications that you can find PLCs use in the various industries. Here are the list of applications.

- Material Handling
- Conveyor system
- Packaging Machine
- Pick and Place Robot Control
- Pump Control
- Swimming Pool
- Water Treatment
- Chemical Processing Plant
- Paper and Pulp Industries
- Glass Manufacturing
- Precast Concrete Industries
- Cement Manufacturing
- Printing Industries
- Electro-plating Plants
- Food Processing
- Machine Tools
- Tobacco Industries
- Plastic Moulding Machine
- Semi-conductor Manufacturing Machine
- Sugar Manufacturing Plant
- Palm Oil Manufacturing Plant
- Air Condition Control
- TV Manufacturing Plant
- Power Station Plant
- Process Monitoring Control
- Electrical/Electronic Appliance Manufacturing
- Disk Drive Manufacturing
- Petrol Chemical Plant
- Traffic Light System
- Train Control Station System
- Plastic Manufacturing Industries
- Car Manufacturing Industries
- Iron and Steel Mill
- Dairy Product Manufacturing Plant
- Building Automation
- Tyre Manufacturing
- Integrated Circuit Chip Manufacturing
- Sewage Treatment Plant
- Security Control System
- Lift Control System
- Generator Control System
- Amusement Park Control

SECTION 12 Programmable Terminal (PT)

12-1 What is a PT? 226
12-2 System Configuration 228
12-3 Communications 229
12-4 Support Tool. 231
12-5 Omron Models 233
12-6 Application 235

12-1 What is a PT?

A Programmable Terminal has a clear EL (Electro Luminescense) display or LCD (Liquid Crystal Clear) panel that provides a graphic display and input functions.

A PT performs various activities in production fields, such as displaying information in the factory and communicating information to the PLC.

1. Monitoring of Production Line Operation Statuses

A PT displays information sent from the PLC on a real-time basis.

2. Instruction to Factory Workers

By displaying on the screen or giving the alarm, a PT notifies workers of various information such as work procedures and system or equipment failures in order to prompt the appropriate work or remedial action.

3. Switch Function

A PT sends data input from touch panels or expanded I/O units to the PC. It may be used as an operating panel or an outside unit control terminal.

12-2 System Configuration

This section gives the basic configuration of a system, which uses an NT31/31C. Use an RS232C cable or an RS-422 cable to connect to a PC. Refer to the manual for individual device for information on the equipment other than the NT31/31C in the system.

12-3 Communications

Host Link

The Host Link communication method is built into our full line of Omron NT Series Terminals. Communication baud rates range from 9,600 to $19,200 \mathrm{bps}$ with a typical response speed of .5 seconds. With Host Link, you can connect multiple terminals to a single PLC (up to four on the C200HX/HG/HE system) gaining greater accessibility and multiple views of your larger applications.

```
Application
SYSMAC
    CVM1/CV Series (EV1, 2 versions only)
    C200HX/HG/HE (excluding C200HE-CPU11
    COM 1 (except CPU11)
    C-Series
    CSI Series
    CPMIA
    SRM1
```


NT Link
Omron's NT Link communication method can rapidly transmit large amounts of data. With response speeds of up to .2 seconds, NT Link displays important information fast. When you need a guarantee of high speed data delivery on your time
 critical applications, use NT Link, Omron's fastest communication method for operator interface terminals.

Applicable PLC's SYSMAC-

CVM1?CV Series (EV1, 2
versions only
C200HX/HG/HE
CQM1-CPU4_-E
CSI Series CPMIA, SQM1

1 : N Connection
1 : N NT Link

- Example of a Maximum 8 Connection Configuration

The number of connections possible varies depending on the model of the SYSMAC PLC's CPU.

*When connecting the $\mathrm{C} 200 \mathrm{HX} / \mathrm{HG} / \mathrm{HE}$ and an RS-232C/RS-422A converter unit, use a converter until whose number is 15 Y 5 or higher. Converter units previous to 15 YS cannot be connected.

12-4 Support Tool

NT Support Tool : NTSS Ver 3.0

Combined with the Excellence of Windows 95

- Drawing, copying, pasting, and drag-and-drop editing can all be done on screen, thus ensuring versatile image creation.
- OMRON's unique zoom function enlarges images from 100% to 800%, thus allowing easy drawing or editing of images
- The undo function can be used a maximum of 10 times continuously.
- Window 95's unique and convenient right click operation is available for frequently used functions.

Application Manager Maintains Screens and Tables Visually

- Screen and table files can be easily stored in folders.
- Screens can be easily copied and pasted visually.

Derimesm			Find
	Dintill mex) Dilnaw urnsmena Di livane niensel 41) wal -allues [10lnesu] - 0 M Mensemel Rof Roves uriviluen] Din lave aj Plol\|ave ab Qul lane as Pn lane ot 2an lend varese! (7)		

Symbol Manager
 Registers the Element You Made

- Allows drag-and drop registration.
- Registered and saved graphics can be used for other screen data whenever necessary.
- The CD-ROM version is provided with template data approximately 1,200 ISO7000 parts.

