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Part (6)*

Introduction to Compressible Flow (Gas Dynamics)

6.1 Introduction:

Motivation. All of our previous chapters have been concerned with “low-speed”
or “incompressible” flow, i.e., where the fluid velocity is much less than its speed of
sound. In fact, we did not even develop an expression for the speed of sound of a fluid.
That is done in this chapter.

When a fluid moves at speeds comparable to its speed of sound, density changes be-
come significant and the flow is termed compressible. Such flows are difficult to obtain
in liquids, since high pressures of order 1000 atm are needed to generate sonic veloci-
ties. In gases, however, a pressure ratio of only 2:1 will likely cause sonic flow. Thus
compressible gas flow is quite common, and this subject is often called gas dynamics.

Probably the two most important and distinctive effects of compressibility on flow
are (1) choking, wherein the duct flow rate is sharply limited by the sonic condition,
and (2) shock waves, which are nearly discontinuous property changes in a supersonic
flow. The purpose of this chapter is to explain such striking phenomena and to famil-
1arize the reader with engineering calculations of compressible flow.

We took a brief look in part (1) [Eqs.a,b.c,d &fbelow] to see when we might safely
neglect the compressibility inherent in every real fluid. We found that the proper cri-
terion for a nearly incompressible flow was a small Mach number Ma = V/a < |

where V is the flow velocity and a 1s the speed of sound of the fluid. Under small-Mach-
number conditions, changes in fluid density are everywhere small in the flow field. The
energy equation becomes uncoupled, and temperature effects can be either ignored or

put aside for later study. The equation of state degenerates into the simple statement that
density is nearly constant. This means that an incompressible flow requires only a mo-
mentum and continuity analysis, as we showed with many examples in parts 1, 2, 3 &4.

When is a given flow approximately incompressible? We can derive a nice criterion
by playing a little fast and loose with density approximations. In essence, we wish to
slipdensity out of the divergence in continuity eq.and approximate a typical term as,

) ou
c.g.. < i) = —_—
dx (P =p ox (2)
This 1s equivalent to the strong inequality dp < |p ot
, ox ax
or op oV, (b)
P 4

Aswe shall see in  this part . the pressure change is approximately proportional to the
density change and the square of the speed of sound a of the fluid

Sp = a” &p (c)
Meanwhile, if elevation changes are negligible. the pressure is related to the velocity
change by Bernoulli’s equation

* Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. OKiishi ‘“Fundamental of Fluid Mechanics”
4™ ed., John Wiley & Sons, Inc., 2002.
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&p = —pV &V ()

Combining Eqgs.(b) to (d). we obtain an explicit criterion for incompressible flow:
V=

_ 2

- Ma- <= 1 (D)

where Ma = V/a is the dimensionless Mach number of the flow. How small is small?
The commonly accepted limit is Ma = 0.3

For air at standard conditions, a flow can thus be considered incompressible if the ve-
locity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of air-
flows: automobile and train motions, light aircraft, landing and takeoff of high-speed
aircraft, most pipe flows, and turbomachinery at moderate rotational speeds. Further,
it is clear that almost all liquid flows are incompressible, since flow velocities are small
and the speed of sound is very large.’

*An exception occurs in geophysical flows, where a density change is imposed thermally or mechani-
cally rather than by the flow conditions themselves. An example is fresh water layered upon saltwater or

warm air layered upon cold air in the atmosphere. We say that the fluid is strafified. and we must account
for vertical density changes ewven if the velocities are small.

This chapter treats compressible flows, which have Mach numbers greater than about
0.3 and thus exhibit nonnegligible density changes. If the density change is significant,
it follows from the equation of state that the temperature and pressure changes are also
substantial. LLarge temperature changes imply that the energy equation can no longer
be neglected. Therefore the work is doubled from two basic equations to four
1. Continuity equation
2. Momentum equation
3. Energy equation
4. Equation of state
o be solved simultaneously for four unknowns: pressure. densily. temperature. and
flow velocity (p. p. T, V). Thus the general theory of compressible flow is quite com-
plicated. and we try here to make further simplifications, especially by assuming a re-
versible adiabatic or isentropic flow.

6.1.1 The Mach Number:

The Mach number is the dominant parameter in compressible-flow analysis, with dif-
ferent effects depending upon its magnitude. Aerodynamicists especially make a dis-
tinction between the various ranges of Mach number, and the following rough classi-
fications are commonly used:

Ma << 0.3:  incompressible flow, where density effects are negligible.

0.3 << Ma << 0.8: subsonic flow, where density effects are important but no
shock waves appear.

0.8 << Ma << 1.2:  transonic flow, where shock waves first appear, dividing sub-
sonic and supersonic regions of the flow. Powered flight in the
transonic region is difficult because of the mixed character of
the flow field.

1.2 << Ma << 3.0:  supersonic flow, where shock waves are present but there are
no subsonic regions.

3.0 << Ma:  hypersonic flow [13]. where shock waves and other flow
changes are especially strong.

