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MEP 579 Applications of Industrial Pipe Lines — Total Summary of Piping Networks
Steady Incompressible Flow in Pipe lines or Pressure Conduits

In this chapter some of the ‘aspects of steady flow in pressure conduits are
discussed. The discussion is limited to incompressible fluids, that is, to those for
which © =~ constant. This includes all liquids. In this chapter isothermal con-
ditions are assumed so as to eliminate thermodynamic effects, some of which are
discussed in Chap. 9. Gases flowing with very small pressurc changes may be
considered incompressible, for then p = constant.

8.1 LAMINAR AND TURBULENT FLOW

If the head loss in a given length of uniform pipe is measured at different values
of the velocity, it will be found that, as long as the velocity is low enough to
secure laminar flow, the head loss, due to friction, will be directly proportional to
the velocity, as shown in Fig. 8. 1. But with increasing velocity, at some point
B, where visual observation in a transparent tube would show that the filow
changes from laminar to turbulent, there will be an abrupt increase in the rate at
which the head loss varies. If the logarithms of th.zce two variables are plotted on
linear scales or if the values are plotted directly on log-log paper, it will be found
that, after a certain transition region has been passed, lines will be obtained with
slopes ranging from about 1.75 to 2.00.

It is thus seen that for laminar flow the drop in energy due to friction varies
as V, while for turbulent flow the friction varies as V", where n ranges from about
1.75 to 2. The lower value of 1.75 for turbulent flow is found for pipes with very
smooth walls; as the wall roughness increases, the value of n inereases up to its
maximum wvalue of 2. ’

Log-log plot

i~
A /
I_aminar}:{ Transition Turbulent
ASU
'1’_?

Figure 8.1 Log-log plot for flow in a uniform pipe.
(n = 2.00, rough-wall pipe;n = 1.75 smooth-wall pipe.)
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The points in Fig. 8.1 were plotted directly from Osborne Reynolds’ mea-
surements and show decided curves in the transition zone where values of n are
even greater than 2. If the velocity is gradually reduced from a high value, the
line BC will not be retraced. Instead, the points lie along curve CA. Point B 1s
known as the higher critical point, and A as the lower critical point.

However, velocity is not the only factor that determines whether the flow 1s
laminar or turbulent. The criterion is Reynolds number, which has been dis-
cussed in Sec. 7.4. For a circular pipe the significant linear dimension L is usually
taken as the diameter D, and thus

DVp DV
e y” =
where any consistent system of units may be used, since R 1s a dimensionless
number.’

R (8.1)

1 It is sometimes convenient to use a “hybrid”™ set of units and compensate with a correction
factor. Thus by substituting V = Q/4 and V = G/yA into Eqg. (8.1), we get

R = 1.270/vD = 1.27G/ugD,

where @ and G are defined in the Notation in the front of the book. The last form is especially
convenient in the case of gases; it shows that in a pipe of uniform diameter the Reynolds number is
constant along the pipe, even for a compressible fluid where the density and velocity vary, if there is
no appreciable variation in temperature to alter the viscosity of the gas.

B2 CRITICAL REYNOLDS NUMBER ]

The upper critical Reynolds number, corresponding to point B of Fig. 8.1, is
really indeterminate and depends upon the care taken to prevent any initia
disturbance from affecting the flow. Its value is normally about 4,000, but lam-
inar flow in circular pipes has been maintained up to values of R as high as
50,000. However, in such cases this type of flow is inherently unstable, and the
least disturbance will transform it instantly into turbulent flow. On the othe:
hand, it is practically impossible for turbulent flow in a straight pipe to persist at
values of R much below 2,000, because any turbulence that is set up will be
damped out by viscous friction. This lower value is thus much more definite than
the higher one and is really the dividing point between the two types of flow,
Hence this lower value will be defined as the true critical Reynolds number. How-
ever, this lower critical value is subject to slight variations. Its value will be
higher in a converging pipe and lower in a diverging pipe than in a straight pipe.
Also, its value will be less for flow in a curved pipe than in a straight one, and
even for a straight uniform pipe its value may be as low as 1,000, where there i1s
an excessive degree of roughness. However, for normal cases of flow in straight
pipes of uniform diameter and usual roughness, the critical value may be taken as
R = 2,000.

For water at 20°C the kinematic viscosity is 1.00 =< 107° m?/s, and for this case
the critical Reynolds number is obtained when

DV_ ., = Rpr = 2,000 x 100° m?/s = 0.002 m?/s

Thus, for a pipe 25 mm in diameter, Vern = 0.002/0.025 = 0.08 m/s

Or if the velocity were 0.8 m/s the diameter would be only 2.5 mm. Velocities or pipe
diameters as small as these are not often encountered with water flowing in practical
engineering, though they may be found in certain laboratory instruments. Hence, for
such fluids as water and air, practically all cases of engineering importance are in the
turbulent-flow region. But if the fluid is a viscous oil, laminar flow is often
encountered.
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|Illustrative Example 8.1] An oil (s = 0.85, v = 1.8 x 10~ * m?/s) flows in a 10-cm-diameter pipe ai
0.50 L/s. Is the flow laminar or turbulent?

Q _ 500 cm?3/s
A  m(10)2 cm?/4

V = = 6.37 cm/s = 0.0637 m/s

DV  0.10 m(0.0637 m/s)
v 1.8 x 105 m?Z/s

(8.3 HYDRAULIC RADIUS]]

For conduits having noncircular cross sections, some value other than the diam-
eter must be used for the linear dimension in the Reynolds number. Such a
characteristic is the hydraulic radius, defined as

A

R, =2 (8.2)

where 4 is the cross-sectional area of the flowing fluid, and P 1s the werred
perimeter, that portion of the perimeter of the cross section where there is
contact between fluid and solid boundary. For a circular pipe flowing full,
R, = nr?/2nr = r/2, or D/4. Thus R, is not the radius of the pipe, and hence the
term “radius” is misleading. If a circular pipe is exactly half full, both the area
and the wetted perimeter are half the preceding values: so R, is r/2, the same as if
it were full. But if the depth of flow in a circular pipe is 0.8 times the diameter, for
example, A = 0.674D? and P = 2.21D, then R, = 0.304D, or 0.608r.

The hydraulic radius is a convenient means for expressing the shape as well
as the size of a conduit, since for the same cross-sectional area the value of R,
will vary with the shape.

In evaluating the Reynolds number for flow in a noncircular conduit (Sec.
8.13) it is customary to substitute 4R, for D in Eq. (8.1).

(8-4 GENERAL EQUATION FOR CONDUIT FRICTION]

R =

= 354 Since R < 2,000, the flow is laminar.

The following discussion applies to either laminar or turbulent flow and to any
shape of cross section.

Consider steady flow in a conduit! of uniform cross section A4 (Fig. 8.2). The
pressures at sections 1 and 2 are p; and p». respectively. The distance between
1 This conduit can have any shape of cross section; it need not be circular.
sections is L. For equilibrium in steady flow, the summation of forces acting on
any fluid element must be equal to zero (ie, > F = ma = 0). Thus, in the direc-
tion of flow,

p; A —p,A—yLAsinax — To(PL)=0 (8.3)
where To, the average shear stress (average shear force per unit area) at the
conduit wall, is defined by P

Ty EF
- Jo
By (8.4)

in which 7, is the local shear stress’ acting over a small incremental portion dF
of the wetted perimeter.
1 The local shear stress varies from point to point around the perimeter of all conduits (irrespec-

tive of whether the wall is smooth or rough) except for the case of a circular pipe flowing full where
the shear stress at the wall is the same at all points of the perimeter. '

2 Here we are using the FLT system, while in Chap. 7 the MLT system was used. It makes no
difference which system is used since the results are the same. '

Noting that sin « = (z, — z,)/L. and dividing each term i1n Eq. (8.3) by yA4
ives PL
g1 .‘.’i e p_z S ‘22 —+ 21 e ‘fo b
¥ P ] rA
From the left-hand sketch of Fig. 8.2 it can be seen that
hy =(z; + pJp) — (22 + P2/7)
MEP 579 Applications of Pipe Lines Page 3 /38
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Substituting k, for the right side of this expression and R, for 4/FP in Eq. (8.5)

we get, o i L
r To R,y (8.6)

This equation is applicable to any shape of uniform cross section regardless of

whether the flow is laminar or turbulent.
For a smooth-walled conduit, where wall roughness (discussed in Sec. 8.9)

may be neglected, it might be assumed that the average fluid shear stress T, at the
wall is some function of p, u, ¥ and some characteristic linear dimension, which

will here be taken as the hydraulic radius R, . Thus
zo — KREp uvV™ - WET

where K is a dimensionless number. Substituting 1in Eq. (8.7) dimensional values
of F, I., and T for force, length, and time, we get?
FL % = KEAFLE TN FL2TYET Y9
As the dimensions on the two sides of the equation must be the same,
For F: 1 =5b + ¢ For I.: —2=a—4b — 2c + n For T: O=2b 4+ c+n
The solution of these three simultaneous expressions in terms of nis a =n — 2,
b=n—1,¢c¢ =2 — n.
Inserting these values of the exponents in Eq. (8.7), the result is
%°=KRE-PZPH—1#2—NVH (8.8)‘

This may be rearranged as
n—22 2
Tg = K(W) pVZ: =2KR" 2p VT (8.9)

for R, Vp/u is a Reynolds number with R, as the characteristic length.
Grouping the dimensionless terms on the right side of Eq. (8.9) into a single

term C ., we get

C,p = 2KR"™ 2 (8.10)
VZ
Hence Tg = C,rp o (8.11)
Inserting this value of T, in Eq. (8.6) and noting that y = pg,
L =2
hy = C, R, 35 (8.12)

which may be applied to any shape of smooth-walled cross section. Later it will
be shown (Sec. 8.11) that this equation also applies to rough-walled conduits.

(8.5 PIPES OF CIRCULAR CROSS SECTION]
In Sec. 8.3 it is shown that for a circular pipe Hlowing tull R, = D/4. Substituting
this value in Eq. (8.12), the result (for both smooth-walled and rough-walled

conduits) 1s L 2
B, B :
L k3 D 2g (8.13)
where S =4C, = 8KR"~2 (8.14)

Eguation (8.13) is known as the pipe-friction equation, and is also commonl}
referred to as the IDarcy-Weisbach equation.' Like the cocfficient C ., the frictior
factor f is dimensionless and is also some function of Reynolds number. Muct

! In a slightly different form where D is replaced by the hydraulic radius R,, Eq. (8.13) is known as
the Fanning equation which is widely used by chemical enginecrs.
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resecarch has been directed toward determining the way in which f varies with R
and also with pipe roughmness. The pipe-friction equation expresses the fact that
the head lost in friction in a given pipe can be expressed in terms of the velocity
heacd. The eqguation 1s dimensionally homogeneous and may be used with any
consistent system of units.

Dimensional analysis gives us the proper form for an equation but does not
yield a numerical result since it is not concerned with abstract numerical factors.
Hence it shows in Tig. (8.8) that whatever the wvalue of the exponent of ¥, the
exponents of all the other quantities involved are then determined. It also shows
that Eq. (8.13) is a rational expression for pipe friction. But the numerical values
of such quamntities as K, n, and f must be determined by experiment or other
means. For a circular pipe flowing full, Eq. (8.6) muay be written as

- L Ty 2l
Bl o B B 8.15
i ° R,y roy : d
where the shear stress at the wall, Tt — T4, because of symmetry, and .R,,V: ro/2
where 5 is the radius of the pipe

e pipo.

Following a development similar to that of HEgs. (E.3) to (B
circle that 4 = 7r? and P = 27, it can be shown that for a
fluid concentric to the pipe, b,

R
= Rag I

cvli T b
= t2L/ry where T is the shear stress in the fluid 2

r . -

8 1io
ro ¢ )
or the shear stress 1s zero at the cente

of the pipe and increases linearly with the
radius to a maximum value ©, ai the

as in Fig. 8.3. This is true regardiess of

¢
g
=

whether the flow is lamunar or turbulent.
From Egs. (8.6) and (8.13) and substituting R, — D/4 for a circular pipe, we
obtain 5 2 £ -2
To =L P55 =5V (8.17)
== = -r < of
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Figure 83 Velocity profile in laminar flow and distribution of shear stress.

With this equation, 7, for flow in a circular pipe may be computed for any
experimentally determined value of f.

8.6 LAMINAR FLOW IN CIRCULAR PIPES]

In Sec. 1.11 it was noted that for laminar flow © = u du/dy, whe?e u is the value of
the velocity at a distance y from the boundary. As Yo Fig e Ty it is also seen that
t = — u du/dr; in other words, the minus sign indicates that 1+ decreases as r

increases. The coefficient of viscosity g is a constant for any particular fluid at a
constant temperature, and therefore if the shear varies frorp zero at the center of
the pipe to a maximum at the wall, it follows that the velocity p_roﬁle m.ust have a
zero slope at the center and have a continuously steeper velocity gradient as the
wall is app'roached. _ ] _ )

To determine the velocity profile for laminar flow in a circular pipe the

expression T = u du/dy is substituted into the expression h; = t2L/ry.
2L du 2L o ii_IiZL
S b= TRy T T HE
hyy
From this du = — 3L r dr

MEP 579 Applications of Pipe Lines Page 5 /38 Dr. Mohsen Soliman, ACC Manager



Integrating and determining the constant of integration from the fact that
u = u,,., when r = 0, we obtain

hyy
HUmax 4,(J-L = = u
From this equation it is seen that the velocity profile is a parabola, as shown in
Fig. 8.3. WNote that k = h,y/4ul.

i = max kr= (8'18)

Substituting the boundary condition that u = O when r = r, into the second
expression of Eq. (8.18) and noting that v .. = V., the centerline velocity, we find
k = V,/r3d. Thus Eqg. (8.18) can be expressed as

= V. — (Vofidy™ = V1 — r2/ry) (8.19)
Cqmbining Egs. (8.18) and (8.19) we get an expression for . as follows
Fg g h
V= tax = X0 73 = EL_p?2 (8.20)

Adpl. @ 16uL

Equation (8.18) may be mulriplied by a differential area dA4A = 27r dr and the
product integrated from r =0 to r = r, to find the rate of discharge. As in
previous cases, the rate of discharge is eqguivalent to the volume of a solid
bounded by the velocity profile. In this case the solid is a paraboloid with a
maximum height of u_ ... The mean height of a paraboloid is one-half the max-
imum height, and hence the mean velocity V is 0.5u,,..- Thus

hpy
s M g ; 5
| %4 350 (8.21
From this last equation. noting that v = gpo and u/po = v, the loss of head in
friction is given by F T
"

which is the Hagen-Poiseuille law for laminar flow in tubes. Hagen, a German
engineer, experimented with water flowing through small brass tubes and pub-
lished his results in 1839. Poisecuille, a French scientist, experimented with water
flowing through capillary tubes in order to determine the laws of How of blood
through the veins of the body and published his studies in 1840.
From Eq. (8.22) it is seen that in laminar flow the loss of head 1s proportional
to the first power of the velocity. This is verified by experiment, as shown in Fig.
g€.1. The striking feature of this equation is that it involves no empirical coeffi-
cients or experimental factors of any kind, except for the physical properties of
the fluid such as viscosity and density (or specific weight). From this it would
appear that in laminar flow the friction is independent of the roughness of the
pipe wall. That this is true is also borne out by experiment.
Dimensional analysis shows that the friction loss may also be expressed by
Eq. (8.13). Equating (8.13) and (8.22) and solving for the friction factor f, we
obtain for laminar flow under pressure in a circular pipe,
64v o4
F=5w =

Hence, if R is less than 2,000, we may use Eq. (8.22) to find pipe friction head loss
or we may use Eq. (8.13) with the value of f as given by Eq. (8.23).