Error Log Viewer
 Automatically Detects
 Errors in Screen Data

- Allows data checking for both whole screen data and each screen.
- By double-clicking on the error message, the error can be tracked down on screen.

All PLC Addresses are

Managed in the I/O

Comment Table

- While numerical or character-string tables are edited, addresses are automatically allocated in sequence and registered.
- Parts, such as lamps, are available for referring to PLC addresses and vice versa.

User-friendly Online Help Functions

- Click the Help icon when you are not sure how to proceed. The information you need will appear by touching the elements on the screen.

Operating Environment
Computer: IBM PC/AT or compatible computer with Windows 95

Memory: 16 MB min.
Hard Disk: 20 MB min. or the program itself
OS: \quad Windows 95 (see note)
Package: \quad CD-ROM or FD

Note: This application is not compatible with Windows 3.1 or Windows NT.

12-5 Omron Models

Appearance				

Appearance				

12-6 Application

Production Monitoring

Production or assembly operations can be monitored with a quick glance using the graphic capabilities of the NT Series Terminals. In this example screen, the graphic representation provides an assembly line overview. Lamps simulate motion and can also be used to show errors, quickly alerting your operators to problems in production. And error messages provide the information necessary to fix these problems fast.

Timers, Counters, Thumbwheels

Replacing or adding timers, counters, and thumbwheel switches has never been easier. With the NT Series Terminals you get a complete selection on a single screen. And because there's no costly hard-wire redesign considerations, you have the flexibility to choose from a variety of thumbwheel switches in two, four, or eight digits and you can set high/low limits for each.

Pop-up Window Function

A pop-up window function is available on the NT30/30C and NT620S/620C terminals. Save on valuable screen space while you input numbers or characters to change set points, production targets, lot codes, or product types. Pop-up windows can also be used for error and help messages which means you won't have to switch off your main screen for monitoring.

Process Monitoring

The graphic capabilities of the NT Series Terminals make process illustration simple. On this display screen, bar graphs are used to simulate tank levels, and lamps show on/off value or motor status. Combine these graphic images with the variety of touch switches and error messages available and you have a detailed process monitoring application.

Temperature Monitoring

With the NT Series Terminals, you can easily consolidate many separate gauges, thumbwheels, and panel meters into one convenient control center. Here, temperature values are monitored on the display using graphs and thumbwheel switches. You can set high/low limits on the thumbwheel switches and use them to quickly change temperature set values.

Production Monitoring

Track real production levels against target projections with the NT Series Terminals. Monitor multiple lines from a single point and change target values with a quick touch of the screen.

Pushbuttons, Lamps, Switches These display screens show how the NT Series Terminals replace hardwired pilot lights and pushbuttons with realistic graphic icons. Saving on valuable panel space and wiring expense, additional pushbuttons and pilots lights can be added easily - just change your program. You won't need to endure the costly redesign of hardwire devices. A variety of pushbuttons including: standard, momentary, and set/reset are available. And with the NT30/30C and NT620S/620C terminals, you can use bitmap images to create ultra-realistic switches and lamps.

Custom Graphics

With all the graphic possibilities of the NT Series Terminals, you can custom design dynamic application screens for your plant operation. Freeform drawing capabilities allow you to accurately illustrate each stage in the production process. And bitmap images can be used with the NT30/30C and NT620S/ NT620C models, allowing you to include realistic graphic representations of anything from lamps and touch switches
 to company logos. Here, process status is monitored using bar graphs to track actual production values to target projections.

SECTION 13
 Inverter

13-1 What is an Inverter? 239
13-2 Basic Function of Inverter 241
13-3 What is PWM? 242
13-4 IGBT 243
13-5 Features of Inverter 244
13-6 Omron Models 245
13-7 Application 247

13-1 What is an Inverter?

A Inverter is a Device that converts the incoming AC Voltage Supply into a Controllable Variable Frequency AC Voltage output for driving an AC Induction Motor.

Typical View of A Omron Inverter

Conventional Method Over Inverter

13-2 Basic Function of Inverter

■ Why do you think Inverter is needed?

There are many and diverse reasons for using Inverter. Some applications, such as paper making machine, cannot run without them while others, such as paper centrifugal pumps, can benefit from energy savings.

■ In general, Inverter are used to :-

- Match the Speed of a process requirements
- Match the Torque of a process requirements
- Save Energy and improve efficiency

- Basic Function of Inverter

The Main Function of an AC inverter is to control the speed of an AC Induction Motor.
How?
By supplying a variable frequency current to the motor.

■ The 2 Speed Motor/DOL

Advantages

- Cheaper than inverter solution
- Easy to install
- Fully regenerative
- Reduced EMI

Disadvantages

- Large starting current 400 to 500% of motor nominal current
- High jerk at start and stop
- No speed control
- Longer down time to change speed

13-3 What is PWM?

It is a digital Pulse Width Modulation signal which is modulated by a reference sinewave.

