ACCURACY, ERROR, AND

MEASUREMENT ERROR

All measurements have measurement
errors. These errors are the differences
between the measurements and the true
value defined by the National Bureau of
Standards (NBS). Uncertainty is the maxi-
mum error which might reasoriably be

UNCERTAINTY ANALYSIS

Measured Value True (NBS) Value
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expected and is a measure of accuracy, i.e.,
the closeness of the measurement to the true
value. Measurement error has two com-
ponents: a fixed error and a random error.

Precision (Random Error)

Random error is seen in repeated measurements, Measure
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measurements is called precision error, The
standard deviation (o) is used as a
measure of the precision error. A
large standard deviation means
large scatter in the measurements.
The statistic (s) is calculated to
estimate the standard deviation
and is called the precision index
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Bias (Fixed Error)

The second component, bias, is the
constant or systematic error. In repeated
measurements, each measurement has the
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where N is the number of measure-
ments made and X is the average
value of individual measurements X;.
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same bias. The bias cannot be determined
unless the measurements are compared
with the true value of the quantity
measured,

Bias is categorized into five classes:
(1) large known biases, (2) small known
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small unknown biases which may have
() unknown sien {+) or £5) brawn oon

Parameter Measurement Value



Large Known Biases ]

The large known biases are eliminated by comparing the instrument with a standard
instrument and obtaining a correction. This process is called calibration.

.

Small Known Biases

Small known biases may or may not be corrected depending on the difficulty of the
correction and the magnitude of the bias.

Large Unknown Biases

Unknown biases are not correctable. That is, they may exist, but the magnitude of the
bias is not known, and perhaps even the sign is not known.

Every effort must be made to eliminate all large unknown biases. The introduction
of such errors converts the controlled measurement process into an uncontrolled
worthless effort. Large unknown biases usually come from human errors in data
processing, incorrect handling and installation of instrumentation, and unexpected
environmental disturbances such as shock and bad flow profiles. In a well-controlled
measurement process, the assumption is that there are no large unknown biases. To ensure
that a controlled measurement process exists, all measurements should be monitored with
statistical quality control charts. A list of references describing the use of statistical
quality control charts is included at the end. of this section. Drifts, trends, and
movements leading to out-of-control situations should be identified and investigated.
Histories of data from calibrations are required for effective control. It is assumed
throughout this Handbook that these precautions are observed and that the measurement
process is in control; if not, the methods contained herein are invalid.

Small Biases, Unknown Sign, and Unknown Magnitude

In most cases, the bias error is equally likely to be plus or minus about the
measurement. That is, it is not known if the limit is positive or negative, and the estimate
reflects this. The bias limit is estimated as an upper limit on the maximum fixed error.
For example, +5 pounds 1s a typical bias limit.

It is both difficult and frustrating to estimate the limit of an unknown bias. To
determine the exact bias in a measurement, it would be necessary to compare the true
value and the measurements. This is almost always impossible. An effort must be made to
obtain special tests or data that will provide bias information. The following are examples
of such data:

1. Interlab, interfacility, intercompany tests on measurement devices, test
rigs, and fullscale engines.

| 2. Flight test data versus altitude test chamber data versus ground test data.

3. Special comparisons of standards with instruments in the actual test
environment.

4. Ancillary or concomitant functions that provide the same performance
parameter; i.e., in an altitude engine test, airflow may be measured with
(1) an orifice and (2) a bellmouth, (3) estimated from compressor
speed-flow rig data, (4) estimated from turbine flow parameter, and (5) jet
nozzle calibrations. :
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5. When it is known that a bias results from a particular cause, special
calibrations may be performed allowing the cause to perturbate through its
complete range to determine the range of bias.

If there is no source of data for bias, the judgment of the most knowledgeable
instrumentation expert on the measurement must be used. However, without data, the
upper limit on the largest possible bias error must reflect the lack of knowledge.

Small Biases, Known Sign, and Unknown Magnitude

Sometimes the physics of the measurement system provide knowledge of the sign
but not the magnitude of the bias. For example, thermocouples radiate and conduct
energy to indicate lower temperatures. The bias limits which result are nonsymmetrical,
Le., not of the form £b. They are of the form *2 where both limits may be positive or
negative or the limits may be of mixed sign as indicated. Table I below lists several
nonsymmetrical bias limits for illustration. :

Table | Nonsymmetrical Bias Limits

Bias Limits Explanation

O, +10 deg | The bias will range from zero to plus 10 deg.
-5,+151b The bias will range from minus 5 to plus 15 Ib.
+3,+7 psia { The bias will range from plus 3 to plus 7 psia.