(8-7 ENTRANCE CONDITIONS IN LAMINAR FLOW]
In the case of a pipe leading from a reservoir, 11 the entrance 1s rounded so as to
avoid any initial disturbance of the entering stream, all particles will start to flow
with the same velocity, except for a very thin film in contact with the wall
Particles next to the wall have a zero velocity, but the velocity gradient is here
extremely steep, and with this slight exception, the velocity is uniform across the
diameter, as shown in Fig. 8.4. As the fluid progresses along the pipe, the stream-
lines in the vicinity of the wall are slowed down by friction emanating from the
wall, but as Q is constant for successive sections, the velocity in the center must
be accelerated, until the final velocity profile is a parabola, as shown in Fig. 8.3.
Theoretically, an infinite distance is required for this, but it has been established
both by theory and by observation that the maximum velocity in the center of
the pipe will reach 99 per cent of its ultimate value in the distance L’ = Q.058RD.*
Thus, for the critical value R = 2,000, the distance I’ of Fig. 8.4 equals 116 pipe
* H. L. Langhaar, Steady Flow in the Tran§ition Length of a Straight Tube, J. Appl. Mech., vol.
10, p. 55, 1942, -

(8.23)
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Figure 8.4 Velocity profiles along a pipe in laminar flow.

diameters. In other cases of laminar flow with Reynolds numbers less than 2,000,
the distance L’ will be correspondingly less in accordance with the expression
L' = 0.058RD.

In the entry region of length L’ the flow is unestablished; that is, the velocity
profile is changing. In this region the flow can be visualized as consisting of a
central core in which there are no frictional effects and an annular zone extend-
ing from the core outward to the pipe wall. This outer zone increases in thickness
as it moves along the wall and is known as the boundary layer. Viscosity in the
boundary layer acts to transmit the effect of boundary shear inwardly into the
flow. At section AB the boundary layer has grown until it occupies the entire
section of the pipe. At this point, for laminar flow, the velocity profile is a perfect
parabola. Beyond section AB the velocity profile does not change, and the flow is
known as established flow.

As shown in Prob. 4.1 for a circular pipe, the kinetic energy of a stream with
a parabolic velocity profile is 2V*/2g, where V is the mean velocity. At the
entrance to the pipe the velocity is uniformly ¥ across the diameter, except for an
extremely thin layer next to the wall. Thus, at the entrance to the pipe, the kinetic
energy per unit weight is practically ¥?/2g. Hence, in the distance L', there is a
continuous increase in kinetic energy accompanied by a corresponding decrease
in pressure head. Therefore, at a distance L’ from the entrance, the piezometric
head is less than the static value in the reservoir by 2V ?/2g plus the friction loss
in this distance.

Laminar flow has been dealt with rather fully, not merely because it is of
importance in problems involving fluids of very high viscosity, but especially
because it permits a simple and accurate rational analysis. The general approach
used here is of some assistance in the study of turbulent flow, where conditions

are so complex that rigid mathematical treatment is impossible.

Ilustrative Example 8.2| For the case of Illustrative Example 8.1 find the centerline velocity, the
velocity at r = 2 cm, the friction factor, the shear stress at the pipe wall, and the head loss per meter
of pipe length.

Since the flow 1s laminar, V, =2V = 12.7 cm/s U= Uy, — kU, =V, =127 cm/s

VWhen r = rg = 5 cm, u = 0, hence 0= 12.7 — k(5)*
k = 0.51/(cm - 8) Uy o = 127 — 0.51(2)* = 10.7 cmi/s
64 64 2 2
oo - 0.18 (6.37 cmy/s)
T =M1 ;i il o 85 o 3
R 354 To T A =) {O0.85 g/cm™) =
g N-s52 100 cm -
= Q.77 = 0.077 IN/m
e = (cm-s) kg-m m /
1 = 1 (0.0637 m/s)*

S B e = 0.00037 m,/m
Ha Es S D 2Zg RS 0.10m 2(9.81 m/s%) /
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8.8 TURBULENT FLOW]

In Sec. 3.1 it was explained that in laminar flow the fluid particles move in

straight lines while in turbulent flow they follow random paths. Consider the case
of laminar flow as shown in Figs.

R8.5a and 8.5 where the wvelocity u increases
with yv. Even though the fluid particles are moving horizontally to the right,
because of molecular motion, molecules will cross line ab and will thereby trans-
port momentum. On the average, the velocities of the molecules 1in the slower
moving fluid below the line will be less than those of the faster moving fluid
above: the result is that the molecules which cross from below tend to slow down
the faster moving fluid. Likewise, the molecules which cross the line ab from
above tend to speed up the slower moving fluid below. The result is the produc-
tion of a shear stress along the surface whose trace is ab, the value of which is

given in Sec. 1.11 as t — p du/dy. This equation is applicable to laminar flow
only.
y -
u+ Au UJ J
|

a_h*IT_T__F?*#__ a““‘???‘?‘?‘
5 SePy i TR e e s R T N T e

(b) Laminar flow

g /
p Bl s b
=

{c) Turbulent flow

Velocity u

(a) Velocity profile.

Figure 8.5 (a) Velocity profile. (b) Laminar flow (transfer of molecules across ab). (c) Turbulent flow
(transfer of finite fluid masses across ab). - : : Fiiet

Let us examine some of the characteristics of turbulent flow to see how it
differs from laminar flow. In turbulent flow the velocity at a point in the flow
field fluctuates in both magnitude and direction.' As a consequence a multitude
of small eddies are created by the viscous shear between adjacent particles. These
eddies grow in size and then disappear as their particles merge into adjacent

eddies. Thus there is a continuous mixing of particles, with a consequent transfer
of momentum.

[First Expression|

In the modern conception of turbulent flow, a mechanism similar to that de-
scribed in the foregoing for laminar flow is assumed. However, the molecules are
replaced by minute but finite masses (Fig. 8.5¢). Hence, by analogy, the shear

stress along the plane through ab in Fig. 8.5 may be defined in the case of
turb t B d
arblen i Turbulent shear stress — 77 EE (8.24)

But unlike u, the eddy-viscosity »n is not a constant for a given fluid at a given
temperature, but depends upon the turbulence of the flow. It may be viewed as a
coeflicient of momentum transfer, expressing the tramnsfer of momentum from
points where the velocity is low to points where it is higher, and vice wversa. Its
magnitude may range {from zero to many thousand times the value of u. How-
ever, its numerical value is of less interest than its physical concept. In dealing
with turbulent flow it is sometimes convenient to use kinematic eddy viscosity
e = n/p which is a property of the flow alone, analogous to kKinematic viscosity.

In general, the total shear stress in turbulent flow is the sum of the laminar

shear stress plus the turbulent shear stress, i.e.,

du du du
In turbulent flow the second term of this equation is usually many times larger
than the first term.

In turbulent flow the local axial velocity has been shown, in Sec. 3.4 (see Fig.
3.6), to have fluctuations of plus and minus «’, and there are also fluctuations ol
plus and minus v and w’ normal to v as shown in Fig. 8.6b. As 1t is obvious that
there can be no values of v next to and perpendicular to a smooth wall, turbu-
lent flow cannot exist there. Hence, mear a smooth wall, the shear 1s due tc
laminar How alone and T = udu/dy. It should be noted that the shear stress
always acts to cause the velocity distribution to become more uniform.

1 The velocity at a point in a so-called “steady™ turbulent flow can be best visualized as a vecto:

that Huctuates in both direction and magnitude. The mean temporal velocity at that point corre
sponds to the “average™ of those vectors.
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(a) Prandtl’s mixing length [ () Instantaneous local velocity in turbulent flow.

At some distance from the wall, such as 0.2, the wvalue of du/dy becomes
small in turbulent Aow, and hence the viscous shear becomes negligible in com-
parison with the turbulent shear. The latter can be large, even though du/dy is
small, because of the possibility of » being very large. This is due to the great
turbulence that may exist at an appreciable distance from the wall. But at the
center of the pipe, where du/dy is zero, there can be no shear at all. Hence, in
turbulent flow as well as in laminar flow, the shear stress is a maximum at the
wall and decreases linearly to zero at the axis, as shown in Fig. 8.3 and proved in

Sec. 8.5.

[Second Expression|
Another expression for turbulent shear stress may be obtained which is different
from that in Eq. (8.24). Thus in Fig. 8.5q, if a mass m of fluid below ab, where the
temporal mean axial velocity is u, moves upward into a zone where the temporal
mean axial velocity is u + Auwu, its initial momentum in the axial direction must be
increased by m Au. Conversely, a mass m which moves from the upper zone to
the lower will have its axial momentum decreased by m Au. Hence this transfer of
momentum back and forth across ab will produce a shear in the plane through
ab proportional to Aw. This shear is possible only because of the wvelocity profile
shown. If the latter were vertical, Au would be zero and there could be no shear.
If the distance Ay in Fig. 8.5a is so chosen that the average value of +u’ in
the upper zone over a time period long enough to include many velocity fluctu-
ations is equal to Auw, i.e, Auw = ||, the two streams will be separated by what is
known as the Prandtl mixing length I, which will be referred to later. Comnsider,
over a short time interval, a mass moving upward from below ab with a velocity
v’ ; it will transport into the upper zone, where the velocity is © + ', 2a momentum
per unit time which is on the average equal to (v dAY(z). The slower moving
mass from below ab will tend to retard the flow above ab; this creates a shear
force along the plane of ab. This force can be found by applying the momentum
principle [Eq. (6.6)], F = tdAdA — pO(AV) = p(v' dA) (e + 1" — u) = pu'v’' dA4. Thus,
over a time period of sufficient length to permit a large number of wvelocity
fluctuations, the shear stress given by

) T = F/dA — —pu'v’ (8.26)
where wu'v’ is the temporal average of the product of ' and v'. This is an alternate
form for Egq. (8.24), and in modern turbulence theory — pu'v’ is referred to as the

Revnolds stress.

The minus sign appears in Eg. (8.26) because the product w'v” on the average
is negative. By inspecting Fig. 8.5a it can be secen that + ¢’ is associated with e’
values more than with -+ 1’ values. The opposite is true for —'. Even though the
temporal mean values of ' and »° are individually egual to zero, the temporal
mean value of their product is not zero. This is so because combinations of —+ o’

and —wu and of — v and + ' predominate over combinations of 4+ v and —+ '
and —v» and —w' respectively.
Prandtl recasoned that in any turbulent flow || and |»'|] must be propor-

tional to each other and of the same order of magnitude. He also introduced the
concept of mixing length [, which is defined as the distance one must move

]

transversely to the direction of flow such that Au = |u’'|. From Fig. 8.6aq it can be
seen that Au = ! du/dy and hence |w'| = [ du/dy. If || o || and if one permits [
to account for the constant of proportionality, Prandtl® has shown that VA b

varies as I?(du/dyv)?. Thus dre™\2
T = — pu'v = plz( ) (8.27)
dy

This equation expresses terms that can be measured. Thus in any experiment
where the pipe friction is determined, 7, can be computed by Eqg. (8.53), and v at
any radius is then found by Egqg. (8.14). A traverse of the velocity across a pipe
diameter will give v at any radius, and the velocity profile will give di/dy at any
radius. Thus Eqg. (8.27) enables the Prandtl mixing length [ to be found as a
function of the pipe radius. The purpose of all of this is to enable us to develop
theoretical equations for the wvelocity profile in turbulent flow, and from this in
turn to develop theoretical equations for f. the friction coefficient.
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B.9 VISCOUS SUBLAYER IN TURBULENT FLOW]

In Fig. 8.4 it is shown that, for laminar fiow, if the fluid enters with no initial
disturbance, the velocity is uniform across the diameter except for an exceedingly
thin film at the wall, inasmuch as the wvelocity next to any wall is zero. But as
flow proceeds down the pipe, the velocity profile changes because of the growth
of a laminar boundary laver which continues until the boundary layvers from

opposite sides meet at the pipe axis and then there is fully developed laminar
flow.

If the Reynolds number is above the critical value, so that the flow is turbu-
lent, the initial condition is much like that in Fig. 8.4. But as the laminar bound-
ary layer increases in thickness, a point is soon reached where a transition occurs
and the boundary layer becomes turbulent. This turbulent boundary laver genei-
ally increases in thickness much more rapidly, and soon the two from opposite
sides meetr at the pipe axis, and there is then fully developed turbulent flow.

This initial laminar boundary layer may be given a Reynolds number such as
R, = Ux/v, where U is the uniform velocity and x is the distance measured rom
the iniual point. When x has such a value that this R, is about 500,000, the
transition occurs to the turbulent boundary laver. Fully developed turbulent flow
will be found ar about 50 pipe diameters from the pipe entrance for a smooth
pipe with no special disturbance at entrance:; otl rwise the turbulent boundary
layers from the two sides will meet within a shorter distance. It
developed turbulent flow that we shall consider in ail that follows.

There can be no turbulence next to a smooth wall since it 1s impossikle for o
to have any value at a solid boundary. Therefore immediately adjacent to a
smooth wall there will be a laminar or viscous sublayer, as shown in Fig 8.7,
within which the shear i1s due to wviscosiity alone. This viscous sublayer is ex-
tremecly thin, nsually only a few hundredths of a millimeter, but its effoct is great
because of the very steep velocity gradient within it and because v = u du/dy in
that region. At a distance from the wall the viscous cffect becomes negligible, but
the turbulent shear is then large. Between the two there must be a transition zone
where both types of shear are significant. It is evident that there can be no sharg
lines of demarcation separating these three zones, inasmuch as one must merge
gradually into the other.

By plotting a velocity profile from the wall on the assumption that the flow is
entirely laminar (Sec. 8.6) and plotting another velocity profile on the assumption
that the flow is entirely turbulent (Sec. 8.10), the two will intersect, as shown in

Fig. 8.8. It 1s obvious that there can be no abrupt change in profile at this poini

is this fully

¥ =
Laminar boundary layer l " ;.':%;.:
S ke W C‘?—Q.
_ S o
Turbulent T et Turbulent ‘ g
boundary r ‘X’ 7 zone S
layer r
Uniform flow U o i Fully developed _—— c /\oc-"c\\,\'}
e turbulence il )
y ISP
U Transition. of - \3’6;‘\\@\)
. zone ofe” °
Viscous sublayer - SEEPCRS - =
b 7 b T Nominal
< thickness
b % /1 ‘Lii ¥ visc?ctus
- i oo = &, True laminar bl
- ] = y]_ if Forne sublayer
Figure 8.7 Development of boundary layer in a pipe (scales much distorted). 2 ' g 1 %

Figure 8.8 Velocity profile near a solid wall (vertical scale greatly exaggerated).
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of intersection. but that one curve must merge gradually into the other, as shown
by the experimental points.

Any value taken for the thickness of this wviscous sublayer must be purely
arbitrary. The simultancous solution of the egquations for the two curves, together
with some experimental factors, will give the value of y for point b as follows

P (. N (8.28)
~STole
where &, is referred to as the nominal thickness of the viscous sublayer. The tran-
sition curve ac determined by measurements indicates that a is a better limit of
the wviscous-sublayer thickness. Present information is that the thickness of the
viscous sublayer out to point a is approximately

%

S (8.29)
~ TolP
In a circular pipe the laminar velocity profile has been shown to be a parabola

but in this extremely thin region near the wall it can scarcely be distinguished
from a straight lime.

S5, = 3.5

The transition zodne may be said to extend from a to c

: in Fig. 8 8. For the
latter point the value of y has been estitmated to be about 70v/ /to/p. Beyond this
the flow is so turbulent that wviscous shear is negligible.

From Eg. (8.15)

To A
P A
and making this substitution 32 By
- y Gy = ——— (2.3
in Ea (828)y wec obtain 1,—1_._.Hf

from whichk it is seen that the higher the welocity or the lower the Kimematic
Viscosity, the thinner the wviscons sublaver.
cter, the
IMICTEAaSES.

Thus, for a given constant pipe dizrm-
thickness of the wiscous sublayver decreases as the Reynolds number

It is mow in order to discuss what 1s meant by a smooth wall.
such thing in realfty as a mathematicailiy smoeoith surface. But if the irTegularities
cn any actual surface are such that the effects of the projections do not plerce
through the wiscous sublaver [Fig. 8.8), the surface is hAyvdrawlically smooth from

the fivid-mechanics viewpoint. If the effects of the pr-::uectu:}ns extend beyvond the
Euhi"d}rﬂl—, the laminar J.HFI:I’ is Broken up and the a1 fore

broken up and the surfaococ iz o leongoer BEydraaslh-
cally smmooth. To be more specific, in Fig. 8.% if &, > 6e, the pipe Wil behave as
thowugh it is bydraulically smooth, while if &, < 0.3e, the pipe will behave as
wholly rowgh, the significance of whicn is discussed in Sec B.10. In between these
walaes, ie., with Ge > &, > 0.32 the pipe will behave in a transitional mode;
is, mneither hydraulically smooth nor wholly rougn.