(PWM) AC drives use a fixed diode rectifier to provide a fixed DC voltage to the Inverter Bridge.
Then, in the inverter bridge, high speed power transistor control both voltage $\&$ frequency to the motor.

13-4 IGBT

- What IGBT can do?

Omron's inverter employed state-of-art Insulated Gate Bipolar Transistor (IGBT) which provides precise waveform control that coupled with the high performance of IGBT provides outstanding benefits that cannot be achieved with conventional inverters.

■ High Speed Switching and Quiet Operation

Current Wave Example At $\mathbf{1 0 H z}$

Employing our original asynchronous high-carrier.... technique for sine wave PWM control, we have succeeded in eliminating the motor noises that plagued conventional PWM inverters. Running noise has been reduced by approximately 20dB as compared to conventional PWM inverters. This quiet operation assures a more comfortable working environment.

Area where Inverter can be used

13-5 Features of Inverter

- Easy to Use

Constants for basic operations such as frequency setting and acceleration/deceleration time setting are displayed on dedicated indicators. Therefore, constant numbers can be confirmed easily.

- Easy to Install

- Very small and Lightweight

The 3G3EV Inverter is approximately half the size of our Low-Noise General Purpose Inverters in terms of volume and weight percentage. This improves space efficiency and operating efficiency.

- Optional DIN Track

An optional DIN is available. The DIN track enables the user to mount the 3G3EV Inverter on the DIN trace with a one-touch operation.

- Easy to Wire

- Easy wiring without having to open the front cover

This inverter can be wired just by opening the terminal block cover.

- Separate Input and Output Terminal Blocks

Power input terminals are located in the upper sections, while motor output terminals are in the lower section.
In this way, the input and the output terminal blocks are separated according to the contactors.

- Soldering no longer necessary
- No connector means no soldering
- Easy to Operate
- \quad Switching the operation mode with One-Touch Operation

The inverter can switch from Digital Operator to a production run using control terminal switch a one-touch operation

- Checking a test run with various monitors

Output frequency, output current, and direction of motor rotation appear in the display section of Digital Operator so the mechanical system can be easily monitored during a test run. Multifunction analog output is also available, which can use for output frequency or current monitoring.

- Fine Setting Allow Smooth Machine Control

Voltage and frequency fine-tuning, frequency jump, and S-shape acceleration and deceleration functions are available and ideal for controlling machines that cannot be controlled by conventional standard inverters.

- Multi-step Speed Selection

Speed selection with a maximum of eight steps is possible.

- Low Noise

An insulated gate bipolar transistor (IGBT) power element has been adopted to eliminate metallic noise.

- High-torque Operation Even in Lowe Speed Range

A torque rate of 150% can be achieved even in low speed range where output frequency is only 3 Hz .

13-6 Omron Models

3G3EV MODEL	3G3XV MODEL	3G3HV MODEL	3G3FV MODEL
3G3EV-A [][][][] / M-E	3G3XV-A [][][][] -E		3G3FV- [][][][]-E
V/F Control	V/F Control	V/F Control	V/F or Flux Vector Control