The numerical values listed above are only rough guides. These five categories of flow
are appropriate to external high-speed aerodynamics. For internal (duct) flows, the most
important question is simply whether the flow is subsonic (Ma << 1) or supersonic (Ma =
1), because the effect of area changes reverses, as we show in Sec. 9.4. Since super-
sonic-flow effects may go against intuition, you should study these differences carefully.
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6.1.2 The Specific-Heat Ratio:
In addition to geometry and Mach number. compressible-flow calculations also depend
upon a second dimensionless parameter, the specific-heat ratio of the gas:

C
k=-*% (6.1)
('i'.l'
Earlier, in parts 1 and 4., we used the same symbol k& to denote the thermal conduc-

tivity of a fluid. We apologize for the duplication:; thermal conductivity does not ap-
pear in these later chapters of the text.

Recall from Fig. (a) that k& for the common gases decreases slowly with temperature and
lies between 1.0 and 1.7. Variations in k£ have only a slight effect upon compressible-
flow computations, and air, £ = 1.40, is the dominant fluid of interest. Therefore, although
we assign some problems involving. e.g.. steam and CO- and helium. the compressible-
flow tables in App. B are based solely upon the single value &£ = 1.40 for air.

1.7

Atmospheric pressure

Fig. (a) Specific-heat ratio of eight
common gases as a function of tem-
perature. (Data from Ref. 12.)

r ll}IGD pella Talu] BOIDG ;10'00 SO
Temperature ., ~

This text contains only a single chapter on compressible flow, but, as u.k;ual_ whole
books have been written on the subject. References 1 to 6, 26, 29, and 33 are intro-
ductory, fairly elementary treatments., while Refs. 7 to 14, 27 to 28, 31 to 32, and 35
are advanced. From time to time we shall defer some specialized topic to these texts.

We note in passing that there are at least two flow patterns which depend strongly upon
very small density differences. acoustics, and natural convection. Acoustics [9. 14] is the
study of sound-wave propagation. which is accompanied by extremely small changes in
density, pressure, and temperature. Natural convection is the gentle circulating pattern set
up by buoyancy forces in a fluid stratified by uneven heating or uneven concentration of
dissolved materials. Here we are concerned only with steady compressible flow where the
fluid velocity is of magnitude comparable to that of the speed of sound.

6.1.3 The Perfect Gas Relations:

In principle. compressible-flow calculations can be made for any fluid equation of state,
and we shall assign problems involving the steam tables [15]. the gas tables [16]. and

ligquids [Eq.{g)].

{ The density of a liquid usually decreases slightly with temperature and increases
moderately with pressure. If we neglect the temperature effect, an empirical pressure-
density relation for a liquid is  p

Pa
where B and n are dimensionless parameters which vary slightly with temperature and
Pa and p, are standard atmospheric values. Water can be fitted approximately to the

values B = 3000 and n = 7.
Seawater is a variable mixture of water and salt and thus requires three thermody-

namic properties to define its state. These are normally taken as pressure, temperature,
and the saliniry S, defined as the welight of the dissolved salt divided by the weight of
the mixture. The average salinity of seawater is 0.035, usually written as 35 parts per
1000, or 35 %ec. The average density of seawater is 2.00 slugs/ft”. Strictly speaking,
seawater has three specific heats, all approximately equal to the value for pure water
of 25,200 ft*/(s? - °R) = 4210 m*/(s” - K). }

~ (B + 1)( . ':)” — B ()
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But in fact most elementary treatments are confined to the perfect gas with constant

specific heats Cp

p = pRT R = ¢, — ¢, = const k= = const (6.2)

Cy
For all real gases, ¢, ¢,, and k vary with temperature but only moderately; for exam-
ple, ¢, of air increases 30 percent as temperature increases from 0 to 5000°F. Since we
rarely deal with such large temperature changes, it is quite reasonable to assume con-
stant specific heats.

Recall from Sec. 1.6 that the gas constant is related to a universal constant A di-

vided by the gas molecular weight A
R.,..=— 6.3
3:_.,"35 Mgas ( )

where A = 49,720 ft*/(s” - °R) = 8314 m*/(s” - K)
For air, M = 28.97, and we shall adopt the following property values for air through-
out this chapter: g — 1717 12/(s? - °R) = 287 m3/(s> - K) k = 1.400

Cop = k—f—l = 4293 {t*/(s” - “R) = 718 m”/(s” - K) (6.4)
kR

= ——— = 6010 ft3/(s? - °R) = 1005 m3/(s2 - K)

Experimental values of k for eight common gases were shown in Fig.(a) . From this
figure and the molecular weight, the other properties can be computed, as in Eqs. (6.4).
The changes in the internal energy @ and enthalpy /2 of a perfect gas are computed
for constant specific heats as
i — 0y, = c (T, — T) o — Iy = c (15 — T7) (6.5)
For variable specific heats one must integrate # = [ ¢, d7T and h = [ ¢, dT or use the
gas tables [16]. Most modern thermodynamics texts now contain software for evaluat-
ing properties of nonideal gases [17].