Inasmuch as the thickness of ‘he viscowus sublayver in a given pipce will de-
crease with an increase in Reynolds number, it is scen that the same pipe may b«
hydraulicaily smooth at low Reynolds numbers and rough at high Reyoold:
numbers. Thus, even a relatively smooth pipe may behave as a rough pipe if th
Reynolds number is high enough. It is also apparcnt that, with increasing Rey
nolds number, there s a gradual (ransitfon from smeooth to rough pipe Aow
Thesz concepts are dspicted schematically in Fig 8.9, where 2 is the sguivalen
height of the rouzhness projeciion.

There is mo

cthazat

8.10 VELOCITY PROFILE IN TURBULENT FLOW

Prandtl reasoned that turbulent flow 1in a pipe is strongly influenced by the flow
pheromena near the wall. Im the vicinity of the wall, T = 7o. He assumed that thse
mixing length [ near the wall was proportional to the distance from the wall, tha

i S, () th =
Q ﬁ ? l; Z D_ Te Figure 8.9 Turbulent flow near boundary. (@) Relatively

T AT == low R, §, = e. If 5, > 6e pipe bechaves as a smmooth pipe
&) (b} Relatively high R, &, < e. If &, << 0.3# pipe behaves a:

a wholly rtough pipe.

IS; ﬂ ? ﬂ Z s ; ﬁ ? l 4 =

T - L i e,

is, | = Ky. By -EJ{p&l'i]]'-jE]]‘E it has been determined that K has a wvalue of 0.40.*
Using these assumptions and applying Eq. (8.27), we get

du™ = 1 T d¥
ot = pl2[ E= ) = pK2yp2 — - JTo
T ®F Th ol (dy) (d_}r) e I =

from which w = 2-5\”% In y + C

1 [f the filuid is not clear. ie. il it is carrving particles in suspension. K will have a value less tham Q.4

MEP 579 Applications of Pipe Lines Page 11 /38 Dr. Mohsen Soliman, ACC Manager



The constant € may be evaluated by noting that u = w . when y = ro- Substitut-
ing the expression for C, replacing y by ro — 7. and transforming to log, the
eguation becomes

T r
U = u — 2.5\/‘:} n — 1% = u . — 5-75\/5 log —2— (8.31)
DR o ro — I P P —F

Although this equation is derived by assuming certain relations very mear to
the wall, it has been found to hold practically to the axis of the pipe.

Starting with the derivation of Eq. (8.27), this entire development is open to
argument at nearly every step. But the fact remains that Eq. (8.31) agrees wvery
closely with actual measurements of velocity profiles for b:oth -smooth _and rough
pipes. However, there are two zones in which the equation 1s c!efectlve. At the
axis of the pipe du/dy must be zero. But Eq. (8.31) is logarithmic and does;. not
have a zero slope at » = 0, and hence the equation gives a velocity proﬁle'WIth a
sharp point (or cusp) at the axis, whereas in reality it is rounde_d at the axis. This
discrepancy affects only a very small area and involves very slight error in com-
puting the rate of discharge when using Eq. (8.31). LT .

Eguation (8.31) is also not applicable very close to the wall. In fac_t 1t‘1nd1-
cates that when » = rgo, the value of u is minus infinity. The eguation indicates
that « — O. not at the wall, but at a small distance from it, shown as y, in Fig. 8.8.
However, this discrepancy is well within the confines of the wviscous sublayer,
where the equation is not supposed to apply. Moreover as the wviscous su_blayer is
very thin, the Sow within it has very little effect upon the total rate of discharge.

Hence, although Eq. (8.31) is not perfect, it is reliable except for these two
small areas, and thus the rate of discharge may be determined with a high degree
of accuracy by using the value of u given by it and integrating over the area of

the pipe. Thus O = fu d4 = 27 J- wr dr
o

Substituting the first expression of Eq. (8.31) for w, integrating and dividing by th«
pipe area nrd, the mean velocity ist

V = o — 2.5 /I—E {11‘1 ro — i rror In(z, — r drﬁs

N, T3 e e T e |
. . i s 3 - To =
This equation reduces to V = tUmax — 5 < AD\{}_; — e 1.331V./f (8.32
From this last equation the pipe factor, which is the ratio of the mean to the
maximum velocity, may be obtained. It is
14 1
_—— = (B33
Umax T+ 1L.33. 1 i ’
Using the relatior of Fa 833 in Ea. (8.31) and replacing /1o/0 by [/ FVZ/8, the
result’ iS 1 T VAV A S v ?‘0
u=(1+ 133 /) — 204/ f Viog (8.34
Fo — F ’

which enables a velocity profile to be plotted for any mean velocity and any
value of f in turbulent flow. In Fig. 8.10 may be seen profiles for both a smooth
and a rough pipe plotted from this eguation. The only noticeable difference

e —— e ————
e

A e Pt S e

——— —_— = i
Smooth pipe

Laminar flow
®’rR =107 Ff=0.012

"’ <<2,000

{
;

i
Rough pipe ———
R =10" f=—0.04 |

|

—

T
Figure 8.10 WVelocity profiles for egual flow rates.

! The integral results in indeterminate values at r = r,;, as we should expect, inasmuch as the
equation for v does not realiy apply close to the wall. However, these have been shown to reduce tc

negligible quantities. See B. A. Bakhmeteff, “The Mechanics of Turbulent Flow,” p. 70, Princeton
University Press, Princeton, N.J., 1941.
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between these and measured profiles is that the latter are more rounded at the
axis of the pipe.’ : ;

Comparing the turbulent-flow-velocity profiles with the laminar-flow-
velocity -profile (Fig. 8.10) shows the turbulent-flow profiles to be much flatter
near the central portion of the pipe and steeper mear the wall. It is also seen that
the turbulent profile for the smooth pipe is flatter mear the cemntral sectiom (G.e
'!:)lunter} than for the rough pipe. In contrast, the velocity profile in laminar ﬂov:
is independent of pipe roughness. .

As a theoretical eguation has mow been derived for the wvelocity profile for
turbulent flow in circular pipes, it is also possible to derive eguatioms for the
kinetic-energy and momentum-correction factors when mean wvelocities are used
These eguations are? i

o= 1 4 2. 7f (B.35a) B =1 + 0.98f (8.3558)
IMustrative Example 8.3 The head loss in 60 m of 15 cm-diameter pipe is known to be 8 m when oil
(s = 0.90) of viscosity 0.04 N-s/m? flows at 0.06 m~/s. Determine the centerline velocity, the shear stress

at the wall of the pipe, and the velocity at 5S cm from the centerline.
The first step is to determine whether the flow is laminar or turbulent.
Q 0.06 DVp  0.15(3.4)(0.9 X 1000)

V= = = = i R = —_—
A 0.01767 i P 0.04 L

Since R > 2,000, the flow is turbulent. Using Eq. (8.12), the friction factor can be found:
_ hDQRg) _ 8(0.15)(19.62)
LY2 60(3.4%)

From Eq. (8:33), wpa = V(1 + 1.33./f) = 3.4(1 + 1.33/0.034) = 4.2 m/s

Equation (8.15) yields o fpVvz L 0.034(0.9 x 1000)(3.4)>
8 8

1 Although the preceding theory agrees very well with experimental data, it is not absolutely

correct throughout the entire range from the axis to the pipe wall, and present indications are that

some slight shift in the numerical constants will agree somewhat more closely with test data. Thus, in

Eqgs. (8.33) and (8.34) the 1.33 may be replaced by 1.44, and in Eq. (8.34), although many writers use 2

instead of 2.04, a better practical value seems to be 2.15.

2 L. F. Moody, Some Pipe Characteristics of Engineering Interest, Houille Blanche, May June,
1950.

Finally, from Eq. (8.31),

44 .2 7.5
= s / 1 —_— e o = 4.2 — 1.4 = 2.8 m/s
Us cm 4.2 5.5 5 = 1 o,g,(?‘5 T 5) s

Note that if the flow had been laminar, the velocity profile would have been parabolic and tk
centerline velocity would have been twice the average velocity.

B.11 PIPE ROUGIHNESS])

Unfortunately, there is as yet no scientific way of measuring or specifying the
roughness of commercial pipes. Sewveral experimenters have worked with pipes
with artificial roughness produced by wvarious means so that the roughness could
be measured and described by geometrical factors, and it has been proved that
the friction is dependent not only upon the size and shape of the projections, but
also upon their distribution or spacing. Much remains to be done before this
problem is completely solved.

The most noteworthy efforts in this direction were made by a German €n-
gineer Nikuradse, a student of Prandtl’s. He coated several different sizes of pipe
with sand grains which had been segregated by sieving so as to obtain different
sizes of grain of reasonably uniform diameters. The diameters of the sand grains
may be represented by e, which is known as the absolure roughness. In Sec. 8.4
dimensional analysis of pipe flow showed that for a smooth-walled pipe the
friction factor f is a function of Reynolds number. A general approach, including
e as a parameter, reveals that f = (R, e/D). The term e/D is known as the
relarive roughrness. In his experimental work Nikuradse had values of /D ranging
from 0.000985 to 0.0333.

In the case of artificial roughness such as this, the roughness is uniform.
whereas in commercial pipes it is irregular both in size and in distribution
However, the roughness of commercial pipe may be described by e, which means
that the pipe has the same value of J at a high Reynolds number that would be
obtained if a smooth pipe were coated with sand grains of uniform size e.

For pipes it has been found that-if &, > 6e, the wiscous sublayer completels
submerges the effect of e. Von Karman, using information from Eqg. (8.31) anc
data from Nikuradse’s experiments, developed an eguation for friction factor fo:

such a case: “Smooth-pipe” flow T ey log R\/r_)—" __ 0.8 (8.36)

S5, = Ge= sl B

This equation applies to any pipe as long as &; > 6e; when this condition pre
vails, the flow is known as smooth flow. The equation has been found to bs
reliable for smooth pipes for all values of R over 4,000. For such pipes, ie., drawrzx
tubing, brass, glass, etc., it can be extrapolated with confidence for values of R fa:
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beyond any present experimental values because it is functionally correct, assum-
ing wall surface so smooth that the effects of the projections do not pierce the
viscous sublayer, which becomes increasingly thinner with increasing R. That this
is so is evident from the fact that the formula vields a value of f = 0 for R = oo.
This is in accord with the facts because R is infinite for a ﬂt.lld of zero viscosity,
and for such a case J must be zero.

Blasius? has shown that for Reynolds numbers between 3,000 and 100,000
the friction factor for a very smooth pipe may be expressed approximately as

r=0210 (8.37)

He also found that over this range of Reynolds numbers the velocity profile in a
smooth pipe is closely approximated by the expression

s (i)lﬂ (8.38)

where y = r, — r, the distance from the pipe wall. This eguation is commonly
referred to as the seventh-root law for turbulent-velocity distribution. Though it is
not absolutely accurate, it is useful because it is easy to work with mathemati-
cally. At Reynolds numbers above 100,000 a somewhat smaller exponent must be
used to give good results.

At high Reynolds numbers &, becomes smaller. If 6, = 0.3e, it has been found
that the pipe behaves as a wholly rough pipe: i.e., its friction factor is independent
of the Revnolds number. For such a case von Karman found that the friction
factor could be expressed as

BOURhERPe ™ oy 2l evepuntlion o gl (8.39)

&, = 0. 3e: \,/F o=
The values of f from this equation correspond to the values from the chart (Fig.
£.11), where the lines become horizontal.

In the gap where 6e = &, = 0.3 neither smooth flow [Eq. (8.36)] nor wholly
rough flow [Eq. (8.39)] applies. Colebrook? found that in this intermediate range
an approximate relationship was

Transitional flow 1 /D 2.51

6e > &, > O.3e: i S RS

1 H. Blasius, IDas Ahnlichkeitsgesetz bei Reibungsvorgingen in Fliissigkeiten, Forsch. Gebiere
Ingenieurw., vol. 131, 1913,

2 C. F. Colebrook, Turbulent Flow in Pipes, with FParticular Reference to the Transition Region
between the Smooth and Rough Pipe Laws, J. Inst. Civil Engrs. (London), February, 1939,

8.12 CHART FOR FRICTION FACTOR

As the preceding eqguations for f are very incomnvenient to use, it is preferable to
obtain numerical values from a chart,’ such as Fig. 8.11, prepared by Moody.
This chart is based on the best information available and has been prlotted with
the aid of the eguations of the preceding section. As a matter of convenience,
values for air and water at 15°C have been placed at the top of the chart to save the
necessity of computing Reynolds number for those two typical cases.

The chart shows that thesre are four zones: laminar flow; a critical range
where values are uncertain because the flow might be either laminar or turbulent:
a tramsition zone, where f is a function of both Reynolds nmumber and relative
pipe roughness; and a zone of complete turbulence (rough pipe flow) where the
value of f is independent of Reymnolds number and depends solely upon the
relative roughness.

There i1s no sharp line of demarcation between the transition zone and the
zone of complete turbulence. The dashed line of Fig. 8.11 that separates the
two zones was suggested by R. J. S. Pigott; the eqgquation of this line is
R = 3500/(e/IDD).

For use with this chart, values of € may be obtained from Table 8.1. As the
ratio /D is dimensionless, any units may be used provided they are the same foi

(8.40)

Table 8.1 Values of absolute roughness e for new pip-3

MMillimmeters MMillimmeters
D rawn tubing, brass, lead. glass, centriﬁ.}gally o = R ool stare O Ao o
spun cerment, bituminous lining, transite DOD Shie Sl 15020
Commercial steecl or wrought iron .04 — e GO e O
WwWelded-steel pipe 0046 i et e o
Asphalt-dipped cast iromn ; o122 Galvanized iromn .15
P € iT: TIITL e im ImIT
- e L L e ey e o = _
Hoee- D D in mm D in cm

£ n was the first person to
T Fig. 8.11 is often referred to as a Srtanton diagrarmrm as Stanto
propose such a plot.
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Values of (1.30V) for water at 15°C (diam inm cm x welocity im m/s)
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Figure 8.11 Friction factor for pipes (Moody diagram).
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both. Values of /D for commercial pipe may conveniently be found from Fig.
8.12, which- has also been prepared by Moody. In the use of these charts, as well
as in Eqg. (8.13). the exact walue of the intermal diameter of the pipe should be
used. Except in large sizes, these values differ somewhat from the mominal sizes,
and especially so in the case of very small pipes.

With referemce to the values of e, it must be observed that these are given
here for mew, clean pipes, and evemnr in such cases there may be considerable
variation in the values. Consequently, in practical cases, the value of ¥ may be in
error by -4+ 5 per cent for smooth pipes and by 4 10 per cent for rough ones. For
old pipes values of e may be much higher, but there is much wvariation in the
degree with which pipe roughness increases with age, since so much depends
upon the nature of the fluid being transported. In small pipes there is the added
factor that deposits materially reduce the internal diameter. In addition, the effect
of the roughness of pipe joints may increase the value of f substantially. Hence
Jjudgment must be used in estimating a value of e, and consequently of f.

For complete turbulence, where the friction is directly proportional to =2
and independent of Reynolds number, values of f may be determined for any
assumed relative roughmness. Most practical problems come within the tramnsition
zone, and there it is necessary to have also a definite value of Reynolds number.
Hence, if the problem is to determine the friction loss for a given size of pipe with
a given velocity, the solution. is a direct one. But if the unknown guantities are
either the diameter or the wvelocity or both, the Reyvnolds number is unknown.
However, the wvalue of f changes wvery slowly with large changes in Reynolds
number; so the problem may readily be solved by assuming either a Reynolds
number or a value of f to start with and then obtaining the final solution by
trial. Since f will gemnerally have a wvalue between 0.01 and 0.07, it is best to
assume [ initially and work from there (Illustrative Example 8.4). Only one or
two trials will usually suffice. This procedure is practically the only one that can
be employed where other losses in addition to pipe friction enter into the
problem.?

! Charts involving these same functional relations may be plotted with different coordinates from
those in Fig. 811 and may be more convenient for certain specific purposes, but it is believed that the
form shown is best both for instruction purposes and for general use.

Illustrative Example 8.4 Water at 20°C flows in a 50-cm-diameter welded-steel pipe. If the
energy gradient is 91.006, determine the flow rate. Find also the nominal thickness of the wviscous
sublayer. (Nore.: /D = 0.046/500 = 0.00009.)

h; 1 e 1 2 : 1/2
From Eg. (8.12) W = 0.006 = [ 5 e fﬁiz(g 30 from which V¥ = 0.243/ /%,
g = o
Try f = 0.030, then V = 14 m/s arEid 0w DV 0.5(1.4) e

v 1 x 107°%

For R — 7 x 105 and e/D = 0.00009 the pipe friction chart (Fig. 8.11) indicatc':s F = 0.0136. Since the

f versus R curve is relatively flat, we will assume f = 0.0136 for the next trial.