-8, -3 deg The bias will range from minus 8 to minus 3 deg.

In summary, measurement systems are subject to two types of errors, bias and
precision error (Fig. 1-5). One sample standard deviation is used as the precision index.
The bias limit is estimated as an upper limit on the maximum fixed error.

MEASUREMENT ERROR SOURCES

For purposes of illustration, the elemental error sources for the force measurement
system will be treated in this section. These error sources fall into three categories:

1. Calibration Hierarchy Errors (2.2.1)
2. Data Acquisition Errors (2.2.2)
3. Data Reduction Errors (2.2.3)

Elemental error sources for other measurements will be enumerated in the section
dealing with each measurement.

Calibration Hierarchy Errors

To demonstrate traceability of measurements to the NBS, whose standards are by
definition the “truth,” it is necessary to establish calibration hierarchies. Each level in the
hierarchy, including NBS, constitutes an error source which contributes to the error in
the final measurement. Calibration of all measurement instruments at the NBS is possible; -

i
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however, such calibrations would be inconvenient, time consuming, and very expensive.
The purpose here is to illustrate a typical hierarchy and to enumerate the error sources
Table V Calibration Hierarchy Error Sources within. “Figure II-1 is a typical force
— transducer calibration hierarchy. Associated
Bias | Precision | Degreesof | with each comparison in the calibration
Calibration | Limit | Index Freedom hierarchy is a pair of elemental errors. These
errors  are the unknown bias and the
NBS -ILS | by, s11 dfy, precision index in each process. Note that
ILS-TS | by 521 dfzy these elemental errors are independent, e.g.,
TS - Ws b3y $31 dfsy

bz1 is not a function of byjt. The error
WS-MI by $41 dfay sources are listed in Table V.

Data Acquisition Errors

Data are acquired by measuring the electrical output resulting from force applied to
a strain-gage-type force measurement instrument. Figure 11-2 illustrates some of_' the error
sources associated with data acquisition. Other error sources such as electrical stmulation,
thrust bed mechanics, and environmental effects are also present, The best m&.zthoc_l to
determine the effects of all of these error sources is to perform end-to-end calibrations
and compare known applied forces with measured values. Bowever, it is not always
possible or even desirable to do this, and if this is the case, it is necessary to evaluate
each of the elemental errors and combine them to determine the overall error.

Force )
Tranaducer et Excitation
—— Voltage
— Source

( Signal | | Recording
Conditioning Device

Measurement Signal

Fig. 11-2 Data Acquisition Systam

All the data acquisition error sources are listed in Table VI. Symbols for the
elemental bias and precision errors and for the degrees of freedom are shown.



Data Reduction Errors

Tabde VI Data Acquisition Error Sources
Computers operate on raw data

to produce output in engineering Bias { Precision | Degrees of
units. The errors in this process stem Error Source Limit] Index Freedom
from calibration curve fits (Fig. 11-3)
and computer resolution. Excitation Voltage biaj sz 4y
Electrical Simulation byy 572 dfy,
Symbols for the data reduction Signal Conditioning b3z | 532 dfy;
error sources are listed in Table VIL Recording Device ba2 | sa2 dfy2
These errors are often negligible in Force Transducer bs2 | ss52 dfs;
each process. Thrust Bed Mechanics b2 562 dfgs
Environmental Effects | bg, 372 df75
Applied Table VIl Data Reduction Error Sources
Yorce
g:}-tgr;fion Bias | Precision | Degrees of
Error Source Limit | Index Freedom
Calibration Curve Fit bis 813 df} 3
Measured Force Computer Resolution | bj3 $23 df3

Fig. 11-3 Calibration Curve

MEASUREMENT UNCERTAINTY

For simplicity of presentation a single number (some combination of bias and
precision) is needed to express a reasonable limit for error. The single number must have
a simple interpretation (the largest error reasonably expected) and be useful without
complex explanation. It is impossible to define a single rigorous statistic because the bias is
an upper limit based on judgment which has unknown characteristics. Any function of these
two numbers must be a hybrid combination of an unknown quantity (bias) and a statistic
(precision). However, the need for a single number to measure error is so great that the
adoption of an arbitrary standard is warranted. The standard most widely used is
the bias limit plus a multiple of the precision index. This method is recognized and -
recommended by the NBS? and has been widely used in industry,