200V SERTES			400V SERIES		
Model	KW	Inverter Type	Model	KW	Inverter Type
3G3EV	$\begin{gathered} 0.1 \\ 0.2 \\ 0.4 \\ 0.75 \\ 1.5 \end{gathered}$	3G3EV-A2001/M-E 3G3EV-A2002/M-E 3G3EV-A2004/M-E 3G3EV-A2007/M-E 3G3EV-A2015/M-E	3G3XV	$\begin{gathered} 0.2 \\ 0.4 \\ 0.75 \\ 1.5 \\ 2.2 \end{gathered}$	3V3XV-A4002-E 3G3XV-A4004-E 3G3XV-A4007-E 3G3XV-A4015-E 3G3XV-A4022-E
3G3XV	$\begin{aligned} & 2.2 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \text { 3G3XV-A2022-E } \\ & \text { 3G3XV-A2037-E } \end{aligned}$		3.7	3G3XV-A4037-E
3G3HV	$\begin{gathered} 3.7 \\ 5.5 \\ 7.5 \\ 11 \\ 15 \\ 18.5 \\ 22 \\ 30 \\ 37 \\ 45 \\ 55 \\ 75 \end{gathered}$	$\begin{aligned} & \text { 3G3HV-A2037-E } \\ & \text { 3G3HV-A2055-E } \\ & \text { 3G3HV-A2075-E } \\ & \text { 3G3HV-A2110-E } \\ & \text { 3V3HV-A2150-E } \\ & \text { 3G3HV-B2185-E } \\ & \text { 3G3HV-B2220-E } \\ & \text { 3G3HV-B2300-E } \\ & \text { 3G3HV-B2370-E } \\ & \text { 3G3HV-B2450-E } \\ & \text { 3G3HV-B2550-E } \\ & \text { 3G3HV-B2750-E } \end{aligned}$	3G3HV	3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 110 160 185 220 300	3G3HV-A4037-E 3G3HV-A4055-E 3G3HV-A4075-E 3G3HV-A4110-E 3G3HV-A4150-E 3G3HV-B4185-E 3G3HV-B4220-E 3G3HV-B4300-E 3G3HV-B4370-E 3G3HV-B4450-E 3G3HV-B4550-E 3G3HV-B4750-E 3G3HV-B411K-E 3G3HV-B416K-E 3G3HV-B418K-E 3G3HV-B422K-E 3G3HV-B430K-E
3G3FV	0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75	3G3FV-A2004-E 3G3FV-A2007-E 3G3FV-A2015-E 3G3FV-A2022-E 3G3FV-A2037-E 3G3FV-A2055-E 3G3FV-A2075-E 3G3FV-A2110-E 3G3FV-A2150-E 3G3FV-B2185-E 3G3FV-B2220-E 3G3FV-B2300-E 3G3FV-B2370-E 3G3FV-B2450-E 3G3FV-B2550-E 3G3FV-B2750-E	3G3FV	0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 110 160 185 220 300	$\begin{aligned} & \text { 3G3FV-A4004-E } \\ & \text { 3G3FV-A4007-E } \\ & \text { 3G3FV-A4015-E } \\ & \text { 3G3FV-A4022-E } \\ & \text { 3G3FV-A4037-E } \\ & \text { 3G3FV-A4055-E } \\ & \text { 3G3FV-A4075-E } \\ & \text { 3G3FV-A4110-E } \\ & \text { 3G3FV-A4150-E } \\ & \text { 3G3FV-B4185-E } \\ & \text { 3G3FV-B4220-E } \\ & \text { 3G3FV-B4300-E } \\ & \text { 3G3FV-B4370-E } \\ & \text { 3G3FV-B4450-E } \\ & \text { 3G3FV-B4550-E } \\ & \text { 3G3FV-B4750-E } \\ & \text { 3G3FV-B411K-E } \\ & \text { 3G3FV-B416K-E } \\ & \text { 3G3FV-B418K-E } \\ & \text { 3G3FV-B422K-E } \\ & \text { 3G3FV-B430K-E } \end{aligned}$

[^0]| | Inverters | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 3G3EV | 3G3XV | 3G3HV | 3G3FV |
| Product Model | | | | |
| Features | - Simple operation, with LED display for rotation, frequency \& amphere
 - Compact in size
 - IGBT switching
 - Low speed high torque and smooth shaft rotation at low speed
 - Automatic torque boost | - Highly compact and fully silence
 - Brake sequence control frequency or torque detection
 - Motor Thermal Protection for standard and special motor
 - Stall prevention \& three programmed S-curves | - Special indicator for basic parameter constants
 - Energy-saving control function
 - PID control
 - Effective harmonic counter measure for power supply | - Manualess digital operator panel
 - True flux vector control allows DC performance or higher with a standard AC induction motor
 - PID control, droop control, torque limit \& zero-servo
 - Built-in auto-tuning
 - Optional card for close loop flux vector control |
| Capacity (kW) | 0.1 to 1.5 kW | 0.1 to 3.7 kW | 3.7 to 300 kW | 0.4 to 300 kW |
| Supply Voltage (VAC) | 200VAC-230VAC,
 3 Phase/1 Phase 380 VAC-460VAC,
 3 Phase (Available Oct'97) | 200VAC-230VAC,
 3 Phase/1 Phase
 $380 \mathrm{VAC}-460 \mathrm{VAC}$,
 3 Phase | $\begin{aligned} & \text { 200VAC-230VAC, } \\ & \text { 3 Phase } \\ & \text { 380VAC-460VAC, } \\ & \text { 3 Phase } \end{aligned}$ | $\begin{aligned} & \text { 200VAC-230VAC, } \\ & \text { 3 Phase } \\ & \text { 380VAC-460VAC, } \\ & \text { 3 Phase } \end{aligned}$ |
| Supply Frequency (Hz) | $50 / 60 \mathrm{~Hz}$ | | | |
| Allowable Voltage Fluctuation (\%) | -15% to $+10 \%$ | $\pm 10 \%$ | -15% to $+10 \%$ | -15% to $+10 \%$ |
| Frequency Control Range (Hz) | $0.5-400 \mathrm{~Hz}$ | $0.1-400 \mathrm{~Hz}$ | | |
| Output Frequency Resolution (Hz) | 0.1 Hz | | 0.01 Hz | |
| Micro-processor | 16 bits | | | 32 bits |
| Voltage Frequency Curve | Configurable V/F | | 15 Fixed V/F
 01 Configurable | $\begin{array}{ll}15 \text { Fixed V/F } 01 & \text { Open/Close } \\ \text { Configurable } & \begin{array}{l}\text { Loop Flux } \\ \text { Vector }\end{array} \\ & \end{array}$ |
| Carrier Frequency (kHz) | $2.5-10 \mathrm{kHz}$ | $2.5-15 \mathrm{kHz}$ | $2.5-15 \mathrm{kHz}$ | $0.4-15 \mathrm{kHz}$ |
| Communication | Sysmac Bus | - | Modbus | Compo Bus/D
 Sysmac Bus |
| Analog Output (0-10 VDC) | $\begin{gathered} \text { Standard } \rightarrow \mathrm{No} \\ \text { Multi-Function } \rightarrow \mathrm{Yes} \end{gathered}$ | Yes | Yes | Yes |
| Pre-set Speed | | 4 | 4 | 8 |
| Frequency Setting Signal | $\begin{gathered} 0-10 \mathrm{VDC} \\ 4-20 \mathrm{~mA} \end{gathered}$ | | | $\begin{aligned} & 0- \pm 10 \text { VDC } \\ & 0-10 \text { VDC } \\ & 4-2 \mathrm{~mA} \\ & \hline \end{aligned}$ |
| Acceleration/Deceleration Time | 0.0 to 999 sec . | 0.1 to 600 sec . | 0.1 to 3600 sec . | 0.1 to 6000 sec . |