For this case, ¥V = 0.243/f%2 — 208 m/s and R = 10° For R = 10° the chart indicates f = 0.0131.
For the next trial, let F = 0.0131. This gives V = 2.12m/s and R is stll = 10°, hence

' = 2.12 m/s is the answer. 7(0.5)> :

O = AV = »—4—(2.12) = 0.416 m?3/s
Er (BN Bl 32.8(107° m?/s) 5, — 135 % 10~ m = 0.135 mm
ey "' v/F 212m/s /00131
Note §, — 2.9e, therefore the flow is in the tramnsition zone which is typical.

8.13 FLUID FRICTION IN NONCIRCULAR CONDUITS

Most closed conduits used in engineering practice arec of circular cross sgction;
howewver, rectangular ducts and cross sections of other geometr){ are occasu)nai}y
used. Some of the foregoing egquations may be modified for application to moncir-
cular sections by use of the hydraulic-radius concept. )

The hydraulic radius was defined (Sec. 8.3)as R, = A/FP, w!‘.l_ere A Is_the CTrOSs-
sectional arca and P is the wetted perimeter. For a circular pipe flowing full,
el R (8.41) 5 D — 4R, (8.42)

P Tl 4

These wvalues may be substituted into Eqg. (8.13) and into the expression for

Revnolds number. Thus

h, — J L _Vzr (8.43) B — “4R)Vp (8.44)
4 R, 2g L
From these two expressions the head loss in noncircular cor&duits can be-es—
timated by use of Fig. 8.11, where e/D is replaced by e/4R,. This approach gives
good results for turbulent flow, but for laminar flow the result's are poor, because
in such flow frictional phenomena are caused by wviscous actlonA throughout the
body of the fluid, while in turbulent flow the frictional effect is accqun}:ed for
largely by the region close to the wall; i.e., it depends on the wetted perimeter.
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B.14a EFMPIRICAL EQUATIONS FOR FPIPE FLOW)]
The presentation of friction loss in pipes given 1n Secs. ¥.1 to 8.12 incorporates
the best knowledge available on this subject, as far as application to TNewtonian
fluids (Sec. 1.11) is concerned. Admittedly, however, the trial-and-error type of
solution, especially when encumbered with computations for relative roughness
and Revnolds number, becomes tedious when repeated often for similar con-
ditions, as with a single fluid such as water. It is natural, therefore. that empirical
design formulas have been developed, applicable only to specific fluids and con-
ditions but very convenient in a certain range. Perhaps the best example of such
a formula is that of Hazen and Williams, applicable only to the flow of water in
pipes larger than 5 cm and at velocities less than 3 m/s, but widely used in the
waterworks industry. This formula is given in the form

English umnits: = O.85Cup R °250-54 (8.45)

where &K, (m) is the hydraulic radius (Sec. 8.3), and S = h, /L. the energy
gradient. The advantage of this formula over the standard pipe-friction formula is
that the roughness coefficient Cg gy is mot a function of the Reynolds number and
trial scolutions are therefore eliminated. Values of Cyyy range from 140 for very
smooth, straight pipe down to 110 for new riveted-steel and wvitrified pipe and to
90 or 80 for old and tuberculated pipe.

Another empirical formula, which is discussed 1in detail in Sec. 11.3, 1s the

Mannin formula., which is e
=4 v = 1 pz/3gisz (8.46)
rz

where n is a roughness coefficient, varying from 0.009 for the smooethest brass or
glass pipe. to 0.014 for average drainage tile or wvitrified sewer pipe, to 0.021 for
corrugated metal. and up to 0.035 for tuberculated cast-iron pipe (Table 11.1).
The Manning formula applies to about the same flow range as does the Hazen-
Williams formula.

Nomographic charts and diagrams have been developed for the application
of Egs. (8.45) and (8.46). The attendant lack of accuracy in using these formulas is
not important in the design of water-distribution systems., since it is seldom
possible to predict the capacity requirements with high precision.

(8.15 MINOR LOSSES IN TURBULENT FLOW]

I.osses due to the Jlocal disturbances of the flow in conduits such as changes in
cross section, projecting gaskets, elbows, valves, and similar items are called
mminor losses. In the case of a very long pipe or channel, these losses are usually
insignificant in comparison with the fluid friction in the length comnsidered. But if
the length of pipe or channel is very short, these so-called minor losses may
actually be major losses. Thus, in the case of the suction pipe of a pump, the loss
of head at entrance, especially if a strainer and a foot valve are installed. may be
very much greater than the friction loss in the short inlet pipe.

YW henever the velocity of a flowing stream is altered either in direction or in
magnitude in turbulent flow, eddy curremts are set up and a loss of energy in
excess of the pipe friction in that same length is created.’ Head loss in decelerat-
ing (i.e., diverging) flow is much larger than that in accelerating (i.e.. converging)
flow (Sec. 8.19). In addition., head loss generally increases with an increase in the
geometric distortion of the flow. Though minor losses are usually confined to a
very short length of path, the effects may not disappear for a comnsiderable dis-
tance downstream. T hus an elbow in a pipe may occupy only a small length but
the disturbance in the flow will extend for a long distance downstreaimm.

T he most common sources of minor loss are described in the remainder of
this chapter. Such losses may be represented in one of two ways. They may be
expressed as kK 2/2g. where kK must be determined for each case, or they may be
represented as being equivalent to a certain length of straight pipe, usually ex-
pressed in terms of the number of pipe diameters.

8.16 T.OSS OF HEAD AT ENTRANCE]

Referring to Fig. 8.13, it may be secen that, as fluid from the reservoir enters the
pipe, the streamlines tend to converge, much as though this were a jet issuing
from a sharp-edged orifice, so that at B a maximum velocity and a minimum
pressure are found.® At B the central stream is surrounded by fluid which is in a
state of turbulence but has very little forward motion. Between B and C the fluid
is in a wvery disturbed condition because the stream expands and the wvelocity
decreases while the pressure rises. From C to D the flow is mormal.

It is seen that the loss of energy at entrance is distributed alomg the length
AC, a distance of several diameters. The increased turbulence and vortex motion
in this portion of the pipe cause the friction loss to be much greater tham in a
corresponding length where the flow is mormal, as is shown by the drop of the
total-energy line. Of this total loss, a portion A would be due to the normal pipe
friction. Hence the difference between this and the total, or A_, is the true value of
the extra loss caused at entrance. The loss of head at entrance may

. F
be expressed as F o T gg (8.47)

1 In laminar flow these losses are insignificant because irregularities in the flow boundary create a
minimal disturbance to the flow and separation is essentially nonexistent.
2 Section B, the point of maximum contraction of the flow, is referred to as the vena cornrracra.
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FA Figure 8.13 Conditions at enirance. Figure 8.14 Entrance loss coefficients.

where ¥V is the mean velocity in the pipe, and k. is the loss coefficient whose
general values are shown in Fig. 8.14.

The entrance loss is caused primarily by the turbulence created by the en-
largement of the stream after it passes section B, and this enlargement in turn
depends upon how much the stream contracts as it enters the pipe. Thus it is
very much affected by the conditions at the entrance to the pipe. Values of the
entrance-loss coefficients have been determined experimentally. If the entrance to
the pipe is well rounded or bell-mouthed (Fig. 3.14a), there is no contraction of
the stream entering and the coefficient of loss is correspondingly small. For a
flush or sguare-edged entrance, such as shown in Fig. 8.14b, k., has a wvalue of
about 0.5. A reentrant tube, such as shown in Fig. 8. 14c¢, produces a maximum
contraction of the entering stream because the streamlines come from around the
outside wall of the pipe. as well as more directly from the fiuid in front of the
entrance. The degree of the contraction depends upon how far the pipe may
project within the reservoir and also upon how thick the pipe walls are, com-
pared with its diameter. With very thick walls, the conditions approach that of a
square-edged entrance. For these reasons the loss coefficients for reentrant tubes
vary; for very thin tubes k. 2 = O0.8.

Figure 8.15

B) Sgbmerged

discharge
loss.

.17 T.OSS OF HEAD AT SUBMERGED DISCHARGE' ]

W hen a fluid with a velocity ¥ is discharged from the end of a pipe into a closed
tank or reservoir which is so large that the wvelocity within it is negligible, the
entire kinetic energy of the flow is dissipated. Hence the discharge loss is
P 2
A; = e (8.48)
That this is true may be shown by writing an energy equation between (a)
and (¢) in Fig. 8.15. Taking the datum plane through (a) and recognizing that the
pressure head of the fluid at (a) is y, its depth below the surface, H_, = y + O
2
+ V2/2g and H_. = 0 + y + O. Therefore B, — E. — H. — ZV;
The discharge loss coefficient is 1.0 under all conditions; hence the only way to
reduce the discharge loss is to reduce the value of ¥ by means of a diverging
tube. This is the reason for diverging draft tube from reaction turbine (Sec.16.6).
As contrasted with entrance loss, it must here be emphasized that discharge
loss occurs after the fluid leaves the pipe,? while entrance loss occurs after the
fluid enrers the pipe.

! This topic was first discussed in Sec. 4.13.
2 In a short pipe where the discharge loss may be a major factor, greater accuracy is obtained by
using the correction factor «, as explained in Sec. 4.1 [see also Eq. (8.354)].
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[8.18 1.LOSS DUE TO CONTRACTION]

Sudden Contraction

The phenomena attending the sudden contraction of a flow are shown in Fig
8.16. There is a marked drop in pressure due to the increase in velocity and to the
loss of energy in turbulence. It is noted that in the cormer upstream at section C

¥
H = =
£ vz T E
2e
v e
L v —“33—"*_;—=;7
i D

A B C

Figure 8.16 Loss due to sudden contraction. ( Plorted to scale from observations made by Daugherty.)

there is a rise in pressure because the streamlines here are curving, so that the
centrifugal action causes the pressure at the pipe wall to be greater than in the
center of the stream. The dashed line indicates the pressure variation along the
centerline streamline from sectiomns B to C.

From ¢ to £ the conditions are similar to those described for entrance. The
loss of head for a sudden contraction may lge represented by

. 14
h, — k_—= '
i — By (8.49
where k. has the values given in Table 8.2.
The entrance loss of Sec. 8.16 is a special case where D,/D, = O.

Gradual Contraction

In order to reduce the foregoing losses, abrupt changes of cross section should be
avoided. This may be accomplished by changing from ome diameter to the other
by means of a smoothly curved transition or by employing the frustum of a cone.
With a smoothly curved transition a loss coefficient k. as small as 0.05 is possible.
For conical reducers a minimum k. of about 0.10 is obtained with a total cone
angle of 20 to 40°. Smaller or larger total cone angles result in higher values of k..
Table 8.2 I.oss coefficients for sudden contraction

Do/ Dy 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ke, 0.50 0.45 0.42 0.39 0.36 0.33 0.28 0.22 0.15 0.06 0.00

The nozzle at the end of a pipeline (Fig. 8.23b) is a special case of gradual
contraction. The head loss through a nozzle at the end of a pipeline is given by
Eq. (8.49) where k_, is the nozzle loss coefficient whose value commonly ranges
from 0.04 to 0.20 and V; is the jet velocity.? The head loss through a nozzle
cannot be regarded as a minor loss because the jet velocity head is usually guite
large. More details on the flow through nozzles is presented in Sec. 12.6.

[8.19 1LOSS DUE TO EXPANSION ]
Sudden Expansion
The conditions at a sudden expansion are shown in Fig. 8.17. There is a rise in
pressure because of the decrease in veloaity, but this rise is not so great as it
would be if it were not for the loss in energy. There is a state of excessive
turbulence from C to F beyvond which the flow is normal. The drop in pressure
just bevond section C, which was measured by a piezometer not shown in the
illustration, is due to the fact that the pressures at the wall of the pipe are in this
case less than those in the center of the pipe because of centrifugal effects.
Figures 8.16 and 8.17 are both drawn to scale from test measurements for the
same diameter ratios and the same velocities and show that the loss due to
sudden expansion is greater than the loss due to a corresponding contraction.
This is so because of the inherent instability of flow in an expansion where the
diverging paths of the flow tend to encourage the formation of eddies within the
flow. Moreover, separation of the flow from the wall of the conduit induces
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Figure 8.17 Loss due to sudden enlargement. ( Plotted to scale from observations by
Daugherty. Velocity the same as in Fig. 8.16.) 1 See also Eq- (12.13).

Figure 8.18
pockets of eddying turbulence ocutside the flow region. In COnNvociaing unuw LIcic 1>
a dampening cffect on eddy formation and the conversion from pressure encrgy
to kinetic energy is quite efficient. :

An expression for the loss of head in a sudden enlargement can be derived as
follows. In Fig. 8.18, section 2 correspomnds to section F in Fig. 8.17, which 1s a
section where the velocity profile has become normal again and marks the end of
the region of excess energy loss due to the turbulence created by the sudden
enlargement. In Fig. 8.18 assume that the pressure at section 2 in the ideal case
without friction is pg. Then in this ideal case Po Pi 3 ) 23

b 2g 2g
If in the actual case the pressure at section 2 is p. while the average pressure omn
the annular ring is p’, then, egquating the resultant force on the body of fluid
between sections 1 and 2 to the time rate of change of momentum between
sections 1 and 2, we obtain

, 7
p:lAl+P(A2“Ai)_P2A2=;(A2V%_A1Vf)
) A _ , =z 2 )
From this B e P, oy P e Ks, B
¥ Az ¥ A= Y A g g
The loss of head is given by the difference between the ideal and actual pressure
heads at section 2. Thus kA, — (po — P=2)/¥.- and noting that ALV, = A, Vo
and that A, V2 = 4,V V; = A, V., V;, we obtain, from substituting the above ex-
pressions for pe/y and p2/y into (Po — P2)/7-
k;::(Vi — )7 +(1 _Al)(pl *&’)
2g Az Y 5
It is usually assumed that p° = p;. in which case the loss of head due to
sudden enlargement is ¥ o TT 2

Although it is possible that under some conditions p’ will egqual p,;, it 1s also
possible for it to be either more or less than that value, in which case the loss of
head will be either less or more than that given by Eq. (8.50). The exact value of
p’ will depend upon the manner in which the fluid eddies around in the cormer
adjacent to this annular ring However, the deviation from Eg. (8.50) is guite
small and of negligible importance.

The discharge loss of Sec. 8.17 is seen to be a special case where 4, is infinite
compared with 4,, or I, =— 0, so that Eq. (8.50) will reduce to Eq. (8.48).
[Gradual Expansion]

To minimize the loss accompanying a reduction in veloacity, a diaftuser such as
shown in Fig. 8.19 may be used. The diffuser may be given a curved outline., or it
may be a frustum of a cone. In Fig. 8.19 the loss of head will be some function of
the angle of divergence and also of the ratio of the two areas, the length of the
diffuser being determined by these two variables.

In flow through a diffuser the total loss may be considered as made up of
two factors. One is the ordinary pipe fricr.io;l loss, which may be represented by

r ¥

In order to integrate the foregoing, it is necessary to express the variables J. D,
and I~ as functions of I.. For our present purpose it is sufficient, however, merely
ts nmote that the friction loss increases with the length of the cone. Hence, for
given values of D, and D, the larger the angle of the cone, the less its length and
the less the pipe friction, which is indicated by the curve marked F in Fig. 8.20a.
However, in flow through a diffuser. there is an additional turbulence loss set up
by induced currents which produce a vortex motion over and above that which
normally exists. This additional turbulence loss will naturally increase with the
degree of divergence, as is indicated by the curve marked T in Fig. 8.20a, and if
the rate of divergence is great enough, there may be a separation at the walls and
eddies flowing backward along the walls. The total loss in the diverging cone is
then represented by the sum of these two losses, marked k'. This is seen to have a
minimum wvalue at 6° for the particular case chosen. which is for a very smooth
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Figure 8.20 Loss coefficient for conical diffusers.

surface. If the surface were rougher, the wvalue of-the friction F would be in-

creased. This increases the value of k', which is indicated by the dotted curwve, and

also shifts the angle for minimum loss to 8° Thus the best angle of divergence
increases with the roughness of the surface.