6.1.4 The Isentropic Process:

The isentropic approximation is common in compressible-flow theory. We compute the
entropy change from the first and second laws of thermodynamics for a pure substance
17 or 18 dp
[ ] T ds = dh — £
P
Introducing dh = ¢, dT for a perfect gas and solving for ds, we substitute p7" = p/R

from the perfect-gas law and obtain

(6.6)

~

2 L >
[Fas— [ e, 4L g [ <2 67)
1 1 1 P
It ¢, is variable, the gas tables will be needed, but for constant ¢, we obtain the ana-
Iytic results T _
) 5> — 8§ = Cp ln?—f—Rlnﬁ—f:c'v ll‘l%—RIII% (6.8)
Equations ('6.8) are used to compute the entropy change across a shock wave (Sec.6.51),
which is an irreversible process.
For isentropic flow, we set 5§, = 5, and obtain the interesting power-law relations

for an isentropic perfect gas \Kdtk—1)

2 T 5> \K

P2 _ (_2) — (EA) (6.9)
1 T, P

These relations are used in Sec. 6.3.

Example 6.1:

Argon flows through a tube such that its initial condition is p, = 1.7 MPa and p, = 18 kg/m’
and its final condition is p, = 248 kPa and T, = 400 K. Estimate («a) the initial temperature, (b)
the final density, (¢) the change in enthalpy, and (d) the change in entropy of the gas.

Solution
From Table A .4 for argon, R = 208 m*/(s* - K) and k = 1.67. Therefore estimate its specific heat
at constant pressure from Eq. (6.4)
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kR 1.67(208) 2,02
cp = — 1 167 —1 = 519 m*/(s~ - K)

The initial temperature and final density are estimated from the ideal gas law, Eq. (6.2)

P 1.7 E6 N/m~ o _ .

=5 R = 8 kgm 208 mU(s2 - Ky~ P4k Ans. (a)
2

_ Pz _ 248 E3 N/m — 2.08 kg/m® Ans. (b)

P2 = 7T R ™ (400 K)[208 m%/(s> - K)]

From Eq. (6.5) the enthalpy change is
hy — hy = ¢ ,(T5, — T)) = 519(400 — 454) = — 28,000 J/kg (or m>/s?) Ans. (c)

The argon temperature and enthalpy decrease as we move down the tube. Actually, there may
not be any external cooling: i.e., the fluid enthalpy may be converted by friction to increased ki-

netic energy (Sec. 6.7). T, Pa
Finally. the entropy change is computed from Eq. (6.8): 52 — 51 = ¢, In T R In p_j
400 0.248 E6
= 519 lnﬁ—ZOS IHW
= —66 + 400 = 334 m?/(s* - K) Ans. (d)

The fluid entropy has increased. If there is no heat transfer, this indicates an irreversible process.
Note that entropy has the same units as the gas constant and specific heat.

This problem is not just arbitrary numbers. It correctly simulates the behavior of argon mov-
ing subsonically through a tube with large frictional effects (Sec.6.7).

Example 6.2:

Air flows steadily between two sections in a long straight portion of 4-in.-diameter pipe as
is indicated in Fig. E6.2 . The uniformly distributed temperature and pressure at each sec-
tion are T, = 540 °R, p, = 100 psia, and T, = 453 °R, p, = 18.4 psia. Calculate the
(a) change in internal energy between sections (1) and (2), (b) change in enthalpy between sec-
tions (1) and (2), and (c) change in density between sections (1) and (2).

Control volume \

| : ' |
Flow == Iﬁ/ Section (1) Section (2) i D
- b

D, =D,=4in. M FIGURE E6.2

Solution:
(a) Assuming air behaves as an ideal gas, we can evaluate the change in
internal energy between sections (1) and (2). Thus

ﬁz - fj] = Cv(Tz - T]) (1)

'we hav R
we have ¢, = —— )
and from Table 1.7, R = 1716 (ft - Ib)/(slug - “R) and k£ = 1.4. Throughout this book,

we use the nominal values of & for common gases listed in Tables 1.7 and 1.8 and con-
sider these values as being representative. From Eq. 2 we obtain
1716
(14— 1)
Combining Egs. 1 and 3 yields
iy — ity = c,(T>, — T;) = 4290 (ft - Ib)/(slug - °R)
X (453 °R — 540 °R) = —3.73 X 10’ ft - Ib/slug (Ans)
(b) For enthalpy change we use /i, — 1, = c(T, — 1) (4)

(ft - Ib)/(slug - °R) = 4290 (ft - Ib)/(slug - °R) 3)

Cy

Dr. Mohsen Soliman - 6/125 - MEP 580 Compressible Flow



Table A.4 Properties of Common Gases at 1 atm and 20°C (68°F)

MMolecular Specific-heat Power-law
Gas weight R, mis? - K) . Nm® o, M- sim ratio exponent n’
H- 2016 4124 0822 9.05 E-6 L.41 068
He 4003 2077 1.63 1.97 E-5 .66 0.67
HO 18.02 461 T.35 1.02 E-5 1.33 1.15
Ar 39.944 208 16.3 2.24 E-5 L.a7 072
Dy air 28.96 287 11.8 1.80y E-5 L.y 0.67
CO5 44.01 L8O 17.9 1.48 E-5 .30 0.7
CO 28.01 2907 11.4 1.82 E-5 L.y 0.71
M2 28.02 207 1.4 .76 E-5 L. 0.67
Crs 32.00 260 131 2,000 E-5 L.y 069
WO 30.01 277 121 Lo E-5 L.y 0.78
MOy 44.02 L8O 17.9 1.45 E-5 1.31 050
Cl- 7091 B 289 1.03 E-5 .34 1.00
CH, 16.04 518 6.54 1.34 E-5 1.32 087

The power-law curve fit, Eq. (1.27), piiisoye == (T7292)7, fits these gases to within =4 percent in the range 250 =T =
1200 K. The temperature must be in kelvins.