13-7 Application

	Simple	General	Difficult	Very Difficult
Application Examples	- Fans - Pumps - Mixers	- Conveyors - Lifters - Grinders - Indexer	- Hoist - Low Speed - Elevators - Extruder	- Tension Control - High Speed Lifts - Positioning - Load Sharing
Models Used/ Recommended	- 3G3HV - 3G3EV (standard) - 3G3XV	- 3G3HV - 3G3FV - 3G3EV (multi-function) - 3G3XV	- 3G3FV	- 3G3FV plus PGB2 card

General Machinery
(Machinery with Varying Loads)

- Speed/Torque control ensures the stable operation of cutting
machines which have load that can change suddenly. machines which have load that can change suddenly.

(Air Flow Control)

- The optimum air flow control can be found according to the room temperature.
- No contact air flow control improves safety and reliability compared to control based on the tuning ON and OFF of contacts. And finding the optimum air flow also cuts down on energy usage.

Elevators

- High starting torque shortens the positioning time of stacker cranes.
- The Pulse Generator ensures high holding capability at 0 Hz and precise positioning.

- More efficient current control saves energy compared to controlling the amount of current by adjusting valves.
- Even during momentary power interruptions, the speed search function continues operation without stopping the motor. This eliminates problems caused by motor stoppage.

SECTION 14

14-1 What is a Servo System? 249
14-2 How does a Servo System work? 250
14-3 Positioning Mechanisms 251
14-4 Three Types of Control Systems 252
14-5 Servo Motor 253
14-6 Servo Driver 256
14-7 Omron Models 259
14-8 Application 260

14-1 What is a Servo System?

Servo derives form the Greek word call Servus (Servant).
The system is called a Servo System because it responds faithfully or precisely to positioning commands.
Strictly speaking, it is a system to control mechanisms in compliance with the variation of position or speed target value (designated value, command value).

Typical example of a Servo System

14-2 How does a Servo System work?

The Servo System uses a feedback loops. In a feedback loop, the response value is feed back after the command so that the difference between the response and command values will be as close as possible to zero.

A Servo System consists of 3 feedback loops (i.e. position loop, speed loop and current loop).

Position Loop

The position loop is used to let the rotation angle of the motor reach the desired position (i.e. the desire rotation angle) that was externally designated.

The speed command is output from the position loop to the speed loop.
The position loop feeds back the position data (i.e. the information on rotation angle) of the encoder or resolver.

Speed Loop
The Speed Loop is used to let the motor rotate at the speed designated by the external analog speed command or the speed command that is output from the position loop.

The current command is output from the speed loop to the current loop
The speed loop feeds back the speed data of the encoder or resolver.

Current Loop

The current loop provides the motor with the current designated by the current command that is output from the speed loop.

The current loop feeds back the motor current value.

14-3 Positioning Mechanisms

The servo system is not the only alternative to control positioning and feed speed of mechanical facilities. Beside simple mechanical devices, however, the servo system is now the major control system to positioning and feed speed.
Simple
positioning
Flexible
positioning by
servo motor

14-4 Three Types of Control Systems

At present, there are three major control systems: 1) open loop, 2) semi-closed loop, and 3) full-closed loop systems.

Features of each system

	Open loop	Semi-closed loop	Full-closed loop
Control system	Simple	Little complicated	Complicated
Detection method	None	Not required as installed in motor	Required
Against load fluctuation	Week	Strong	Strong
Precision	Mechanical difference	Mechanical difference	By precision of detector
Difference (backlash pitch difference)	Difficult to correct	Correction available	Correction not required
Motor	Stepping motor	AC servo DC servo	AC servo DC servo
Feed rate	Low	High	High
Cost	Cheap	Little expensive	Expensive
Complicity of system configuration	Simple	Complicated	

14-5 Servo Motor

1. Difference with Other Conventional Motor

Basic construction and operation principles of the servo motor are the same as general conventional induction motors. But they have been redesigned to meet high precision, high speed, high frequency positioning and speed control of mechanical facilities.
2. Types and Features of Servo motors

Servo motors are classified into DC servo motors, and stepping motors. There are two varieties of AC servo motors; synchronous servo motor and induction type servo motor.