It has been seen that the loss due to a sudden enlargement is very nearly rep-

resented by (V; — ¥,)*/2g. The loss due to a gradual enlargement 1s expressed az:

2

T s — V) (8.51

2g

Values of k' as a function of the cone angle o are shown in Fig. 8205, for a wides

range than appears in Fig. 8.20a. It is of interest to note that at an angle slightly

above 40° the loss is the same as that for a sudden enlargement, which is 180°

and that between these two the loss is greater thamn for a sudden enlargement

being a maximum at about 60°. This is because the induced currents set up arc

greater within this range.

[8.20 1.LOSS IN PIPE FITTINGS])

The loss of head in pipe fittings may be expressed as k¥V3/2g, where ¥ is the
velocity in a pipe of the nominal size of the fitting. Typical values of k are given
in Table 8.3. As an alternative, the head loss due to a fitting may be found by

1 A H. Gibson, Engineering (L.ondon), Feb. 16, 1912. These values were based on area ratios of
1:9, 1:4, 1:2.25 and gave one curve up to an angle of about 30°. Beyond that the three ratios gave
three curves which differed by as much as about 18 per cent at 60°, where the turbulence was a
predominating factor, and then drew together again as 180° was approached. The curve here shown is
a composite of these three.

Table 8.3 Values of loss factors for pipe fittings™

Fitting Kk r/,o Fitting Kk r/oD
Globe valve, wide open 10 350 Mediunm-radius elbow oO.75 27
Angle valve, wide open s 175 ILong-radius elbow O.60 20
Close-return bend 2.2 75 45° elbow 0.4 15
T, through side outlet 1.8 &7 (Gate wvalve, wide open o.19 7
Short-radius elbow 0.9 32 half open 2.06 T2

* Flow of Fluids through WValves, Fittings, and FPipe, Crane Co., Tech. Paper 409,
NMay, 1942, Values based on tests by Crane Co and at the WUniversity of Wisconsin,
the University of Texas, and Texas College.

increasing the pipe length by using values of L/D given in the table. However, il
must be recognized that these fittings create so much turbulence that the loss
caused by them is proportional to 2, and hence this latter method should be
restricted to the case where the pipe friction itself is in the zomne of complete
turbulence. For very smooth pipes, it is better to use the k values when determin-
ing the loss through fittings.

BZ1I 1L.OSS 1IN BENDS AND ELBOWS]

In flow around a bend or elbow, because ot centrifugal effects [Eqg. (4.35)]
there is an increase in pressure along the outer wall and a decrease in pressure
along the inner wall. The centrifugal force on a number of fluid particles, each of
mass r, along the diameter CD of the pipe that is mormal to the plane of curva-
ture of the pipe is shown in Fig. 8.21. The centrifugal force on the particles near
the center of the pipe. where the velocities are high, is larger than the centrifugal
force on the particles near the walls of the pipe, where the wvelocities are low.
Because of this unbalanced condition a secondary flow?! develops as shown in
Fig. 8.21. This combines with the axial velocity to formm a double spiral flow
which persists for some distance. Thus not only is there some loss of energy
within the bend itself, but this distorted flow condition persists for some distance
downstream until dissipated by wviscous friction. The velocity in the pipe may not
become normal again within as much as 100 pipe diameters downstream from
the bend. In fact, more than half the friction loss produced by a bend or elbow
takes place in the straight pipe following it
! Secondary flow in the bends of open channels is discussed in Sec. 11.21.
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Figure 8.21 Secondary flow in bend.

Most of the loss of head in a sharp bend may be eliminated by the use of a
vaned elbow. such as is shovwmn in Fig 8.22 The vanes tend to impede the form-
ation of the secondary flows that would otherwise occur.

The head loss produced by a bend (A, — k, FZ/2g) in excess of the loss for an
egual length of straight pipe is greatly dependent upon the ratio of the radius of
curvature r to the diameter of the pipe D, and combinations of different pipe
bends placed close together cannot be treated by adding up the losses of each one
considered separately. The total loss depends nmnot only upon the spacing between
the bends, but also upon the relations of the directiomns of the bends and the
prlanes in which thewy are located. Bend loss is nmnot proportional to the angle of the
bend: for 22.5 and 45 bends the losses are respectively about 40 and 80 per cent
of the loss in a 90° bend. Typically for a 90° bend, &k, varies for a smooth pipe
from 0O.15 for /D =— 2 to 0.10 for /D — 10, and for a pipe with e/ — 0.0020, k,
varies from about 0.30 to 0.20 for /02 wvalues of 2 and 10 respectively. Infor-
mation on wvalues of Lk, is awvailable in the literature.?

TR, J. S. Pigott, Pressure Losses in Tubing., Pipe. and Fittings. Trans. ASAME, vol. 72, p. 679, July,

1950. See also: E. F. Brater and H. W. King.“Handbook of Applied Hydraulics,” 6th ed., MocGraw-—
Hill Book Co., INew York, N.¥Y_, 1976. -

22 SOLUITION OF PIPE-FLOW PROBLEMS)

We have examined the fundamental fluid mechanics associated with the frictional
loss of energy in pipe flow. While the interest of the scientist extends very little
beyvond this, it is the task of the engineer to apply these fundamentals to various
types of practical problems. Pipe flow problems may be solved using the Hazen—
Williams eguation (8.45). the Manning eguation (8.46) or the IDarcy—Weisbach
equation (8.13). The latter is to be preferred as it will provide greater accuracy
since its application utilizes the basic parameters that influence pipe friction,
namely, Reynolds number R and relative roughness /D To get good results with
the Hazen—WWilliams and Manning equations the user must select proper values
for Cim and n respectively. This is more difficult than estimating the /D ratio for
a pipe as required by the IDarcy—Weisbach eguation. An advantage of the Mann-
ing equation is that all types of pipe flow problems can be solved directly by
using it, while certain types of problems must be solved by trial and error when
using the IDarcy Weisbach equation as discussed in Sec. 8.12. The Hazen-—
Williarms egquation is not well suited for the solution of all problems where minor
losses must be considered because, upon rearranging Eqg. (8.45), we find that in
the Hazen— Williams egquation the head loss due to pipe friction is proportional to
IF1-85  swhile minor losses are expressed as being propertional to 2.

In the typical direct-solution problem using the Darcy—Weisbach equation
the head loss is determined for the given flow rate and pipeline and minor loss
characteristics. The indirect-solution problems (trial and error) are of two prin-
cipal types: (1) given the pipeline and minor loss characteristics and the head loss,
find the flow rate and (2) given the flow rate and the energy gradient, find the
required pipe diameter. The feature of these problems is the variation of f with
Reynolds number. The usual procedure (see Illustrative Example 8.4) is to as-
sume a reasconable value of F by referring to Fig. 8.11. This will then lead,
through the pipe-friction and energy eguations, to a computed velocity and Rey-
nolds number. This determines a more accurate value of f, and it will generally
be necessary to repeat the solution for new wvalues of ¥ and Q. As f wvaries little
within a small range of R, a third trial will rarely be necessary.

The following example illustrates the method of solution for flow through a
pipeline of uniform diameter.

| Ilustrative Example 8.5) Referring to Fig. 8.23, find the fAlow rate through a new 25 cm-diamete:
cast-iron pipe of length 1,500 m, with Az = B0 m. Consider the entrance to be sharp-comered
nonprojecting.
From Fig 8.12, ¢/D =~ 0.001. Referuung to Fig. 8.11, assume f = 0.020. From Sec. 8.16 we choosc
a wvalue of k., = 0.5 for the loss at entrance. Then, writing the energy equation between the water
surface and the free jet. 1500 V32

V2
80+0+0-_-0+0+-2—%+(0_5+0_02x
g

0.25 2g
. This gives VZ/2g = 0.66 m and V> = 3.6 m/s. We may now confirm the trial value of f by returning ic
Fig. 8.11, with 1.3DV = 1.3 x 25 >x 3.6 — 117 and e/ D = 0.001. Again, the chart shows f = 0.020, sc
no repeat solution is required. The flow is Q@ = AV, = #/4(0.25)F < 3.6 = O.18 m>'s. -
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Figure 8.23 Discharge from a reservoir. (a) Free discharge. (b) With nozzle. As IL./D gets
larger the E.L. and H.G.L. approach one another.

In the foregoing example it may be seen that with this length of pipe it would
have made very little difference if the entrance loss and also the velocity head at
discharge had been neglected altogether. It is generally conceded that, for pipes
of length greater than 1,000 diameters, the error incurred by neglecting minor
losses is less than that inherent in selecting a value of . In applying this rule one
must of course use common sense and recall that a valve, for example, is a minor
loss only when it is wide open. Partially closed, it may be the most important loss
in the system.

If the pipe discharged into a fluid that was at a pressure other than atmo-
spheric, the proper value of p,/y would have to be used in the energy eguation.

Another example of flow from a reservoir is that of a penstock leading to an
impulse turbine. In this case the pipe does not discharge freely but ends in a
nozzle (Fig. 8.23b), which has a known or assumed loss coefficient. The head loss
in the nozzle, #x,. is associated with the high issuing velocity head and is therefore
not a minor loss. The procedure is to employ the egquation of continuity to place
all losses in terms of the velocity head in the pipe. This is the logical choice for
the “common unknown?> hecause the trial-and-error scolution will again be built
around the pipe friction loss rather than the nozzle loss.

IIllustrat:ve Example E.EI In Fig. 8.23 suppose that the pipeline of the preceding example is now
fitted with a nozzle at the end which discharges a jet 6.5 cm in diameter and which has a loss

coefficient of 0.11. Find the flow rate.
Let point 2 now refer to the pipe at the base of the nozzle and point 3 be in the jet. The head
loss in the nozzle is 0.11V3/2g. Writing the energy equation between 1 and 3, neglecting entrance loss,

V3 1500 V3
804+0+4+0=0+0+ +—fF—+ 011 —
2g 0.25 4 2g 2g
VZ
By continuity equation, V2/2g =(25/6.5Y*V3/2g = 219V 3/2g. Thus 80 = (1.11 x 219 + mf)?;
A trial value of f is selected. Let f = 0.02 for the first assumption. Vv . B it
Then 80 = (243 + 120)VZ/2g, from which 29 33 oW
and V, = 2.08 m/s. With 1.3DV = 1.3 X 25 X 2.08 = 67.6 and ¢/D = 0.001, Fig. 8.11 shows

f = 0.02. In this case the first solution may be considered sufficiently accurate, but in general the value of f
determined from the chart may be materially different from that assumed, and a second trial may be
necessary. The rate of discharge is Q = A,V, = 7/4(0.25)> <X 2.08 = 0.1 m’/s

Vi = (62—'1_-) V, = 14.8 X 2.08 = 30.8 m/s
As additional information, H, = p»/y + V3/2g = 80 — 0.02 X 6,000 x 0.22 = 53.6 m, and the press-
ure head p,/v = 53.6 — 0.22 = 53.38 m.

This example shows that the addition of the nozzle has reduced the discharge from 0.18 to 0.1 m?/s
but has increased the jet velocity from 3.6 to 30.8 m/s. The head loss due to pipe friction is 26.4 m and the
head loss through the nozzle is 5.32 m. (The head loss at entrance which was neglected in the calculations is
approximately 0.1 m.)

We may change IHustrative Example 8.5 into a type-2 indirect-solution
problem by specifying the rate of discharge and finding the reguired diameter.
Adlthough this type of problemm can be attacked im exactly the same way as the
foregoing, the solution is facilitated by a slightly different procedure if the length
is so great that the minor losses are negligible. From the contimuity esguation,

=" A — 4O mi»?,. Substituting this expression for ¥ in the pipe-friction
equation, B ZJ—EV_E
_ - T D 2g DS sLO>
and rearranging., we obtain = = constant (8.52

i Tighy
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A value of f mayv be assumed more or less arbitrarily and an approximate wvalue
of the pipe diameter computed by this eguatiom. This determines the wvelocity.
Reyvnolds number, and relative roughness. A new wvalue of f is determimed with
the aid of Fig. 8.11, and the computation may be repeated if necessary. In gen-
eral, the diameter so obtained will not be a standard pipe size, and the size
selected will usually be the next largest commercially awvailable size. Im planning
for the future it must be recalled that scale deposits will increase the roughness
and reduce the cross-sectional area. For pipes in water service, the absolute
roughness e of old pipes (twenty years and more) may increase owver that of new
pipes by threefold for concrete or cement-limed steel., up to twentyfold for cast
iron, and even: to fortyfold for tuberculated wrought-iron and steel pipe. Egua-
tion (8.52) shows that for a constant value of J. © wvaries as D%/2. Hence for the
case where minor losses are negligible and f is constant, to achieve a 100 percent
increase in flow, the diameter need be increased only 32 percent. This aymounts to
a 74 percent increase in cross-sectional area.

If the minor losses and the wvelocity head in the pipe are nmot negligible in
comparison with the pipe friction, the problem may be handled by expressing
such losses in eguivalent lengths of pipe, and the solution reduces to the case just
described. This approach can be used if the pipe behaves as wholly rough (Sec.
8.11) in which case f depends only on /D and is independent of R. The length
equivalence of a minor loss is obtained by equating (fL/D)V?/2g to ()V?/2g.
From this one obtains the equivalent length of pipe as L, = kD/f where k is the
minor loss coefficient. ’

B23 PIPELINE WITH PUMP OR TURBINE |

If 2 pump lifts a fluid from one reservoir to another., as in Fig. 8.24. nc: ounly does
it do work in lifting the fluid the height Az, but also it has to overcome the
friction loss in the suction and discharge piping. This friction head i1s egquivalent
to some added lift, so that the effect is the same as if the pump lifted the fluid
a height Az + > Fh;. Hence the power delivered to the liguid by the pump
is yO(A=z + > h;). The power required to run the pump is greater than this,
depending on the efficiency of the pump. The total pumping head Ak, for this
case is : h, = Az + > hp (8.53)
If the pump discharges a stream through a nozzle, as shown in Fig. 8.25, no
only has the liquid been lifted a height Az, but also 1t has received a kinetic
energy head of ¥V 3/2g. where ¥V, is the velocity of the jet. Thus the total pumping
- 2
head is now Fo e i o ;/gz LR, (8.54)
In any case the total pumping head may be determined by writing the energy
equation between any point upstream from the pump and any other point down-
stream, as in Eqg. (4.14). For example, if the upstream reservoir were at a highe:
elevation than the downstream one, then the Az’s in the two foregoing equations
would have negative signs.

F

'1!

=T

B Figure 8.24 Pipeline with pump between
two reservoirs.

Figure 8.25 Pipeline with pump and nozzle.

The machine that is employed for converting the energy of flow into mechan-
ical work is called a rurbine. In flowing from the upper tank in Fig. 8.26 to the
lower, the fluid loses potential energy head eqguivalent to Az. This energy is
expended in two ways, part of it in hydraulic friction in the pipe and the remain-
der in the turbine. Of that which is delivered to the turbine, a portion is lost i
hydraulic friction and the rest is converted into mechanical work.

The power delivered to the turbine is decreased by the friction loss in the
pipeline, and its value is given by yO(Az — > R;). The power delivered by the
machine is less than this, depending upon both the hydraulic and mechanical
losses of the turbine. The head under which the turbine operates is

h, — Az — > hp (B-55)
where > h, is the loss of head in the supply pipe and does not include the head
loss in the draft tube (DE in Fig. 8.26), since the draft tube is comnsidered an
integral part of the turbine. The draft tube has a gradually increasing cross-
sectional area which results in a reduced wvelocity at discharge. This enhances the
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Figcure 8.26 Pipeline with turbine.

efficiency of the turbine because of the reduced head loss at discharge (Sec. 16.6).
It should be nmnoted that the A, of Eg. (8.55) represents the energy head remowved
from the fluid by the turbine; this, of course, is idemntical to the energy head
transferred to the turbine from the fAuid. -

[Illustrative Example 8.2‘ In this problem we will assume that the Reynolds numiber is high enough to
assure turbulent flow. A pump is located 4.5 m above the surface of a liquid (¥ = 8170 N/m?) in a closed
tank. The pressure in the space above the liquid surface is 35 kN/m?. The suction line to the pump is 15 m
of 15 cm-diameter pipe (f = 0.025). The discharge from the pump is 60 m of 20 cm-diameter pipe
(f = 0.030). This pipe discharges in a submerged fashion to an open tank whose free liquid surface is 3 m
lower than the liquid surface in the pressure tank. If the pump puts 1.5 kW into the liquid, determine the flow
rate and find the pressure in the pipe on the suction side of the pump.