B TABLE 1.7
Approximate Physical Properties of Some Common Gases ot Standard Atmospheric Pressure (RC Units)
Specific Dvnamic kinematic [t
Density, Weizht, Yiscosity, Yiscosity, Constant,” Spexific
Temperatur P ¥ il v i Heat Ratio,"
(a5 ('F) {slugs/ft'| I/t ilb - 5/ft) (fE/s) (ft - Ib/slug - "R k

Air istandard) al) 1iRE =3 THSE =2 IHE=T 13Tk =4 LIlGE + 3 140
Carbon dioxide it} SaeE =} LIE =1 JME=7 BGIE=3 LIBOE + 3 130
Helium 63 MBE-4 IHE -2 4MWE-T7 LZTE-3 LM2E + 4 1.66
Hydogen b 163k =4 ABE=-3 LE83E=17 LIGE=3 2A6hE + 4 141
Mathame (natural gas) 0 I ME-3 415E-1 INE-T |.T8E -4 SO00E 4 3 1.31
Nitragen b LBE=-} 1.28E =2 iGRE =17 I6IE=4 LTISE + 3 140
Oayzen b 158E =3 BIE=2 45E=-17 165k =4 |35 E + 3 140

e N N N NN N N N N N ————
Walais of the gas comstant ane independent of emperaae.

¥Wabis. af the speaific heal ralia depend only lighily on besnperature,

B TABLE 1.8
Approximate Physical Propertics of Some Common Gases @ Standard Atmaspheric Presure (51 Units)
Specific Divnamic kinematic (yas
Density, Weizht, Yiscmity, Yiscasity, Constant,” specific
Temperature p ¥ I r R Heat Ratio,"
Gas (°C) (kg/nv) (N/nt') (N -5/ (v'/s) (kg - K) k

Air istandard) 13 LIAE+0 LYE+ 1 LI9E=3 l46E =3 2R E + 2 140
Carton dioxide 20 |B3E+0 |.80E + I 14TE-3 B03E -6 |.E8E +2 1.30
Helinm 20 16 E = | L63IE+0 LM E=3 LISE=-4 200ME+3 |t
Hydogen 20 §38E =2 aRE-I A3 E=-6 LO5E =4 4IHE+3 141
Methane (natural gas) bl 6HTE - | BME4D LIOE-§ 165E - § SIBE+2 131
Nitragen 20 LI6E +0 LI4E+ 1 LLTeE=3 ILRE=3 2065 F + 2 140
Oxyzen 20 |33E+0 LWE + 1 2ME-3 1.53E-3 JIBE+2 140

“Walws o the gas coastant are independent of temperabme.
Wabues of the specific beat ratio depend only slighily on sempersiure,
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where since k& = ¢,/c, we obtain

cp = kc, = (1.4)[4290 (ft - Ib)/(slug - “R)] = 6006 (ft - Ib)/(slug - “R) (5)

From Eqgs. 4 and 5 we obtain

-

ho — hy = (T, — T;) = 6006 (ft - 1b)/(slug - °R)
X (453 °R — 540 °R) = —5.22 X 10° ft - Ib/slug (Ans)

{c) For density change we use the ideal gas equation of state to get

P> _ 1 Pzpn) &)
RT, RT, R\T, T,

Usingthe pressures and temperatures givenin the problem statement we calculate fromEq.6
1

P27 P11 4706 (ft - 1b)/(slug - °R)
o [(18.4 psia)(144 in?/ft*) (100 psia)(144 in.z/ftz)]

P2 — P11 =

453 "R 540 °R
of pr — p; = —0.0121 slug/ft (Ans)
This is a significant change in density when compared with the upstream density
P (100 psia)(144 in.2/ft?)

- B = 0.0155 slug/ft>
P RT] [1716 (ft, - lb)/(‘)lllg . OR)](S4O OR) S ng/

Compressibility effects are important for this flow.