Classification of servo motor

	Stepping motor	DC servo motor	Synchronous servo motor	Induction type servo motor
Capacity (watt)	Less than 100W	Less than 500W	100 to 2 kW	2 kW or up
Advantages	Compact and high output. Cheap.	Smaller outside dimensions and large torque. Good operation efficiency. Good controllability. Cheap.	High speed and high torque. Good operation efficiency. No maintenance required.	High speed and high torque. No need maintenance. Durable. Large peak torque.
Disadvantages	Out-of-step and magnet noise at low speed operation.	Limit at rectification. Low reliability. Requires maintenance.	Expensive.	Bad operation efficiency with medium capacity models. Complicated control circuit. Expensive.

3. Construction of AC servo motor

- Features of AC servo motor compared with DC servo motor Permanent magnet is built-in the motor...Rotating field type. Coils are provided on the stator. \qquad .Static armature. In other words, electrical functions of rotor and stator are reversed.

AC servo motor does not have the commutator and brushes which DC servo motor has.

4. Comparison Between AC \& DC Servo Motor

$\left.\begin{array}{|l|l|l|}\hline & \text { AC servo } & \text { DC servo } \\ \hline \text { Life } & \begin{array}{l}\text { <Bearing life> } \\ 20,000 \text { h or up. }\end{array} & \begin{array}{l}\text { <Brush life> } \\ \text { Normally, } 3,000 \text { to } 5,000 \mathrm{~h} \\ \text { Varies considerably due to } \\ \text { load and environmental } \\ \text { conditions. }\end{array} \\ \hline \text { Maintenance } & \begin{array}{l}\text { <Not required> } \\ \text { No mechanical contact. } \\ \text { (No brushes, commutators) }\end{array} & \begin{array}{l}\text { <Required> } \\ \text { Required periodical check } \\ \text { and replacement of } \\ \text { brushes. }\end{array} \\ \hline \text { Sound noise } & \text { <Quiet> } & \begin{array}{l}\text { <Noisy> } \\ \text { Due to brush contacting } \\ \text { noise. }\end{array} \\ \hline \text { Electrical noise } & \begin{array}{l}\text { <None> } \\ \text { No noise as no brushes. }\end{array} & \begin{array}{l}\text { <Exist> } \\ \text { Noise occurs due to } \\ \text { actuation of brushes. }\end{array} \\ \hline \text { Efficiency } & \begin{array}{l}\text { <Excellent> } \\ \text { Good cooling efficiency as } \\ \text { heat radiates from stator. }\end{array} & \begin{array}{l}\text { <Good> } \\ \text { Rectification loss occurs. } \\ \text { Bad cooling efficiency due } \\ \text { to rotor heat. }\end{array} \\ \hline \text { Against overload } & \begin{array}{l}\text { <Good> } \\ \text { Large thermal time constant. } \\ \text { High speed and large } \\ \text { torque. }\end{array} & \begin{array}{l}\text { <Medium> } \\ \text { Small thermal time } \\ \text { constant. }\end{array} \\ \hline \text { Response characteristics } & \begin{array}{l}\text { Limited current due to } \\ \text { brush flashover. }\end{array} \\ \hline \text { Large quick> } \\ \text { Cleanness } \\ \text { (Small rotor inertia and } \\ \text { large torque until high speed } \\ \text { range. }\end{array} \quad \begin{array}{l}\text { <Quick> } \\ \text { Small power rate. } \\ \text { (Large rotor inertia. } \\ \text { Decrease torque at high } \\ \text { speed range.) }\end{array}\right\}$

14-6 Servo Driver

A Servo Driver is a power device use to drive a Servo Motor. It consists mainly of Power Transistors \& Diodes that are constructed in a Dartington Power Transistor Bridge Configuration.

Transistors are turned on/off in pair, that means either Transistor A \& D are on for the Clockwise direction or Transistor B \& C are on for the counter-clockwise direction.

1 Typical Servo Driver
Let us become familiarized with the circuit and operation of PWM transistor driver, which is one of major drives for servo motors.