F . (4.16), yOh

ok Btk p=2=2r_ |5 =28170h, ThEE | R iR
1000 = o
Writing the energy equation from one liguid surface to the other,
35000 V3 IS ) w3 60 \ V3 V3
= — 0.5—2 — 0.025 ' 4+ h, — 0.030 e
8170 2g 0.15] 2g 0.20/) 2g 2g
Substituting V,s = @Q/0.01767 and V,, = Q/0.03142 this reduces to
0.18 =
4.28 — 81.6207% — 408.107 + — 464.6602 = —3 + 51.630Q2 or 10060Q* — 7.280 —0.18=0
By trial, ¢ = 0.0955 m?/s
To obtain the pressure at the suction side of the pump. ¢ it s
35000 2 2 2 © 0.0955
e 05 M¥asi:, 0.025 k> 5. e o P ¥ where Vis—=———= 54 m/s
8170 2g 0.15) 2g ¥ 2g 0.01769
428 —0.74 — 3.72 = 4.5 + p/yv + 1.49 from which 2 = —6.17 m
Y
or p. = —6.17(8170) = —50.4 kN/m? which is equivalent to (50.4/101.32)(760) = 378 mm of mercury
WaCULIIm.

In this type of problem one should check the absolute pressure against the vapor pressure of the ligquid

to see that vaporization does not occur.

BZ2d BRANCHING PIPES ]

Suppose that three reservoirs 4, B, and C of Fig 8.27 are conmnected to a com-
mon junctiom J by pipes 1, 2, and 3, in which the friction losses are h,;, A, and
ks, tespectively. It 1s supposed thhat all pipes are sufficiently long. so that minor
losses and velocity heads may be neglected. Actually, any one of the pipes may be
considered leading to or from some destination other tham the reservoir shown
by simply replacing the reservoir with a piezometer tube in which the water level
is the same as that of the reservoir surface. The continuity and energy eqguations
require that the flow entering the junction egual the How leawving it and that the
pressure head at J (which may be represented schematically by the open piezom-
eter tube shown, with water at elevation FP) be common to all pipes. That is, for
the conditiomn shown: 1. @, — O + O 2. Elevation P is common to all.

If P is below the surface of B, then the flow will be out of B and @, + Q- =— Q5

The diagram suggests several problems, three of which will be discussed below

1. Given all pipe lengths and diameters, the surface elevatiomns of two reservoirs
and the flow to or from one of these two, find the surface elevation of the third
reservoir. This is a direct-solutiom problem. Suppose that @, and the ele-
vations of .4 and B are given. Ihe head loss Ak, is determimned directly by the
pipe-friction egquation, using Fig. 8.11 to determine the proper value of . This
fixes P and A, was given. The flow in pipe 2 may then be determined, assum-
ing a reasonable value of f and adjusting it if necessary. Condition 1 (continu-
ity at the junctiomn) then determines 5, which in turm determines h; and the
surface elevatiom of C.

2. Given all pipe lengths and diameters. the eclevatiomns of water surfaces of twc
reservoirs, and the flow to or from the third, find the celevation of the surface i
the third reservoir. Suppose O-. and the surface elevations of 4 and < are
given. Then the guantities @, — Q5 and hk,; + h; are known. These relations
are solved simultaneously for their component parts in one of two ways: (a) by
assuming successive distributions of the flows @, and Q. satisfying the firsit
relation, until a distribution is found which also satisfies the head-loss rela-
tion: () by assuming successive elevations of the piezometer level F, which is
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Figure 8.27 Branching pipes.

to say, distributions of k; and hks; satisfying the second relatiomn above, until =
level is found which also satisfies the discharge relation. With FP known and k.
determined by the given discharge Q. , the elevation of B is easily obtained.
3. Given all pipe lengths and diameters and the elevations of all three reservoirs,
find the flow in each pipe. This is the classic rhree-reservoir problerm, and it
differs from the foregoing cases in that it is mot immediately evident whetherx
the flow is imfto or owutr of reservoir B. This direction is readily determined by
first assuming no flow in pipe 2; that is, the piezometer level F is assumed at
the elevation of the surface of B. The head losses /; and A, then determine the
flows Q, and O5, and depending on whether @, => O3 or Q, < (5, the con-
dition of continuity is determined as @, =— O, + O5 or Q,; + O, — O, respec-
tively. From this point the solution proceceds as in (&) of case 2 above. The
piezometer level is moved up or down by trial until the resulting flow distri-
bution satisfies the continuity relation. In reaching the final adjusted level it is
helpful to make a small plot such as is shown in Fig. 8.28 for the case where

Q, — Q. + Q5. Two or three points, with omne fairly close to the axis, deter-
mine a curve which intersects the wvertical axis at the equilibrium level of P,
that is, for the condition OQ; — (@, + O3) = O.

2 PIPES IN SERIES
The discussion in Sec. 8.22 was restricted to the case of a single pipe. If the pipe is
made up of sections of different diameters, as shown in Fig. 8.29, the continuity
and energy equations establish the following two simple relations which must be
satisfied: Q =0, =Q, = Q3 = --- (8.56)
hL — hLl 4 hL2 —+ hLJ o S (8.57)
1 Once again it should be mentioned that either the Hazen—Williams or Manning eguation can be
used to solve pipe-flow problems, though the Darcy—Weisbach approach is best.
In case Egs. (8.45) or (8.46) are being used, the equivalent length is established by
the relation S = h, /I, or I._ = I(S/S_.). where the values of the energy gradient are
obtained for any assumed rate of discharge. Minor lossés can also be handled
using the equivalent-length method.
INlustrative Example 8.8 Suppose in Fig. 8.29 the pipes 1, 2, and 3 are 300 m of 30-cmm-diameter,
150 m of 20-cm-diameter, and 250 m of 25-cm-diameter, respectively, of new cast iron and are
conveying 15°C water. If A = 10 m, find the rate of flow from 4 ro B.
(a) By THE EQUIVALENT-VELOCITY-HEAD METHOD. For cast-iron pipe € = U.Z5 mm (lable 5.1);
hence the corresponding values for e/D are: 0.00083, 0.00125, and 0.0010, and from Fig. 8.11 we will

assume f; = 0019 Jo = 0.021, and f3; = 0.020. Then,

g BB RO Vi, o021 150 +oiozof 222 Vg
= 0 3 2g 0z 025/ 2g
vz v /D, P2 vz vz
F inui -z = =5 imi —2 =207
TOom continuity 55 2o \ D, 06 —— = Similarly 22 2
- VI 1,000 1,000 i
and thus 10 = 0.019 2222 4 0021 722 506 + 0.020 2207 from which ~ = 0071 m
2g 1 1 1 2g
Hence = . /2(9.81 m/sZ¥0.072 m) = 1.18 m/s

The corresponding wvalues of R are 0.31 x 10% 047 x 10° and 0.37 x 10%; the corresponding
friction factors are only slightly different from those originally assumed since the flow is at Reynolds
numbers very close to those at which the pipes behave as rough pipes.

Hence O = A4,V, = E(n:} 30)21.18 — 0.083 m?3/s
Greater accuracy would have been obtained 11' the friction factors had been adjusted to match the
pipe-friction chart more closely and if minor losses had been included. In that case, ¢ = 0.081 m?3/s.

(b) BY THE EQUIVALENT-LENGTH METHOD. Choose the 30-cm pipe as the standard. Using the

above values of f in Eq. (8.59) 0.021 )
Pipe 2: L,= 15 = 1,260 m of 30-cm pipe
0. 0.019
0.020 3075
Pipe 3: IL_= 25 — = 650 f 30-cm pipe
0. 019)(25) e =
Add pipe 1 = 300 m of 30-cm pipe Total L., = 2,210 m of 30-cm pipe
Thus A = 10 = 0.019 ——— o b Ve 0071 | 5 1.18 d 0.083 =
_— _ im —_ = = =
0.30 2g 2g 1 my/s and @ m3/s as above.
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B2 PIPES IN PARATLI . EKI. )

In the case of flow through two or more parallel pipes, as in Fig. 8.30, the
continuity and energy egquations establish the following relations which must be
satisfied: O = O, + O, + O, (8.60)

and by = hy, — Ry, = hp, (B.61)
as the pressures at .4 and B are common to all pipes. If the head loss is given. the
total discharge may be computed directly by adding the comntributions from the
various pipes, as in Eqg. (83.60).

If the total flow is given and the head loss and distribution of flow among the
pipes are reguired, amn approximate solutiom may be obtaimed by assuming a
recasonable wvalue of fhk; arnd computing the resulting individual flows and thc
prercentage distribution of flow. This percemtage distribution will not change
sreatly with the magnitude of the flow and may then be applied to find the actual
distribution of the total discharge. The accuracy of the solution may be checked
by comparing the computed head losses in the separate pipes. They should be the
same. If they are not the same, the assumed values of f can be corrected to match
the Moody diagram (Fig. 8.11). A more accurate procedure is to write Eg. (8.61)
for the flow in each pipe in termms of the dimensions applyving to it. This may be
accomplished by observing that the loss of head in any pipe is

e f%—i—Zk) =
e H

2g

L__1EI 60.0 m

lustrative Example 8.9

Pipc D (cm) L (m) f
A 15 600  0.020

. : : B 10 480  0.032
Figure 8.30 Pipes in parallel. C 20 1200 0.024 3

where > k is the sum of the minor-loss coefficients, which may usually be ne-
glected if the pipe is longer than 1,000 diameters. Solving for » and then Q.
the following is obtained for pipe 1:

o L 2gh; e
O, — 4.V, _AI\/fI(Ll/D1)+Zk e h, (8.62)

where C,; is constant for the given pipe, except for the change in f with Reyvnolds
number. The flows in the other pipes may be similarly expressed, using reason-
able values of f from Fig. 8.11. Finally, Eqgq. (8.57) becomes

Q= Ci.h, +C,.hy + Ci./ hy —/h (C; + C, + C3)

This enables a first determination of Ak; and the distribution of flows and veloc-
ities in the pipes. Adjustments in the values of f may be made next, if indicated,
and finally a corrected determination of k; and the distribution of flows.

It is 1nstructive to compare the solution methods for pipes in parallel with
those for pipes in series. The role of the head loss in one case becomes that of the
discharge rate in the other, and wvice wversa. The student is already familiar with
this situation from the elementary theory of dc circuits. The flow correspomnds to
the electrical current, the head loss to the wvoltage drop. and the frictional re-
sistance to the ohmic resistance. The outstanding deficiency in this analogy
occurs in the variation of potential drop with flow, which is with the first power
in the electrical case (E = IR) and with the second power in the hydraulic case
(hy oc V2 oc ©Q2%) for fully developed turbulent flow.

[Mlustrative Example 8.9] Three pipes 4, B, and C are interconnected as shown. The pipe charac-
teristics are as follows: ;
Find the rate at which water will flow in each pipe. Find also the pressure at point P. All pipe lengths
are much greater than 1,000 diameters, therefore minor losses may be neglected.

600 V3 1200 V2 ; V2 V2
Energy Eq: 60 —0020————2—0024——~-°=—15 i 45 = B0 -2 144 €
0.15 2g 0.20 2g 2g 2g
Continuity : 152V, + 102V, = 202V i.e. 225V, + 100Vg = 400V
600 V3 480 V3 : 2 5
= = oS Heaeat - T e BOVE —I530WL. WV, = DG
Also, hLA hLB 0.02007 T 0.03 0.10 2g “ B B A
Substituting into continuity, 225y, + 100(0.722V,) = 400V 297 2V, = 400V V, = 1.346V,
5 7L v:’_ VZ
Substituting into the energy equation, 45 — SOEL‘P—GVQ— 4 445 = 2R89-5
2g 2g 2g
VI — 19.62(45/288.9) = 3.056 Ve = 1.75 m/s Oc = AcVe = (0.03142)1.75 = 0.055 m?/s
V., = 1.346V- = 2.35 m/s O. = (0.01767)2.35 = 0.042 m*/s
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Continuity : 225(2.35)+100V,=400(1.75) V; =1.70 m/s Qg = AgVy = (0.00785)1.7=0.013 m3/s
As a check. note that @, + O = Q¢

vz (2.35)2
To find the pressure at P 60 — 802—g = 36 + pp/v pely = 24 — SGT = 1.48 m
Ve 1.75)2
Check: 36 + pe/v — 144§§ =I5 pely = 144(—55 — 21 = 1.48 m
So pe/v = 1.48 m and pp = 1.48 X 9810 = 14.52 kN/m?

In this example it was assumed that the values of f for each pipe were known. Actually f depends on
R (Fig. 8.11). Usually the absolute roughness e of each pipe is known or assumed and an accuratec
solution is achieved through trial and error until the f’s and R’s for each pipe agree with the Moody

diagram (Fig. 8.11). )
(827 PIPE NETWORKS ]

An extension of pipes in parallel is a case frequently encountered in municipal
distribution systems, in which the pipes are interconnected so that the flow to a

- 5 Fars

Figure 8.31 Pipe network.

given outlet may come by several different paths, as shown in Fig. 8.31. Indeed, it

is frequently impossible to tell by inspection which way the flow travels, as in

pipe BE. Nevertheless, the flow in any network, however complicated, must sat-

isfy the basic relations of continuity and energy as follows:

1. The flow into any junction must equal the flow out of it

2 The flow in each pipe must satisfy the pipe-friction laws for flow in a single

pipe.

3. The algebraic sum of the head losses around any closed loop must be zero.
Pipe networks are generally too complicated to solve analytically, as was

possible in the simpler cases of parallel pipes (Sec. 8.26). A practical procedure is

the method of successive approximations, introduced by Cross.! It consists of the

following elements, in order:

1. By careful inspection assume the most reasonable distribution of flows that
satisfies conditions 1.

2. Write condition 2 for each pipe in the form

hy, = KQ" (8.63)
where K is a constant for each pipe. For example, the standard pipe-friction
equation in the form of Eq. (8.62) would yield K = 1/C? and n = 2 for con-
stant f. The empirical formulas (8.45) and (8.46) are seen to be readily reduc-
ible to the desired form. Minor losses within any loop may be included, but
minor losses at the junction points are neglected.

3. To investigate condition 3, compute the algebraic sum of the head losses
around each elementary loop, > h, — > KQ". Consider losses from clockwise
flows as positive, counterclockwise negative. Only by good luck will these add
to zero on the first trial. i
1 Hardy Cross, Analysis of Flow in Networks of Conduits or Conductors, Univ. [ll. Eng. Expt.

Sra. Bull. 286, 1936.

4. Adjust the flow in each loop by a correction, AQ, to balance the head in that

loop and give > KQ” = 0. The heart of this method lies in the determination

of AO. For any pipe we may write O = 0O, + AQ
where @ is the correct discharge and O, is the assumed discharge. Then, for
each pipe, For — B — B0, = ADY = KIS +AOs KO =5

If AQ is small compared with Q.. the terms of the series after the second one
may be neglected. WNow, for a circuit, with AQ the same for all pipes,

S he =5 EO* =Y KO % AQ Y KEnQy & — 9
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As the corrections of head loss in all pipes must be summed arithmertically, we
may solve this eguation for AQO,

e P Lk O et L (B.64)
2 I KnQ3 ™ 1| nY> h /Os)
as, from Eqg. (8.63), A,/O = KQ@™" ' It must be emphasized again that the

numerator of Eqg. (8.64) is to be summed algebraically, with due account of
sign, while the denominator is summed arithmetically. The negative sign in
Eqg. (8.64) indicates that when there is an excess of head loss around a loop in
the clockwise direction, the AQ must be subtracted from clockwise CQo’s and
added to counterclockwise ones. The reverse is true if there is a deficiency of
head loss arcund a loop in the clockwise direction.

5. After each circuit is given a first correction, the losses will still not balance
because of the interaction of one circuit upon another (pipes which are com-
mon to two circuits receive two independent corrections, one for each circuit).
The procedure is repeated, arriving at a seconad correction, and so on, until the
corrections become megligible.

Either form of Eq. (8.64) may be used to find AQ. As values of K appear in
both numerator and denominator of the first form, wvalues proportional to the
actual K may be used to find the distribution. The second form will be found
most convenient for use with pipe-friction diagrams for water pipes.

An attractive feature of the approximation method is that errors in compu-
tation have the same effect as errors in judgment and will eventually be corrected
by the process.