For compressible flows, changes in the thermodynamic property entropy, s, are im-
portant. For any pure substance including ideal gases, the “first 7" ds equation™ is

1
Tds = dii + pd (;) (6.10 )

The fluid property enthalpy, I, is defined as: h =+ L
0

where 7 is absolute temperature, s is entropy, f is internal energy, p is absolute pressure, and
p 1s density. Differentiating the above equation leads to

. | 1
Th =du + pd|— | +\| — |d| 6.11)
i)+ () (
By combining Eqs. 6.10 and 6.11 | we obtain
. 1
Tds = dh — (;)dp (6.12)
Equation 6.12 is often referred to as the “second 7' ds equation.” For an ideal gas,
dr R 1
ds = c,— + —d| — 6.13
T 1/p (p) ( :
and . dar dp
dS—Cp?—R? (6.14 )

If ¢, and ¢, are assumed to be constant for a given gas, Eqs. 6.13 and 6.14 can be inte-

grated to get
SQ_S]:(TUIHE_'_RII'I& (6.15 )
T, P2
and
T, P2
S5 =8 = ¢pln——Rln— (6.16 )
T, P

Equations 6.15 and6.16 allow us to calculate the change of entropy of an ideal gas flow-
ing from one section to another with constant specific heat values (c, and c,).
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Example 6.3:

For the air flow of Example 6.2 | calculate the change in entropy, s, — s,, between sections
(1) and (2).

Solution:
Assuming that the flowing air in Fig. E 6.2 behaves as an ideal gas, we can calculate the

entropy change between sections by using either Eq.6.15 or Eq.6.16 . We use both to
demonstrate that the same result is obtained either way.

From Eq. 6.15 . 15 21
S, — 8§ = cyIln—=— + R1ln— 1
2 1= T, P (1)
To evaluate s, — s, from Eq. 1 we need the density ratio, p,/p,, which can be obtained from
the ideal gas equation of state as Pi
- (72)6) @
and thus from Eqgs. 1 and f, . 1n£ R [(&)(Tz)] 3)
2 1 - T] T] P> ~
By substituting values already identified in the Example 6.2 problem statement and solu-
tion into Eq. 3 we get
453 °R
2 — = [4290 (ft-1b lug - °R) | In| ———
52— 51 = [4290 (FC- 1)/ (st - R)] 1n (2o )
100 psia 453 °R
+ [1716 (ft - Ib)/(slug - °R)] In K b )( , )}
540 °R 18.4 psia
or s, — s, = 1850 (ft - 1b)/(slug - °R) (Ans)
X . T’) 2
From Eg.6.16 S — 8§ = Cpln— — Rln& 4)
T, P
By substituting known values into Eq. 4 we obtain
453 °R
— = 6006 (ft-1b lug - °R) | In| ————
52— 51 = [6006 (ft - 1b)/(stuse - R)] n (G3o )
18.4 psia
— [1716 (ft - 1b lug - °R) | In| ————
(1716 (1t 1)/ (stug - R)T n (o0 5 )

or 5, — 5, = 1850 (ft - Ib)/(slug - °R) (Ans)

A anticipated, both Eqgs. 6.15 and 6.16 yield the same result for the entropy change,
55 — 8.

Note that since the ideal gas equation of state was used in the derivation of the entropy
difference equations, both the pressures and temperatures used must be absolute.

—

i s a2 o S AR A S S S S A A
The second law of thermodynamics requires that the adiabatic and frictionless flow of

any fluid results in ds = 0 or s, — s5; = 0. Constant entropy flow is called isentropic flow.
For isentropic flow of an ideal gas with constant ¢, and ¢, we get from Eqs.6.15 and 6.16:
o1 L rm? | Lo g2 = (6.17 )
n—_— n— — n — = )
T, .02 T, P

By combining Eq.6.17 with Egs. 6.2and 6.4 we obtain

e
(T1 Ao/ (6.18)

which is a useful relationship between temperature, density, and pressure for the isentropic

flow of an ideal gas. From Eq.6.18 we can conclude that % — constant
o
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6.2.1 The Mach Number and Speed of Sound:

The Mach number, Ma, was introduced in part (1) and sec.6.1 as a dimensionless measure of
compressibility in a fluid flow. In this and subsequent sections, we develop some useful re-
lationships involving the Mach number. The Mach number is defined as the ratio of the value
of the local flow velocity, V, to the local speed of sound, ¢ (some times we use a not c).
In other words, Ma = V/c {orMa=V/a)
What we perceive as sound generally consists of weak pressure pulses that move through air.
When our ear drums respond to a succession of moving pressure pulses, we hear sounds.
To better understand the notion of speed of sound, we analyze the one-dimensional
fluid mechanics of an infinitesimally thin, weak pressure pulse moving at the speed of sound
through a fluid at rest (see Fig. 6.1 a ). Ahead of the pressure pulse, the fluid velocity is zero
and the fluid pressure and density are p and p. Behind the pressure pulse, the fluid velocity
has changed by an amount 6V, and the pressure and density of the fluid have also changed
by amounts ép and dp. We select an infinitesimally thin control volume that moves with the
pressure pulse as is sketched in Fig.6.1 a . The speed of the weak pressure pulse is consid-
ered constant and in one direction only; thus, our control volume is inertial.
For an observer moving with this control volume (Fig. 6.1 b ), it appears as if fluid is
entering the control volume through surface area A with speed ¢ at pressure p and density p

and leaving the control volume through surface area A with speed ¢ — &V, pressure p + dp,
and density p + 6p. When the continuity equation is applied tothe flow through this control
volume. the result is
¢ pAc = (p + 6p)A(c — 8V) (6.19)
Weak pressure pulse Weak pressure pulse
I | Control volume p I I Control volume
! lf‘/ l l’/ + &p
| p + o P \or ¥
P 0 I p+op B FIGURE &.1
p - il P+ Sp < I | (a) Weak pressure
| | | Y pulse moving through
V=0 | | | | a fluid at rest. (b) The
Il v il flow relative to a con-
A I'\A el I\A trol volume containing
h a a weak pressure pulse.
(a) (b)
or pc = pc — p 8V + ¢ 8p — (6p)(8V) (6.20)