Uncertainty (Fig. 1-6) may be centered about the measurement and is defined herein as:

U = £(B+1t49) a-1)
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Fig. 1-5 Measurement Error (Bias, Precision, and Accuracy)

where B is the bias limit, S is the precision index, and tys is the 95th percentile point
for the two-tailed Students “t” distribution (Table E-1, Appendix E). The t value is a
function of the number of degrees of freedom (v) used in calculating S. For small
samples, t will be large, and for larger samples t wil] be smaller, approaching 1.96 as a
lower limit. The use of the t arbitrarily inflates the limit U to reduce the risk of
underestimating S when a small sample 1s used to calculate S. Since 30 degrees of freedom
yield a t of 2.04 and infinite degrees of freedom yield a t of 1.96, an arbitrary selection
of t =2 for values of df from 30 to infinity was made, ie., U=2%(B + 28), when df > 30.

. I.n 'f‘ sample, the number of degrees of freedom is the size of the sample., When a
statistic is calculated from the sample, the degrees of freedom associated with the statistic

are reduced by one for every estimated parameter used in calculating the statistic. For
example, from a sample of size N, X is calculated:

_ N
X =3 X./N (I-2)

which has N degrees of freedom and

(1-3)

‘which has N-1 degrees of freedom because X (based on the same sample of data) is used
to calculate S. In calculating other statistics, more than one degree of freedom may be
lost. For example, in calculating the standard error of a curve fit, the number of degrees
of freedom which are lost is equal to the number of estimated coefficients for the curve.



It is recommended that the uncertainty parameter (U) be used for simplicity of
presentation; however, the components (bias, precision, and degrees of freedom) should
be available in an appendix or in supporting documentation. These three components
may be required (1) to substantiate and explain the uncertainty value, (2) to provide a
sound technical base for improved measurements, and (3) to propagate the uncertainty
from measured parameters to performance parameters, and from performance parameters

to other more complex performance parameters (i.e. fuel flow to Thrust Specific Fuel
Consumption (TSEC), TSFC to aircraft range, etc.). Although uncertainty is not g
statistical confidence interval, it is an arbitrary substitute which is probably best
interpreted as the largest error expected. Under any reasonable assumption for the
distribution of bias, the coverage of U is greater than 95 percent, but this cannot be
proved as the distribution of bias is both unknown and unknowable. :

If there is a nonsymmetrical bias limit (Fig. I-7), the uncertainty U is no longer
symmetrical about the measurement. The upper limit of the interval is defined by the

upper limit of the bias interval (B*). The lower limit is defined by the lower limit of the
bias interval (B).

The uncertainty interval U is U- = B -t35S to Ut = Bt + tosS.

Measurement

. _ : Largesat
= Largest Negative Error Positive —ad

(3~ - tgs3) Er:or
(B + tgs3)

Measurement Scale
$t,. .8
Range of 95
B- Precision————qtu— Bt+..
Error

dncertainty Interval -
(The True Value Should Fall within This Interval

Fig. 1-7 Measurement Uncertainty, Nonsymmetrical Bias
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Least-Squares Regression Analysis

The regression analysis for a single variable of the form y = f{x) provides an
mth-order polynomial fit of the data in the form

Ye=aptax+a:x’+..+a,x" (4.30)

where y, refers to the value of the dependent variable obtained direcily from the
polynomial equation for a given value of x, For n different values of the indepen-
dent variable included in the analysis, the highest order, m, of the polynomial that
can be determined is restricted to m < n — 1. The values of the m coefficients a,, a,,

., a, are determined by the analysis. The most common form for regression
analysis for engineering applications is the method of least-squares. The least-
squares technique attempts to minimize the sum of the squares of the deviations
between the actual data and the polynomial fit of a stated order by adjusting the
values of the coefficients, as necessary. :

An mth-order polynomial relationship is to be found for a set of & data points
of the form (x,y) in which x and y are the independent and dependent variables
respectively. Consider the situation in which N values of y exist, y;, where /=1, 2:
...» N, over n values of x. The task is to find the m + | coefficients, ay, a,,. .., a_,
of the polynomial of (4.30). Define the deviation between any dependent »'ariabi"e
¥, and the polynomial as y, - y,, where y,; is the value of the polynomial evaluated

at the data point (x;, y). The sum of the squares of this deviation for all values of
yoli=12,...,Nis '