Transistor PWM
An example of main circuit

Operation

■ AC Servomotors Conforming to EC Directives（Incremental Encoder）

	Spe	cations		Madel
$\begin{aligned} & 4 \\ & \frac{4}{4} \\ & 0 \\ & 2 \end{aligned}$		$\begin{gathered} 200-\mathrm{VAC} \\ \text { input } \end{gathered}$	30W	B．88M－103030VA－S1
			50 W	FR881－t05030VA－S1
			100W	R $888 \mathrm{l}=\mathrm{L}+0030 \mathrm{~V}$－ S 1
			200W	RB8M－U2ODEDVA－S1
			400W	R88M－U40030va－S1
			750W	RS8M－U75030VA－S1
			1 kW	R88M－U1K030V－ST
			1.5 kW	R86M－U1K530V－S1
			2 kW	F88M－U2k $030 \mathrm{~V}-\mathrm{S1}$
			3 kW	R88M－U3K030V－S1
			4 kW	F88M－U4K030V－S1
			5 kW	R88M－U5K030V－51
		100－VAC input	30 W	FReB－U03030WA－S1
			504	F86M－U05030WA－S1
			100 W	F88M－U10030WA－81
			200W	R88M－U20030WA－S1
			300W	F88M－U30030WA－S1
		$200-\mathrm{VAC}$ input	30W	R881M－U03030va－8S1．
			50w	FSSM－U050304A－BS1
			100W	F888M－U 100630 VA －BS 1
			200 W	R8814－L20030va－BS1
			400W	
			750 W	RBSM－ $1775030 \mathrm{VA}-\mathrm{BS} 1$
			1 kW	R 0 8M－U1／6030v－ES1
			1．51	R8884－L51K530V－B61
			2 kW	R8BM－U2K030V－BS1．
			3 kW	
			4 kW	R88．M－U4K030V－BS 1
			5 kW	B889－\5K030V－8S1
		100－VAC Tinput	30 W	R88M－U03030WA－BS1
			50W	R880－U65030WA－BS1
			100W	B8PW－以T0030WA－BS
			200W	R8SM－U20030WA－BS1
			300W	R83M－U30030WA－BS1
			100W	R888W－WE10030V－S1
			200W	R88M－UE20030V－51
			400W	
			750W	P88BM－UE75030V－S1
		100－vAC input	100W	RSPM－UE10030W－S1
			200W	R88M－UE20030W－S1
			300W	R88M－UE30030W－81
		$\begin{aligned} & 200-\mathrm{VAC} \\ & \text { inpul } \end{aligned}$	100W	R88M－UEt0030v－BS1
			200 W	FBEM－UNE20030V－BS1
			400 W	RGSW－UE40030V－BS1
			750W	R $28 \mathrm{M}-\mathrm{UE} 55030 \mathrm{~V}-\mathrm{BS} 1$
		too－vac input	100W	R88\％－LEE10030W－BS1
			200 W	R88M－UE2003iow－8S1
			300w	R88M－UE30030W－B31

\square AC Servomotor Conforming to EC Directives（Absolute Encoder）

Specification＇s＇				Madel
			30w	H883－103030xA－\＄1
			50w	
			100W	R ${ }_{\text {dem }}$
			200w	R 88 M － $\mathrm{V} 20030 \times \mathrm{A}-\mathrm{S} 1$
			400W	R 888 M － $\mathrm{V} 40030 \times \mathrm{A}$－81
		200－VAC	750 W	
	$\stackrel{\square}{8}$	input	tkw	
	䂞		1.5 kW	R88M－U1K530X－S1
	9		2 kW	R88m－U2k030x－51
	空		3 kW	R883－U3K030X－St
	3		4 kW	R883－ $54 \mathrm{~K} 030 \mathrm{OX}-\mathrm{St}$
			5 kW	R：88M－LJK 030×-51
			30W	R883－U03030YA－S1
			50w	R88M－605030YA－S1
			．100W	R88M－U10030YA－S1
			200w	R88H－U20030YA－51
			300w	R8894－U30030YA－51
			30 W	R88M－U03030XA－BS1
			50W	R884－U05030XA－BS1
			10001	R89M－U10030xA－BS1
			Roow	R681M－U2006soxA－BS1
			400w	R 8 g $94-\cup 40030 \times 4-8 S!$
		200－vac	750 W	R8814－U75030XA－BS 1
		input	18w：	R8884－U1K030X－BS1
			1．5kW	F 8 SM－U1K530X－BS
	感		2kW	
	岳		3kW	R6ah－U3K030X－BS1
			4KW	R 89 M －U4K030X－PS1
			5 kW	R884－U5K030）-B \＄ 1
			30W	R88M－U03030YA－BS1
			50W	R8814－U05030YA－BS1
		100－vac	100w	R88M－U10030YA－BS1
			200w	R88M－U20030YA－BS1
			300W	（189M－U30090YA－BS

＂1．The motor shalt must be straight with a key groove．
${ }^{2}$ 2．Fefier to the Catalggs for OMNUC U Series or U－series UE Models for specifications and functions of the above models．