Since (8p)(8V) is much smaller than the other terms in Eq. 6.20 , we drop it from furwner
consideration and keep

p oV = ¢ ép (6.21 )

The linear momentum equation can also be applied to the flow through the control volume
of Fig. 6.1 b . The result 1s

—cpcA + (¢ — 8V)(p + 8p)(c — 8V)A = pA — (p + 6p)A (6.22 )

Note that any frictional forces are considered as being negligibly small. We again neglect
higher order terms [such as (8V)? compared to ¢ 8V, for example] and combine Eqgs.6.19

and 6.22 to get —cpcA + (¢ — 3V)pAc = —5pA

or pdV = fiﬁ' (6.23 )

From Eqgs. 6.21 (continuity) and 6.23 (linecar 1'£mentum) we obtain  ¢* = 2—1’2

or L_ |op (6.24 )
AV op
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This expression for the speed of sound results from application of the conservation of mass
and conservation of linear momentum principles to the flow through the control volume of
Fig.6.1b.

The conservation of energy principle can also be applied to the flow through the con-
trol volume of Fig. 6.1 b . If the energy equation is used for the flow through this control

volume, the result is op V2

— + 8| — )+ g6z = 5(loss) (6.25 )
P 2

For gas flow we can consider g 6z as being negligibly small in comparison to the other terms

in the equation. Also, if we assume that the flow is frictionless, then 8(10.95) = 0 and Eq.

6.25 becomes 5p (c — 61’)2 2
AR R
){3‘
or, neglecting (8V)* compared to ¢ 8V, we obtain povV =-- (6.26 )
. . L 187
By combining Egs. 6.21 (continuity) and 6.26 (energy) we again find that ¢ = \ 8—‘0
| 8p

which is identical to Eq. 6.24 . Thus, the conservation of linear momentum and the conser-
vation of energy principles lead to the same result. If we further assume that the frictionless
flow through the control volume of Fig. 6.1 b is adiabatic (no heat transfer), then the flow
is isentropic. In the limit, as p becomes vanishingly small (6p — dp — 0)

(e
¢ =y (E}p)s (6.27 )

where the subscript s is used to designate that the partial differentiation occurs at constant
entropy.

Equation 6.27 suggests to us that we can calculate the speed of sound by determin-
ing the partial derivative of pressure with respect to density at constant entropy. For the isen-
tropic flow of an ideal gas (with constant ¢, and c,), we learned earlier (Eq. 6.18 ) that
p = (constant)(p*)

and thus )
\p 2
(i> = (constant) kp* ™! = [—kkpk_l = Bk = RTk ( 6.28)
o0p /s P P
Thus, for an ideal gas c = V RTk ( 6.29)
More generally, the bulk modulus of elasticity, £, of any fluid including liquids is de-
fined as dp dp
E, = =p(— (6.30)
dp/p Ip /s
Thus, in general, from Eqgs. 6.27 and ¢ .30,
/Es (6.31 )
c == 6.31
NV p

Values of the speed of sound are tabulated in Tables B.1 and B.2 for water and in
Tables B.3 and B.4 for air. From experience we know that air is more easily compressed than
water. Note from the values of ¢ in Tables B.1 through B.4 that the speed of sound in air is
much less than it is in water. From Eq. 6.30 , we can conclude that if a fluid is truly incom-
pressible, its bulk modulus would be infinitely large, as would be the speed of sound in that
fluid. Thus, an incompressible flow must be considered an idealized approximation of reality.

The speed of sound increases :élsgthe square root of the absolute temperature. For air,
with k= 1.4 and R = 1717 (ft%s". °R), an easily memorized dimensional formula is
a (ft/s) = 49T (°R)]""~

a (m/s) = 20[7T (K)]"?

At sea-level standard temperature, 60°F = 520°R, a = 1117 ft/s. This decreases in the
upper atmosphere, which is cooler: at 50,000-ft standard altitude, T"= —69.7°F =
389.9°R and a = 49(389.9)'? = 968 fi/s, or 13 percent less.
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Some representative values of sound speed in various materials are given in Table &.1.
For liquids and solids it is common to define the bulk modulus Kof the material(or E.)
— E) 2 - ,9r
K= v oV s o ap
For example. at standard conditions, the bulk modulus of carbon tetrachloride is
163.000 Ibf/in® absolute, and its density is 3.09 slugs/ft?. Its speed of sound is there-
fore [163.000(144)y3.09]1Y2 = 2756 ft/s, or 840 m/s. Steel has a bulk modulus of
about 29 > 10° Ibf/in® absolute and water about 320 > 107 Ibf/in® absolute, or 90
times less.
For solids, it is sometimes assumed that the bulk modulus is approximately equiv-
alent to Young’s modulus of elasticity £, but in fact their ratio depends upon Poisson’s

s

ratio o E
— = 3(1 — 2o
) K ( )
The two are equal for o = 5. which is approximately the case for many common met-

als such as steel and aluminum.