N
D=2 (3~ (+31)
i=|

FIGURE 4.9 Distribution of measured value y about each fixed
value of independent variable x. The curve y, represents a possible
functional relationship.
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The goal is to reduce D to a minimum for a given order of polynomial.
Combining equations 4.30 and 4.3!, one can write

N
D:Z{yi -(ay+ax+-+a x™)J (4.32)

i=]
Now the total differential of D is dependent on the m + 1 coefficients through

-9 da -i-—a2 da, +---+ oD da

T da, | dq da "

"

dD

To minimize the sum of the squares of the deviations, one wants dD to be zero.
This is accomplished by setting each of the partial derivatives equal to zero:

oD J |~ ,
5;{—0—30:—8—61;{2[}%,--(%+a‘x+---+amx }'}

oD d Ix . | .
55: 0 —é—;{Z[)i—(a0+a1x+---+amx }} é‘

il

(4.33)

aD 9 & -
Ja. ;-,O=Fa—c; {;{X‘ —(@+ax+-+a,x )]'}

This yields m + 1 equations which are solved simultaneously to yield the unknown
regression coefficients, a,, a,, . . ., a,.

In general, the polynomial found using a regression analysis will not fit through
every data point (x,, y,) exactly. Associated with any order of polynomial curve fit
through a given set of data points, there will exist some deviation between the data
point and the polynomial. One can compute a siandard deviation based on the de-
viation of each data point and the fit by

f N
2
’Z()’; —yﬂ)
Su=¥fhmﬂw—— (4.34)
' v
Yyowo=2 —ch Langsr £ia .
Becomil Oo &, Coduvats B



where v is the degrees of freedom of the fit, v = N — (m+1). §,, is referred to as
the standard error of the fit and is a measure of the precision with which a polyno-
mial describes the behavior of the data set,

The best order of polynomial fit to a particular data set is that lowest order of fit
which reduces §,, to an acceptable value and maintains a logical physical sense be-
tween dependent and independent variables. This latter point is important. If the
underlying physics of a problem implies that a certain order relationship should
exist between dependent and independent variables, there is no sense in forcing
the data to fit any other order of polynomial regardless of the value of S

In engineering, the independent variable is often a known and controlled value.
This is particularly true during calibration. In such cases, we can assume that the
variance of the curve fit line is not due to the independent value. We can state the
curve fit with its precision interval as

YeEt,S,, (P%) (4.35)

where y, is defined by (4.30).
On the other hand, if we consider variability in both the independent and depen-
dent variables, then the curve fit and its precision interval are estimated by {1,4]

12

V. +1,,5. -1-+#‘L:—x-)'_ (P%) (4.36)
- N _ 2
2.(x=%)

i=sl

This is the case if, say, we wished to compare the dietary fat intake of males with
their blood cholesterol levels. If a random sample of the male population were to
be taken, we would have no control over the independent variable, in this case, the
number of individuals having a certain fat intake level. Because there would gen-
erally be fewer data points at the extreme ends of the range, the precision error at
the extremes of the curve fit would increase. This is reflected in (4.36).

There is no rule that can be used to estimate which order fit will yield an accept-
able value of S, without trial and error. This is the attractive feature of having a
least-squares software package available. The choice of the actual order of fit used

is always a compromise between the precision needed and the convenience of us- _

ing a low-order polynomial.

EXAMPLE 4.8

The following data are suspected to follow a linear relationship. Find an appro-
priate equation of the first-order form.

AG



x[em] y[V]

1.0 1.2 (

2.0 1.9
3.0 3.2
4.0 4.1
5.0 53

KNOWN

Independent variable, x
Dependent measured variable, y

N=5

ASSUMPTIONS

Linear relation

FIND

Ye=a,+ax

SOLUTION
We seek a polynomial of the form y, = a, + a,x, which minimizes the term

D= i(_v,- -y ) {

oD >
a;‘ =0= _22[}’5 —(ay +a,x,)]
‘37[:?2 0= “2;[.\";' —{aq +a,x)]x,

yielding

N

Z[)"r =(ay +a,x)]=0

i=l

D15 - (@ + )k, =0

i=i

Solving simultaneously for the coefficients a, and g, yields

0= LxZxy ~ZxLy, 1
" Ex)-NIx )

A4



o= YxXZy,-NZxy
(Z,) -NZx

(4.37)

From the data set, one finds from (4.37) 4, = 0.02 and a, = 1.04. Hence,

y.=002+1.04x V

COMMENT

Although the polynomial described by y, is the linear curve fit for this data set,
we still have no idea of how good this curve fits this data set or even if a first-order
fit is appropriate. This is studied below.