EAC Servo Drivers Conforming to EC Directives

Specifications				Model
		Singlephass 200－VAC input	30w	RBED－\IADVV
			50w	R：88D－UA03V
			100W	R68D－UA04V
			200W	RB8D－UA0SV
			400W	R68D－UA12V
			750W	PBED－UAZOV
		Single－phase 100 VAC input	30w．	RBAD－UA03W
			50W	R88D－UA04W
			100W	R88D－UA10W
			200W	Fi88D－UA12W
			300W	R888－UA15W
		Singleppitate 200 VAC inpuit	30W	RBgE－UPOZV
			50W	R88D－UP03V
			100W	R88D－UP04V
			200 W	P88D－UPOEV
			400W	Rib8D－UP12V
			750W	R68D－UPZ0V
		Singlephase 100 VAC input	30W	R880－UP03W
			50W	RggD－UP04W
			100W	RB8D－UP10W
			200W	R88D－UP12W
			300W	R880－UP15W
		Single－phase 200－VAC input．	tkW	Rib8D－UT24V
			1.5 kW	R68D－UT40V
			2 kW	RB8E－UT60V
			3 kW	RB8D－UTBOV
			4 kW	R88D－UT110v（see notes 1 and 2）
			5 KW	
			1 kW	RBab－UT24V－FG（see note 1）
			1．5kW	R88D－UT40V－RG（see note 1）
			2kW	RB8D－UTGOV－RG（see note 1）
			3kw	RB8D－UT80V－RG（see note t）
		Singlephase 200－VAC inpst	joow	R88D－UEPO4V
			200W	RBSE－UEPPOV
			400W	FRAD－UEP12V
			750W	R88D－UEP20V
		Single－phase： 100 －VAC ifput	100W	R88E－UEP10W
			200w	R88D－UEP12W
			300w	R88D－UEP15W

Note 1：Madels requining external regenerative rasistors．Be swe to connect external regenerative resistors．
Note 2：The initial parameters of the R88D－UT11OV are set to the settings for the 4 －kin rators．

1 External Regenerative Resistor Conforming to EC Directives | Spenifications | Model |
| :---: | :---: |
| 70 W. | $\mathrm{Fi} 8 \mathrm{BA}-\mathrm{RR} 2 \mathrm{C} 247 \mathrm{~S}$ |

Encoder Cables Contorming to EC Directives（For 30－to 750－W Modeds）

Spexitications		Módel
For motors with incremental encoders	3 m	R88A－CFUDO03C
	5 m	
	10 m	F：88A－CRUD010C
	15 m	R88A－CRUD015C
	20m！	R8BA－CRUDO20¢
For motors with absolute enceders	3 m	R88A－csupodac
	5 mz	R88A－GSUD005G
	10m	R88A－CSUD0100
	15 m	R88A－CSUD015C
	20 m	R88A－GSUD020C

Conform to EC Directives

The following EMC (electromagnetic compabibity) drectives and low-waltage drectives (LVD) have been met.

- Servodrwars EMC diectives: EN55011 and EN50082-2
* Servomotors ENC diroctives. EN55011 and EN50082-2

A Wide Variety of Models
The U series and U-series UE Models include a total of 87 models.

Series	Supply voltage	Driver	Servamotor
U Series	200 VAC	12 models	12 models
	100 VAC	10 models	10 models
U-series UE Madels	200 VAC	4 models	8 models

System Configuration

Input				Output Servonionor	- Noise Filter Meeting EC Directives (Okaya Electric Industries Co. Lod.)	
			Power cable		Spacitications	Mochal
			Erep		200 V: For 30 to 160 W 100 V : For 30 and 50 W	SUP-PTHEEPR-4
			Servodtimer		Fer trake powter supply.	
	Noise fiter				260Y For 250 and 500 W 1t0 V: Fer 100 W	SUP-PTA-EPA-4
					260 Y Fse 750 W $160 \mathrm{~V}:$ Fer 250 W and 300 W	SUP-PIOH-EPRT-4
	nel satily ElaC drowhes 				Nise arss hore sewe wrireds	

Applicable Series

OMNUC U Series

- Compact models with powerful functions.
- High-speed, high-precision control.

OMNUC U-series UE Models

- Easy-to-use with simplified functions.
- Excellent cost performance.

Series	Supply voltage	30	Max. applicable motor oapacity (W) $100 \quad 300$	750	Servodriver command inpet	Servernator entoder
U Series	200 VAC: 100 VAC				Analog pulve rain Analog pube rain	Incramerial \|ncrurnertal
U-series UE Models	200 VAC 100 VAC	!			Piserban Piservil	incromertal incremersal

14-7 Omron Models

- AC Servomotors and Servo Drivers

Omron Mechatronic System Components
OMNUC U Series and U-series UE Models
New Models Conforming to EC Directives for OMRON's Popular AC Servomotors and Servo Drive 1- to $5-\mathrm{kW}$ models have also been added.

14-8 Application

OMRON Servo Drivers \& Servo Motors are used in various precision demanding Applications. There are some examples listed below.

1. Automatic Storage \& Retrieval System (ASRS)

2. Feeding System

3. Auto Assembly Line

4. Glue Dispensing System

OMROn

© 1999 OMRON ASIA PACIFIC PTE LTD

All rights reserved. No part of this material may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Omron Asia Pacific Pte Ltd

No patent liability is assumed with respect to the use of the information contained herein. Every precaution has been taken in the preparation of this booklet; however OMRON assumes no responsibility for errors or omissions.

General Basic Component

And
FA Electricity Course

[^0]: Note: 3G3EV-A [][][][]-E (Standard Type) 3G3EV-A [][][][]/M-E (Multi-Function Type)