m TABLE B.1
Physical Properties of Water (BG Units)®

Specific Dynamic Kinematic Surface Vapor Speed of
Density, Weight", WViscosity, Viscosity, Tension®, Pressure, Sound?,
Temperature P ¥ It v o P c
°F) (slugs,/ft*) (b1t (Ib-s/ft%) (ft3/s) (Ih/ft) [Ib/in*(abs)] (ft/s)
32 1940 62.42 3732 E-—5 Le24 E— 5 518 E—3 2854 E-—2 4603
40 1.940 62.43 3.228 E— 5 lL.e64 E — 5 513 E—3 1.217 E—1 4672
50 1.940 62.41 2730 E-—5 1407 E—5 500 E —3 1.L781 E — 1 4748
Gl 1.938 62.37 2344 E-—5 1210 E—5 503 E—3 2.563 E — | 4814
70 1.936 62.30 2037 E-—5 los2 E—5 497 E -3 363l E—1 4871
80 1.934 62.22 L7791 E —5 9262 E—0 491 E -3 5069 E — | 4519
90 1.931 62.11 1500 E—5 8233 E—-6 48 E-—3 65979 E — | 4960
100 1.927 62.00 1423 E—5 7383 E—6 479 E -3 9493 E — | 4905
120 Lo1s 61.71 L.la4d E — 5 6067 E—0 467 E -3 L1692 E+ 0 5049
140 1.908 61.38 9743 E—06 5006 E—6 453 E -3 2888 E 4+ 0 5001
160 L.896 61.00 8315 E—0 4385 E—06 440 E —3 4736 E 4+ 0 5101
180 1.B83 60.58 7207 E—6 3827 E—6 426 E-3 7507 E+ 0 5195
200 1.869 60.12 6342 E —6 3393 E—6 412 E -3 1.152 E + 1 5080
212 L.8ab 5983 5886 E—06 illes E—0o 404 E -3 L4690 E + 1 5062
"Based on data from Hasdbook of Chemistry and Physics, 69th Ed., CRC Press, 1988, Where necessary, values obtained by interpolation.
bDensit}r and specific weight are related through the equation v = pg. For this table, g = 32,174 ft/s"
In contact with air.
4From R. D. Blevins, Applied Fluid Dyvnamics Handbook, Van Nostrand Reinhold Co., Inc.. Mew York. 1984,
Bm TABLE B.2
Physical Properties of Water (ST Units)*
Specific Dynamic Kinematic Surface Vapor Speed of
Density, Weight", Viscosity, Viscosity, Tension®, Pressure, Sound?,
Temperature ” Yy j v o Py c
{"C) [kg;"m"} {kN;’m") (N- s;"ml} {1113,-’5} (N/m) [N,"rllll[abg}] (m/s)
1] 999.9 9.806 1.787 E — 3 1.787 E—06 756 E —2 6.105 E+ 2 1403
5 1000.0 9.807 1.519 E — 3 1519 E—6 749 E — 2 8.722 E+ 2 1427
10 999.7 9.804 L3007 E— 3 1307 E—06 742 E -2 1.228 E+ 3 1447
20 908.2 9.780 .02 E — 3 1.4 E — 6 728 E—2 2338 E+ 3 1481
30 9us.7 Q.765 775 E—4 000 E—7 712 E-—-2 4243 E+ 3 1507
40 992.2 9.731 6.520 E — 4 6580 E-—7 6.96 E—2 7376 E+ 3 1526
50 988.1 9.690 5468 E — 4 5534 E -7 679 E — 2 1.233 E+ 4 1541
]l Q83.2 9.642 4665 E —4 4745 E -7 662 E-—2 logz2 E+ 4 1552
70 977.8 9.589 4042 E—4 4134 E-—-7 6.44 E — 2 3116 E+ 4 1555
80 a71.8 9.530 3547 E—4 3650 E -7 626 E-—2 4734 E+ 4 1555
90 965.3 9.467 3.147 E — 4 3260 E-—7 608 E — 2 7010 E+ 4 1550
100 958.4 9399 2818 E — 4 2940 E — 7 580 E—2 1.013 E+ 5 1543

"Based on data from Hardbook af Chemistry and Physics, 69th Ed., CRC Press, 1988,

b]:hensit:.r and specific weight are related through the equation v = og. For this table, ¢ = 9.807 m/s”.