Linear Polynomials

For linear polynomials a correlation coefficient, r, can be found by

F= ] -2 (4.38)

where

1 N
St=——> (3 -7
s N_IM(}. ¥)

The correlation coefficient represents a quantitative measure of the linear associa-
tion between x and y. It is bounded by +1 which represents perfect correlation; the
sign indicates that y increases or decreases with x. For +0.9 < r < +1, a linear re-
gression can be considered as a reliable relation between y and x. Alternatively, the
value r* is often reported, which is indicative of how well the variance in y 1§ ac-
counted for by the fit. It is a ratio of the variation assumed by the linear fit to the
actual measured variations in the data. However, the correlation coefficient and the
r* value are only indicators of the hypothesis that y and x are linearly related. They
are not effective precision indicators of y,. The S,, value is used for that purpose.
The precision estimate of the slope of the fit can be estimated by

ALO



N
Sa =35, (4.39)

N N 2
Nfo— Zx,

i=l i=]

For example, S., would provide a measure of the static sensitivity error of a mea-
surement system based on a linear fit of the calibration data.
The precision estimate of the zero intercept can be estimated by

- S i=l

xx N N 2
WS-
i=] i=|

‘An error in a, would offset a calibration curve from it Y intercept. The derivation
and further discussion on equations 4.38-4.40 can be found in [1,2,4].

RH

(4.40)

EXAMPLE 4.9

Compute the correlation coefficient and the standard errar of the fit for the data
in Example 4.8,
KNOWN

Y.=002+ 104 V

ASSUMPTIONS

Errors are normally distributed

FIND
rand §,

SOLUTION

Direct application of equation 4.38 with the data set vields for the correlation
coefficient r = (L.996. An equivalent estimator is r>. Here r? = 0.99, which indi-
cates that 99% of the variance in y is accounted for by the fit, whereas only 1% is
unaccountable. These values suggest that a finear fit is a reliable relation between
« and v, The precision error between the data and this fit can be quantified through
3..- Using equation 4.36, §,, = 0.16 with degrees of freedom, v = ¥ - {m + fy=13,

COMMENT

The 1 estimator, 1,,, = 3.18, establishes a precision or confidence interval about
the fii of £(1,,5.,) = £ 0.50. Accordingly, the polynomial fit can be stated at 95%
confidence as

ye=1.04c+ 002050V (95%)

This curve is plotted in Figure 4.10 with its 95% contidence interval. The regres.
sion polynomial with its precision interval is the only acceptable way 1o report a
curve fit to a data set.
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Propagation of Basic Uncertainties into Resuits

Consider the second power equation where R is the result and x,, x,, etc. are the
fundamental, independent, measured quantities. Then

2 1 2
URz = i 144 2, i U + ..i sz
9x, A dx, A dx b
where Uy is the absolute uncertainty and

2 2 2 .
_;{7(31.} U(_z:) 0,2 sn (_ai] v,?

where ug is the relative uncertainty which could be expressed as a percentage if multiplied by 100,
Gad o 1s ke wasudude of Un. ,

This second power equation can be used for both random and systematic uncertainties.

The random uncertainty U, and the systematic uncertainty B can be combined to give the total
uncertainty U, using the equation

Applications
The above calculation of the uncertainty can be used to:
1. determine (or estimate) the accuracy of test results.

2. aid to plan an experiment and to select instrumentation by determining the
effects of component uncertainties on the results.

3. show where improvements or an increased expense will be most worthwhile
4. shows where less accurate (¢.g. control room) instruments may be acceptable

5. show which uncertainties may be reduced by replication,

Example

Consider a pitot-static tube and manometer to measure the velocity of an i, jet traveling
. N . . o
ata steady speed. A pitot-static tube is often used Wwith a2 manometer, '

1



The following table shows the various readings and their absojute uncertainty.

| PARAMETER | INSTRUMENT READING | UNCERTAINTY SOURCE
T, Liquid-in-glass O
thermometer 67°F -0.5°F Instrument specified
Ap Operator observation
Manometer 8 in. H,0 0.1in. H,0 of column “bounce”
P, Aneroid
Barometer 14.7 psia . 0.3 psi Instrument specified

Note: The uncertainties includes both systematic and random components.