The pipe-network problem lends itself well to solution by use of a digital
computer.! Programming takes time and care, but once set up, there is great
flexibility and many man-hours of labor can be sawved.

1 Lyle N. Hoag and Gerald Weinberg, Pipeline Network Analysis by Electronic Digital Com
puter, J. Am. Water Works Assoc., vol. 49. pp. 517529, 1957. - -

[Ilustrative Example SJE'-II' the flows into and out of a two-loop pipe system are as shown,

determine the flow in each pipe. The K values for each pipe were caleulated from the pipe and minor

loss characteristics and from an assumed value of f. - K =1 Kmd " eas)
O L/s
- [
i i
g AP e e
\? e —
25 L/s K=25 \\50 L/s

As a first step, assume flow in each pipe such that continuity is satisfied at all junctions.
Calculate AQ for each loop, make corrections to the assumed (Q's and repeat several times until the
AQ's are guite small. As a final step the values of f for each pipe should be checked against the
Moody diagram and modified, if necessary.

Left loop Right loop
ZKQS =|KnQg Y . EKQY Z|KnQ3 |
koot _ - A b ikl S
1%x60° =3,800 1x2xE0m=3120 owm K=l Ke=4% 4 x 507 = 10,000 4 x 2 x 50 = 400
4 x 10° = 400 4x2x10= 80 \%glf“ﬂlﬁ]" 2 x 257 = 1250 2x2x25=100
"’L.q. =C 26 e S
4,000} ) =L So 11,250;
3x40°% = 4,8B00% 3 x2x40= 240 '1°JH'5 4% 10° = A00 Ax2x10= B8O
800 Y 440 First approximation Ex 257 = 3,125 5 x2x25=250
AQ, = % =2} 3,525} 830
= B R
= ae, - 72 ~ o)
H\""-“l a4 Hl S
1x 627 = 3,844 1x2x62=124 -4 4x417 = 6,724 4x2x41=328
4x 217 = 1,764 4x2x21=168 T 2 x 162 = 512 oS A
5 608 ) Afrer first correction 72363
3 x 387 = 4,332) 3x2x38=228 4x217 = 1,764 4x2x21=168
ittty ¢ - N T A e - A e 7,
1,276 ) 520 “'--GE 22 - 5 x 347 = 5,780 5 x 2 x 34 = 340
' 7.544 % 900
1,276 o o T, 7,544
= se, - B3~ o

After second correction
Ilustrative Example 8.10

Further corrections can be made if greater accuracy is desired.
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[PROBLEMS]

8.1 An o1l with a kinematic viscosity of 0.135 St flows through a pipe of diameter 15 cm. Below what
velocity will the flow be laminar?

8.2 An oil with a kinematic viscosity of 0.0005 m?/s flows through a 7.5 cm-diameter pipe with a velocity
of 3 m/s. Is the flow laminar or turbulent? -

8.3 Hydrogen at atmospheric pressure and a temperature of 10°C has a kinematic viscosity of 0.0001 m?/s.
Determine the maximum laminar flow rate in newtons per second in a 5 cm-diameter pipe. At this flow rate
what is the average velocity?

8.4 Air at a pressure of approximately 1,500 kIN/m?, abs and a temperature of 100°C flows in a 1.5-
cmodiameter tube. What is the maximum laminar flow rate? Express answer in liters per second,
newtons per second, and kilograms per second. At this flow rate what is the average velocity?

8.5 What is the hydraulic radius of a rectangular air duct 15 by 35 cm?

8.6 What is the percentage difference between the hydraulic radii of a 20-cm-diameter and a 20-cm-
sguare duct?

8.7 Two pipes, one circular and one square, have the same cross-sectional area. Which has the larger
hydraulic radius, and by what percentage?

8.8 Steam with a specific weight of 40 N/m? flows with a velocity of 30 m/s through a circular pipe. The
friction factor f was found to have a value of 0.016. What i1s the shearing stress at the wall?

8.9 Find the head loss per unit length when oil (s = 0.9) of viscosity 0.00065 m?/s flows in a
7.5-cm-diameter pipe at a rate of 0.30 L/s.

8.10 Tests made on a certain 30 cm-diameter pipe showed that, when V = 3 m/s, f = 0.015. The fluid
used was water at 15°C_ Find the unit shear at the wall and at radii of 0, 0.2, 0.3, 0.5, 0.75 times the pipe
radius.

8.11 If the oil of Prob. 8.2 weighs 9.11 kN/m?, what will be the flow rate and head loss in a 900 m length
of 10 cm-diameter pipe when the Reynolds number is 8007

8.12 With laminar flow in a circular pipe, at what distance from the centerline does the average
velocity occur?

8.13 With laminar flow in a circular pipe, find the velocities at O.1r, 0.3r, 0.5r, 0.7r, and 0.9r. Plot the
velocity profile

8.14 Prove that the centerline velocity is twice the average velocity when laminar flow occurs in a
circular pipe.

8.15 When laminar flow occurs in a two-dimensional passage, find the relation between the average
and maximum velocities.

8.16 With laminar flow between two parallel, flat plates a small distance d apart, at what distance
from the centerline will the velocity be equal to the mean velocity?

8.17 How much power is lost per meter of pipe length when oil with a viscosity of 0.20 N-s/m? flows
in a 20-cm-diameter pipe at 0.50 L/s? The oil has a density of 840 kg/m?>.

8.18 In Prob. 8.2 what will be the approximate distance {rom the pipe entrance to the first point at
which the flow is established?

8.19 The absolute viscosity of water at 15°C is 0.001139 N - s/m?. (a) If at a distance of 7.5 cm from the
center of the pipe of Prob. 8.10 the velocity profile gives a value for du/dy of 4.34 per second. find the
viscous shear and the turbulent shear at that radius. (#) What is the value of the mixing length /, and what is
the value of the ratio [/rp? -

8.20 Water at 15°C enters a pipe with a uniform velocity of 3 m/s. (a) What is the distance at which the
transition occurs from a laminar to a turbulent boundary layer? (&) If the thickness of this mmual laminar
boundary layer is given by 4.91./vx/U, what is the thickness reached by it at the point of transition?
8.21 Water in a pipe is at a temperature of 15°C. (a) If the mean velocity is 3.5 m/s, and the value of f is
0.015, what is the nominal thickness 8, of the viscous sublayer? (b) What will be the thickness of the viscous
sublayer if the velocity is increased to 5.8 m/s and f does not change?

822 For the data in Prob. 8.21(a), what is the distance from the wall to the assumed limit of the
transition region where true turbulent flow begins?

8.23 Water at 40°C flows in a 20-cm-diameter pipe with V=5 my/s and gz 0. 12 mm. Head loss
measurements indicate that f = 0.022. What is the thickness of the viscous sublayer? Is the pipe
behaving as a wholly rough pipe?
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10.7 WETWORKS OF PIPES

Interconnected pipes through which the flow to a given outlet maw come from
several circuits are called a naerwork of pipes, in many ways analogous to flow
through electric networks. Problems on these in general are complicated and
require trial solutions in which the elementary circuits are balanced in turn until
all conditions for the filow are satisfied,

1. The algebraic sum of the pressure drops around sach circuit must be zero.
2

Flow into each junction must equal Dow out of the junction.
3. The Darcy-Weisbach eqguation,

The following conditions must be satisfied in a network of pipes:

or equivalent sxponential friction formmula,
must be satisfied for each pipe; ie., the proper relation between head loss and
discharge must be maintained for each pipe.

The first condition states that the pressure drop between any two points in the

circuit, for example, 4 and G (Fig. 10.12), must be the same whether through the
pipe 4G or through AFEDG. The second condition is the continuity eguation.

Since it is impractical to solve network problems analytically, methods of
successive approximations are utilized. The Hardy Cross method+ is one in which
flows are assumed for each pipe so that continuity is satisfied at every junction. A

correction to the Aow in each circuit is then computed in turn and applied to bring
the circuits into closer balance.

are commonly used,

Minor losses are included as eguivalent lengths in each pipe. Exponential
egqunations in the form h,. =
Eq. (10.1.1) The value of + is a constant

= rQ", where r = RI/ D™ in

in each pipeiine {unless the IDarcy-
W oeisbach eguation is used) and is determined in advance of the loop-balancing
procedure, The corrective term is obtained as follows.

+ Hardy Cross, Analysis of Flow in MNetworks of Conduits or Conductors,
Uirier. FH. Bl 286, MNovember 1936,

S D

L

-

et

\\i Figure 10.12

Pipe network.
For any pipe in which Qg is an assumed initial discharge

= Qg + AQ

(10.7.1)
where 2 is the correct discharge and AQ is the correction. Then for each pipe,
hy =

rQ" = r(Qo + AQY = r(Q3 + nO3” ' AQC + ---)

If AQ is small compared with g . all terms of the series after the second may be
dropped. ™Now for a circuit,

Eh, = ZrQ |QI"" ' = EZrQs|Qc|"" " + AQErn|Qo " = O

in which A has been taken out of the summation because it is the same for all
pipes in the circuit and absolute-value signs have been added to account for the

each circuit in the network

direction of summation around the circuit. The last egquation is solved for AQ in

- ErQolCol|”” "
oy - (AR Er’::! Bt (10.7.2)

WVWhen AQ is applied to each pipe in a circuit in accordance with Eq. {(10.7.1). the

1.

2.

3.

4.

directional sense is important; i.e., it adds to flows in the clockwise direction and
subtracts from flows in the counterclockwise direction.

Steps in an arithmetic procedure may be itemized as follows:

Assume the best distribution of flows that satisfies continuity by careful exam-
ination of the network.
For each pipe in an elementary circuit, calculate and sum the net head loss
Eh, = EZrQ". Also calculate Zrn | Q"™ ' for the circuit. The negative ratio, by
Eqg. (10.7.2) yields the correction, which is then added algebraically to each flow
in the circuit to correct it.

Proceed to another elementary circuit and repeat the correction process of 2.
Continue for all elementary circuits.

Repeat 2 and 3 as many times as needed until the corrections (AQ’s) are
arbitrarily small.

The wvalues of r occur in both numerator and denominator;

hence, values
proportional to the actual  may be used to find the distribution. Similarly, the
apportionment of flows may be expressed as a percent of the actual Aows. To find

a particular head loss, the aciunal values of r and £ must be used after the distribu-
tion has been determined. : :

Example 0.8 The distribution of flow through the network of Fig. 10.13 is desired for the
inflows and outflows as given. For simplicity n has been given the value 2.0,

Ti—.- ﬂ.egumed -'|1'=l="ii:rutio:;-
Chlosragraacad FOT cisw a-WET
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w-:ib' | <2
70? X 6 =29 400 2 % 70 ¥ & =840 15 - Gox 162 = 1 = 22 2 % 16 % 1= 30
362 X 3= 3AGTS 2 XI5 H3I=210 wts = Pis *“T? —352 ¥ 2 = -2 460 2 % 35 x 2= 140
=
—a0? x 5=—4 500 2 X 30 % & =300 = A, N —1383%7 X 3= — 574 22X 1383 x 3= _83
28 675 1 380 —2 79D 263
28 675 _ 2799
s P i - L b el U
a8 B3? x 6= 14 30B 2 x 48.83 X 6= 65B6 26.062 »x 1 = 679 2 % 26.068 X 1= 852
2772 xa= 23 2 x 277 X a= 17 —23.94% X Z=—1 146 2 X 23894 X 2= 096
51,172 X 5E=—13090 2 X61.17 X 6= 511 —1.6662 X 3 = — 2 2xX 1658 X 3= _10
1241 1114 —ar6 168
" 1241 475
AQ, = — 7138 " — 1114

aQ, = g5 = 3.006

AG, = 0.0079 AQ, = 0.168
AQ, = 0.0013

AY, = 0.0003

Figure 19.13 Solution for Aow in a simple network .

EZar| Qo |"~ ! for the same circuit. The same format is used for the second circuit in the upper righ
of the figure. The corrected fow after the Grst step for the top horizontal pipe is determined a
15 4+ 11.06 — 26.06 and for the diagonalas 35 + (—21.17)+ {(—1 1.06) = 2.77. Diagram {b) show
the flows afler one correciion. Diagram {[¢) shows the wvalues aler lour corrections.

Wery simple networks, such as the one shown in Fig. 10.13, may be solved
with the hand-held programmable calculator if it has memory storage of about 15
and about 100 program steps. For networks larger than the previous example or
for networks that contain multiple reservoirs, supply pumps, or booster pumps,
the Hardy Cross loop-balancing method may be programmed for numerical solu-
tion on a digital computer. Such a program is provided in the next section.

A number of more general methodst.1.§ are available, primarily based upon
the Hardy Cross lcop-balancing or node-balancing schemes. In the more general
methods the system is normally modeled with a set of simultaneous equations
which are solved by the

MNewton-Raphson method. Some programmed
solutionsi.§ are very useful as design tools, since pipe sizes or roug

hnesses may be
treated as unknowns in addition to junction pressures and flows.
+ R. Epp and A. G. Fowler, Efficient Code for Steady-State Flows in Networks. J. H ydraul. D
ASCE, vol. 96, no. HY 1, pp. 43-56, January 1970,
1 Uri Shamir and C. D. D. Howard, Water Distribution Systems Analysis, J. Hydraul. Div., ASCE.
vol, 94, no. HY 1, pp. 219—-234, January 1968,
§ Michacl A. Stoner, A TNew Way to Design MNMatural Gas Systems, Pipe Lirte Iind., vol. 32, no. 2

10.8 COMPUTER PROGRAWI F

OR STEADY-STAI
YIDRAULIC SYSTEMS
Hydraulic systems that contain components | ipelines can be

handled by replacing the component with an equivalent length of pipeline. When

the additional component is a pump, special consideration is needed. Also, in

systems that contain more than one fixed hydraulic-grade-line elevation, a special
artifice must be introduced.

For systems with multiple fixed-pressure-head elevations, Fig. 10.14, pseudo
loops are created to account for the unknown outflows and inflows at the reser-
woirs and to satisfy continuity conditions during balancing. A pseudo loop is
created by using an imaginary pipeline that interconnects each pair of fixed pres-
sure levels. These imaginary pipelines carry no flow but maintain a fixed drop in
the hydraulic grade line egual to the difference in elevation of the reservoirs. If
head drop is considered positive in an assumed positive direction in the imaginary
pipe. then the correction in loop 3, Fig. 10.14, is

; o — 150 — 135 — r4QiI‘Q4i"f r ri"Q:lQl jr— (10.8.1)
“—"'4%Q41" +nr11Q1|

This correction is applied to pipes 1 and 4 only. If additional real pipelines existed

in a pseudo loop, each would be adjusted accordingly during each loop-balancing

iteration. The terms in Eqg. (10.8.1) may be identified easily by relating to

Eqg. (10.7.2). Alternatively, the same equation may be generated by application of

MNewton’s method (Appendix B).

A pump in a system may be considered as a flow element with a negative head
loss equal to the head rise that corresponds to the Aow through the unit. The
pump-head-discharge curve, element 8 in Fig. 10.14, may be expressed by a cubic
eguation .

o= Ag + A, O + A>0F + A,Q3
_whcrt: A is the shutolff head of the pump. The correction in loop <4 is
135 — 117 — ~A = ~A > sk
AP, =— (Ao —|—n_ ll'Qa + ACOa + 3Q3)+"25Q5|.Qs'| (10.8.2)
nrs |5 | — (A + 24, + 3A4Ax308)

This correction is applied to pipe 5 and to pump B in the loop. Equation
(1O.8.2) is developed by application of ™NMewton’s method to the loop. For satisfac-
tory balancing of networks with pumping stations,

the slope of the head-dischargse
curve should always be less than or egual to Zero.
The FORTRADN IV prograrnm

(Fig. 10.15) may be used to analyze a wide
MEP 579 Applications of Pipe Lines
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:_ = \ = e, § ‘{\._@ Sample network.
oEED == o1 J i g
= e et % = AR El 117
e E= T oo pE PLr T S NS B o e \ e =
Er 150 mi~ | [F) OOE-300-0.15 = jo oAl R =
-’ = [E3] o>

variety of liguid steady-state pipe flow problems. The Hardy Cross loop-balancing
method is nsed. Pipeline flows described by the Harzen-Williams eguation or
laminar or turbulent flows analyzed with the IDarcy-%"Weisbach eauation can be
handled; multiple reservoirs or fixed pressure levels, as in a sprinkler system, can
e analvzed: and systermnms with booster pumps or supply pumps can be treated.

Aomnetwork is visualized as a combination of elements that are interconnected
at junctions. The slements may inclade pipeiines, pumps, and maginary clemenis
which are used to create pseudo loops in multiple-reservoir systems. Aldl minor
losses are handied by estimating eguivalenst

Lo s e o ey P | el S I P
|LITIE TSOuUUINEaTSIEL

aRngihs and adaing themn onto ithe
actual pipe lengths. Each element in the system is mumbered up to a maximurn of
100, without duplication and o neo i

W r = mm o o =
Dol MTCOTsSSAariay oonssecuai

ively. A positive fiow direc-
ticn is assigned to each element, and, as in the arithmetic solution, an estimated
fAlow is assigmned to each element such ithat continuity is satisfied at cach Jumnction.
The assigned positive flow direction in a pump must be in the intended direction
of normal pump coperation. Any soluition wiith backward fiow through a pump is
invalid. The fAow direction in the imaginary element that creates a pseudo loop
indicates only the direction of fixed positive head drop, since the Aow must be =ero
in this slement. Each junction., which may represent the termination of a single
element or the intersection of many elements, is numbered up to a maximum o
100, without duplication and not necessarily seguentially. An outAow or inflow @
a ivnction is defined during the assignment of initial el=ment Nows.

The operation of the program is best wvisualized in two major parts: the firs
prerforms the balancing of each loop in thie system successively and then repeats i
an iterative manner until the sum of all loop Aow corrections is less ithan
specified tolerance. At the end of this balancing process the element flows ar
computed and printed. The second part of an analysis involves the computation <
the hydraulic-grade-line elevations at junctions in the sysrem. Each of these parct
reguires a special indexing of the systemnm configuration in the input data. Th
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?ndexing of the_ s¥stemn loops for balancing is placed in the vector ITNID. A series of
integer values identifies each loop sequentially by the number of elements in the
loop followed by the element number of each element in the loop. The directional

sense o_l' flow in each element is identified by a positive element number for the
clockwise direction and a nesative

. — SRpye - - = =
DSgative slemienti for counterclockwise.
The second part of the program requires an identificatio

: : n of one or more junc-
fions with known heads. Then a series of junction and cle

a ment numbers indexes a
continuous path through the systermm to all jimctions where the hydraulic srads
Iine is wanted. The path may be broken at any point by an inte

; : ger zero followed
by a new junction where the head is known. These data are stored in the vector 12>
by a junction number where the head is known followed by a contiguous elerment
number and junction number. Again the positive elemenit number is used in thes
assigned flow direction. and the negative clement number is used when tracing a
path against the assigned element flow direction. Any continucus path mayv be
broken By inserting & zero: then o new Path is begun with a new initial junction.
an clenent, and a node, etce. All junction B}’draulic—graﬁe—line elevations thhat aré
compuled are printed.

As shown below, the type of each element is identified in the input data, and

each element is identified in the program by the assignment of a unigue numerical
wvalue in the vector I'TYPE.

Elaement Data Program Element IDala Program
Hazen-Williams pipeline HW 1 Pseudo elemnent rs i
Darcy-Weisbach pipeline DWW prd Pump Py

The phwysical data associated with each element are entt_:red on separate cardsc_l ]:n
the program the physical data that describe all elements in the system arc storel 11-1:I
the vector ELEM, with five locations rescrvec_l for each element. {ks_ an example o
the position of storage of element ini‘ormat:lon, the data pertaining to
number 13 are located in positions 61 to 65 in EL]—'_:‘.M_ : )

Data preparation for the program is best wvisualized in four steps, as shown ir

Fig. 10.16 and described below. Formated inmput is used, as shown in Fig. 10.1¢
and the programm.

lemen

[
1

H
3 1 ] ticars Elisrmemt oto. F |
f i T IvE Head calculatior

path cards

B
1
Juncricrn Fossd
A2, 18, FI1O.3)

IwWa Junction elevatio
cards

e e

o, ol 2
! Elermeant Element Elemanes _!-:;:_-_1:;-‘- CET
ire B Am2, 2, 1STA i Boo

1l Loop imdex cards

Pl Elesriacn F o &a G e g =
e

Elerrmerst (G Lengnh Disrrveter [=3

a2, 3, IS5, 3F10.3,. FLO.S, 2F10.3y % 11 Element cards
i aric Defawit

en . Nemsne LEE L Ll AW

51 D — &

Az, I8, F1O.4, F10O.7, F10.5r

1 Parameter card

Figure 10,16 Data cards for Hardy Cross programnm.
Step 1: Farasmeter IDescription Canrdl

The type of unit to be used in the analysis is defined by the characters S for
the SI units. An integer defines the maximum number of iterations to be
allowed during the balancing scheme. An acceptable tolerance is set for the
sum of the absolute walues of the corrections in each loop during each
iteration. The liguid kinematic wviscosity must be specified if the Darcyv-Weis-
bach eguation is used for pipeline losses. If the Haren-Williams eguation is
used, a default value for the coefficient € may be defined, or if the IDarcy-Weis-
bach eguation is used, a default value for absolute pipe Troughness may be

defined. If the default value is used on the parameter card, it need not be placed
on the element cards; howewver, if it is,
wvalue.

Step 2: Element Cards

the element data override the default

Each element in the systém requires a separate card. Pipeline elements require
either HW or DW to indicate the equation for the problem scolution, the element
number, the estimated flow, the length, the inside diameter, and (if the default
value is not used} either the Hazen-Williams coefficient or the pipe roughness for
the Darcy-Weisbach equation. Pump elements require PU to indicate the element
type. the element number, the estimated flow, a flow increment AQ at which values
of pump head are specified, and four values of head from the pump-characteristic
curve beginning at shutoff head and at equal flow intervals of AQ. The pseudo
element for the pseudo loop requires PS to indicate the type, the element number,
a zero or blank for the flow, and a difference in elevation between the intercon-
nected fixed-pressure-head levels with head drop positive. The end of the element
data is indicated by a tard with “&& ™ in the first two columns.
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Step 3: Loop Index Cards

These data are supplied with 15 integer numbers per card in the following order:
the number of elements in a loop (mMmaximum of 20) followed by the element
number of each slement in the loop with a negative sign to indicate counterclock -
wise flow direction. This information is repeated until all loops are defined. The
end of step 3 data is indicated by a card with “ && ™ in columns 1 and 2

Step 4: Hend Calculation CTCards
Junctions with fixed elevations .are

. identified on separate cards by giving the
jJunction number and the hvdraulic-grade-line elevation. There must be one or

more of these cards followed by a card with ** && " in the first two columns Lo
indicate the end of this type of data. )

The path to be followed in computing the hydraulic-grade-line elevations is
specified by supplving 15 integer values per card in the following order : junction
=X b |

Or - 1 - DO o0 7 MOO o
[t B8 L -2 500 . - 3
(LN =2 -3 3OO0 . - 15
W 3 -1 5 00 . -
- oy -3 OO0 - - 3
H = -3 I DD - 3
[ == [ 15 o
s - 18 .
[R5 ] B s X - -0 I - 2P . 25 . = O
[~
a = 1 — = 1 L — = = (=] — s -1 i 8 = e
=
=S
=] 1T1F
[ R 3
= = L = = 1 * 5 =
[ = =]
s I DONITS SPECIFIED, TISCOSITY - PR ST A D S R - O e OO COOT O
DES IFED FLO ™ TO LERMALABNCE: =0 .00 1 b = B L =N 4 ETEERATLTILIONS= 3o
rPEE R Lo B S0 =i = [=1h =2 [ B i e B L4 F T OR [ 5] o (FT L= - 3 - B | e [~ o B =S
" . W20 [« Ko R o | O e 3OO A OO OO0 O
= . O30 200 - O e SO TO0. OO0 OO
3 O oo O OO 54900 - O [ e e N ] R O0.. OO0 o0
iy Q. O30 B oo o DO 0. 300 10 OO0 0 O
= . O30 IO O o IO 1O 0. OO0 OC O
L= RE SERAWO LP ELEW DI FFERE WM E= TS . OO0
- HESERWYOTEHR EL EW DEFFERENMCE = TE OO
B PUMEP C OBRVE ey == O O3 (= R b X = QR o | 29 .o 25 - D =0 . O
COoOEF XL N B E E D= FO . OO0 — A1 - F%1 - 555 .. 556 —iG1 T2 .8 3FE
D = -
3 = = 3 -3 = L. e e | e | L3 - B3 s | 3 = -
a =] [=] [+ L+ ] o L+ On (=3 (=] On (=3 o o O
L=
ITTERMLII ON = | S U OF L. = COoOR BECT IO NS = > . T3B8 S
ETE®BRMDT OM B O . =2 S 0O OF L O CORBECTIORS= O WO O
ITE RATI OM O . 3 = o0om [=3 f o - CORBECTILIO NS == O o 3T 2
TTE BRATLE OM O .. &4 STUM OF FLOW COBRECTIONS=— O . o003
TTE RMATELE ON MO . S ST OF FLOW CORBECTIONS=— O e OO0 S
EILE M E NT T L
- o . To=
= — . O 3
3 Lo BN = e
8 D OSSO
k=1 L= B e ]
(= ] e BT
T W -
= = £ 3 = - . 1 L ] a3 (=] L= L= ] o o L=
L= ]
SOOMHMCTEOM H = A
“1 MIAT -« 511
= F SO . Ol
3 T3S - Do
L) 13T FaF
= 1A T . OO Figure 1017 Program input anmnd output for Example 109
El 430
-
El 400

0.17-1000-0.5 © (M s)-E (m)-L2 (o)
S
B - O A o« DO R 120 -
ﬁ:’; a e 17 AOO0 - O - T
H = Tr o 1 4 BO0 - g'gﬁ.
Lo B w e | 2 FTOO -
23 g {}:17 D .2 e~ P B . JO e P
s > [ = Y — 25 . -
S £ =1 [+ S — S .
=R
-y g —_— - — =3 a —3 =2
E-H
- OO .
%
- -3 i i -5 = =2 = -~ = =
-

Figure 10.18 Input data for branching-pipe system in U.S. customary units with Hazen-WWilliams
formula.

number where the head is known, element number (with a negative sign to in-
dicate a path opposite to the assumed flow direction J). junction nuxfnber,‘ ctc. I.f one
wants a new path to begin at a junction different from the las_l listed junction, a
single zero is added, followed by a junction where the head is known, element

number, junction number, etc. The end of step 4 data is indicated by a card with
“ & L ™" in columns 1 and 2.

Example 10.9 The program in Fig. 10.15

is used to solve the network problemn displayed in
Fig. 10.14. The pump data are as follows:
Q. m/is | s ] l 003 1 006 l 0.0%
M., m I 30D lj 9 l 246 1 20

The Hazen-Williams pipeline coefficient for all pipes is 100. Figure 10.17 displays the input data
and the computer output for this problem.

Figures 10.18 to 10.20 give input data for three systems which can be solved
with this prograrmn.
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109 CONDIUITS VWITH MNONCIRCULAR  CROSS SFEFCTIONS

Iin this chapter so far. only circular pipes have been considered. For cross sections
that are noncircular, the Darcy-Weisbach eguation may be applied if the termm O
can be interpreted in terms of the section. The concept of the hydrawlic radiies R

0.5.3000-0.3 “‘ QUM s FAmi -2 im} 1.4 m3 s
a2l 34 - 302 000Ul - 0035
Dl L o 3000 - L
3 b 2 L-6 3000 - Q .8
Ow 3 L-C 3000 - 0. &
ow & -5 I0UO0 - 0.5
W 5 -5 300U 3.3
el T O 3060 - C.8
O W o . 3000 - 0.6
Ow 2 La 4000 - 1.0
O w L3 1% QOO . L
O ik - 4000 .- Onb
D L2 L oo HO00 - Ot
"5 135 - — S .
s L O 20 -
L&
s L 2 3 % 13 P @ a0 11 —2 2 -7 B z
— s % L T —= -1
L 520
LG
L 1 2 < 3 a - < s o 3 —x1 & L @
L& a 2 = ¥ -2 a

Figure 10.19 Input data for hydraulic system. S1 units and Darcy-Weisbach equation.
permits circular and noncircular sections to be treated in the same manner. The

hydraulic radius

perimeter. Hence, for a circular section,

R o=

area

wD2/4

perimeaeter
and the diameter is equivalent to 4R. Assuming that the diameter may

oD

D

a

is defined as the cross-sectional area divided by the wetted

(10.9.1

be replaced

by 4R in the Darcy-Weisbach equation, in the Reynolds number, and in the
relative roughness,

hy=Ff L vz - Y ARp e B (10.9.2
.l 4R 2g u D 4R
7 €1 as0
0.85-1200-0.75 Ty

a2

—_—

= =)

-@ =
2a-1=200-0. 0-28-—1200—0-5

L2 O 3 s k- Do -2 (o )

(&> R §

043120005

s

_— &2 o.14-1z00-0.5 2]

O.Z28-1=200-0.5 O 28-1200-0.5 - £

015 m%s - 0. 28 mYfs

=X = - OO R - DA O 120y -
[ o B ] k-3 . B 1200 - O . T
Hi- = O - 22 A 200 - e TS
[ o L %] = O o X% A 2O o O . T
el - O e L= 2O . Lw B
L = L B o Bl ] - Lo ]
L <5 O - B A 20O . o . S
LS LFY ] - O .28 A200 . .5
H (=] T - 26 p el o L o B [+ e
H - D . 4T A B . O . S
[ el ™ | 1= . 28 F[AD - =2E . = AL -
Fu e . Lo e & =] e, . BFS A . 28 .= 2O .
L = R 3 O . Lo s L e . L A2 .
| =1 L= Lo S 3T -
=

= = b e = = —_— — i 5 — —_ (=] 1S -y A = = —=

— a= — sk E
=
i e B e
(=] -y O .

= R =

1 i = = = 1= - = = = =2 —_— 1o —313 11
i —- 12 o> = a = 24 -

Figure 1020 Input Tor booster-puMmpp SysSterr.
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Noncircular sections may be handled in a similar manner. The Moody diagram

applies as before. The assumptions in Eqgs. (10.9.2) cannot be expected to hold for
odd-shaped sections but should give reasonable values for square, oval, triangular,
and similar types of sections.
Example 10.10 Determine the head loss, in millimetres of water, reguired for fAow of
A0 m?/min of air at 20°%C and 100 kPa through a rectangular galvanized-iron section 70O mm
wide, 350 mm high, and 70 o long.

A 0.7 = 0.35 e 000015
R =5 =307 « 0351 0513 S AR 4 = 0.117 .0.00032
G - s B AT N e
Vv = €0(0.75(0.35) = 20.41 mfs 1 = 2.2 x 10~* Pa-s P T 387(273 + 20) = g m
i VDp s V4R p =20.41 w o D.ll_'? »x 1.189 — 516 200
M 1 22 x 103
L v? 70 20.41%
i =_— = — — = 0016
From Fig. 5.32, f = 00165 ke, aR 2g 0.0 54

= 5242 m
x 0,117 2 x 9.806
The unit gravity force of air is pg = 1.189 x 9.806 = 11.66 N/m?. In millimetres of water,

52.42 x 11.66 = 1000 BN R
9BOH

[10.10 AGING OF PIPES |

The Moody diagram, with the values of absolute roughness shown there, is for
new, clean pipe. With use, pipes become rougher, owing to corrosion, incrusta-
tions, and deposition of material on the pipe walls. The speed with which the

friction factor changes with time depends greatly on the fluid being handled.
Colebrook and Whitet found that the absolute roughness € increases linearly with

time, €= €g + ot (IU.IO.I}

in which ¢, is the absolute roughness of the new surface. Tests on a pipe are
required to determine o.

The time variation of the Hazen-Williams coefficient has been summarized
graphically} for water-distribution systems in seven major U.S. cities. Although it
is not a linear variation, the range of values for the average rate of decline in C
may typically be between 0.5 and 2 per year, with the larger values generally
applicable in the first years following installation. The only sure way that accurate
coefficients can be obtained for older water mains is through field tests.

+ C. F. Colebrook and C. M. White, The Reduction of Carrying Capacity of Pipes with Age, J
Inst, Civ. Eng. Lond., 1937,

+ W. D. Hudson, Computerized Pipeline Design, Transp. Eng. J. ASCE, vol. 99, no. TE1, 1973.
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