The basic equation for the result (velocity) is:

where Ap is the difference between the total pressure and the static pressure (i.e, the
velocity pressure). The density p is not an independent measurement but is obtained from the
data and the ideal gas law

Pq
P = —

RT

where T, and p, are the (absolute) static temperature and (absolute) static pressure of the fluid
stream respectively. The equation for the fluid velocity is then

2 Ap R T,
Py

v=c

The constant C is normally 1.0 for a pitot-static tube if the fluid velocity is relatively low (below a
Mach number 0£0.2), no turbulence, fully developed flow, and perfect alignment of the pitot-
static tube with the fluid velocity. The second power equation gives '

2 ) 2 2
U: = iP: Ucz + —q_pl. UA ., i;:... Ur1 + .i[ 2
ac dap ’ ar, . o, L



where the gas constant R has no uncertain

ty. Performing the derivative operations, the
calculating equation for V is then
a 2ApRT 2RT 2ApRT
U3,=_.p___1ué+_l._iuzp+.l____}’___‘U:+_l.mU;_
P: 4 AP P, 4 P: ‘ 4 £, Tc ¢

C is a calibration coefficient for the Pitot-static tube and taken as 1.0, However, C may differ
from 1.0 due to: (a) compressibility,

(b) turbulence, © the velocity gradient, and (d)
misalignment. Dividing by
2
Ve 2ApRT,
Py
gives
2 ] 2 2 2
Ur . Yc, v Uy 1% 17
FEoCc? 4 (apY 4 pr 4 g2
or
2.1 2 I 2 1 2
u},=uc+;u”+ —H‘P."' — Up.

For a pitot-static tube, u, = 001 and the numerical valyes give

1
uy = [0.0001 + 2 (0.00016 ) + -;-(0.00042) + L (0. 0000009 )] 2 - 00156
- - J

or 1.56%. Some possible improvements in the uncertainty would occur if

1. The static-pitot tube had better calibration or U, = 0.005. 7 vaost
S Meov"rt«“'\'_
2. The static pressure measurement were more accurate or U, =201 psia. <
3.

The thermocouple were more accurate or U, = + 0.1°F.



The proper method for combining elemental measurement uncertainty values is to
determine the root-sum-square values of the elemental bias limits and the elementa]
precision indices separately. Then, apply the uncertainty formula to the combined bias

limits and precision indices. In some cases, the same value will be obtained if the

measurement error. .

For example, in combining the following uncertainties the rootsum-square of the
uncertainties was 18.38 units. The correct value was 23.21 units.

Bias Limit (B)  Precision Index (S) Uncertainty

1 6 +13

11

—

where Uncertainty = +(B + 8). ‘s =2

Now the bias limit for the combined parameter is the root-sum-square of 1 and 11:

B= 412+ 117 - V122 = 1105
The precision index for the combined parameter is the root-sum-square of 6 and |:
S=v62+ 12 - V7 - 608
The I'JnCertainty is thus:

U = 2(B+25) = #[11.05 + 2(6.08)] = 223.9]

The root-sum-square of the original uncertainties is

\{(13)2 + (13)% =.V169 + 169 = \{ 338 = 18.38

Now, : 28.21 = 18.38 100 - o6.3%
18. 38

and over 25 percent eirur has been introduced just because of the wrong propagation of
error formula.



REPORTING ERROR

The definition of the components, bias limit, precision index, and the limit (U)
suggests a format for reporting measurement error. The format will describe the
components of error, which are necessary to estimate further propagation of the errors,
and a single value (U) which is the largest error expected from the combined errors.
Additional information, degrees of freedom for the estimate of S, is required to use the
precision index. These numbers provide all the information necessary to describe and use
the measurement error. The reporting format is:

1. 8, the estimate of the precision index, calculated from data.

2. ¥, the degrees of freedom associated with the estimate of the precision
index (8).

3. B, the upper limit of the bias error of the measurement process or B- and
B* if the bias limit is nonsymmetrical.

4. U= (B + t355), the uncertainty limit, beyond which measurement errors
would not reasonably fall. The t value is the 95th percentile of the two-tailed
Student “t” distribution.

5. U, the interval between U~ = B~ - t9sS and U* = B* + tg5S. These limits
should be reported when the bias limit is nonsymmetrical.

The model components, S, ¥, B, ana U, are required to report the error of any
measurement process. As recommended in Section 1.4, for simplification, the first three
components may be relegated to the detailed sections of uncertainty reports and
presentations. The first three components, S, ¥, and B, are necessary to propagate the
errors  further, to propagate the uncertainty to more complex parameters, and to
substantiate the uncertainty limit.