“In contact with air.

dFrom R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984,
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m TABLE B.3
Physical Properties of Air at Standard Atmospheric Pressure (BG Units)®

Specific Speed
Specific Dynamic Kinematic Heat of
Density, “"eight", Viscosity. Viscosity, Ratio, Sound,
Temperature n Vv I v i c
°F) islugs/Ft*) {Ib,/Ft* (Ib -5/t /sy (—) (ft/s)
—40 24939 E— 3 9456 E — 2 329 E-—7 .12 E — 4 1.401 1004
—20 2805 E— 3 e E — 2 334 E—7 1.19 E — 4 1.401 1028
0 2683 E — 3 5633 E — 2 338 E—7 126 E — 4 1.401 1051
10 2626 E— 3 5449 E — 2 344 E— T 1.31 E — 4 1.401 1062
20 2571 E— 3 8.273 E — 2 350 E— 7 1.36¢ E — 4 1.401 1074
30 2519 E— 3 8104 E — 2 358 E—7 1.42 E — 4 1.401 1085
40 2469 E — 3 7942 E — 2 3ol E—7 l.ae E — 4 1.401 1096
S0 2420 E-—3 T.786 E — 2 3nes E-—7 1.52 E — 4 1.401 1106
(alh} 2373 E-—3 Toe36 E — 2 375 E-—-T7 .58 E — 4 1.401 117
70 2329 E— 3 7492 E — 2 382 E—7 1l.ed4 E — 4 1.401 1128
BO 2286 E — 3 7353 E — 2 ise E —7 1l E — 4 1400 1138
Q0 2244 E — 3 7219 E — 2 ijon E—7 1.74 E — 4 1400 1149
100 2204 E-— 3 FJoon E — 2 o4 E-—T7 1.7 E — 4 1400 1159
120 2128 E — 3 G.846 E — 2 402 E—7 1.8 E — 4 1400 1180
140 2057 E— 3 6.617 E —2 4.13 E—7 201 E— 4 1.399 1204
e 1990 E — 3 6404 E — 2 422 E— 7T 212 E— 4 1.390 1220
180 1928 E — 3 6204 E — 2 434 E-—7 225 E—4 1.399 1239
200 1.870 E — 3 6016 E — 2 449 E —7 240 E — 4 1.398 1258
300 1.624 E — 3 5224 E — 2 497 E—-7 30e E— 4 1.394 1348
400 1435 E — 3 46l6 E — 2 524 E— 7 365 E—4 1.389 1431
SO0 1.285 E — 3 4.135 E — 2 580 E—7 451 E — 4 1.383 1509
750 1.020 E — 3 3280 E — 2 68l E—7 668 E — 4 1.367 1685
10O 2445 E — 4 2717 E —2 785 E—7 930 E— 4 1.351 1839
1500 6291 E — 4 2024 E — 2 950 E— 7 1.51 E— 3 1.329 2114
"Based on data from E. D. Blevins, Applied Fluid Dvaamics Handbook, Van Nostrand Reinhold Co., Inc.. New York, 1984,
"Density and specific weight are related through the equation v = ;g For this table g = 32,174 fi/s%
B TABLE B.4
Physical Properties of Air at Standard Atmospheric Pressure (51 Units)®
Specific Speed
Specific Dynamic Kinematic Heat of
Density, Weight”, Viscosity, Viscosity, Ratio, Sound,
Temperature It ¥ 13 v & c
(°C) (kg/m) (N/m?) (N-s/m?) (m*/s) (—) (m/s)
—40 1.514 14.85 157 E-5 104 E-—5 1.401 306.2
—20 1.395 13.658 16 E—-5 L.17 E—5 1.401 31al
0 1.292 12.67 171 E -5 132 E—5 1.401 3314
5 1.269 12.45 1.7% E—-5 136 E— 5 1.401 3344
10 1.247 12.23 176 E -5 141 E-—5 1.401 3374
15 1.225 12.01 I8y E—5 147 E— 5 1.401 3404
20 1.204 11.81 182 E-—5 151 E-—5 1.401 3433
25 1.184 11.61 .85 E—-5 .56 E—5 1.401 346.3
30 1.165 11.43 Il E -5 1.6 E— 5 1.400 349.1
40 1.127 11.05 187 E-5 166 E— 5 1.400 3547
S50 110G 10,88 195 E-5 1.7  E— 5 1.400 36003
60 1060 10,40 197 E-5 186 E — 5 1.399 3a65.7
70 1.029 10L09 20 E—-5 197 E—-5 1.399 3712
80 0.9996 9.803 207 E—5 207 E—- 35 1.399 376.6
90 0.9721 9.533 214 E-—-5 220 E-5 1.398 3817
100 0.9461 9.278 217 E-—5 229 E—-5 1.397 3569
200 0.7461 7317 253 E-—-5 339 E-—-5 1.390 434.5
300 06159 6040 2us E-—5 484 E-—5 1.379 476.3
400 0.5243 5142 33z E-—5 634 E-—5 1.368 5141
500 04565 4.477 jed E-—5 Juil E-—-5 1.357 5488
1000 0.2772 2.719 504 E-—-5 1.82 E— 4 1.321 694.8

“Based on data from R. D Blevins, Applied Fluid Dvaamics Handbook, Van Nostrand Reinhold Co.. Inc., New York, 1954
'Tensity and specific weight are related through the equation ¥ = og. For this table p = 5.807 m/s".
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Table ©.1 Sound Speed of Various

Materials at 60°F (15.5°C) and 1 atm Material a, f/s @, m/s
Liquids:

Material a. fitfs a. m/s Gl}!cerin 6,100 1,860

Gases: Water 4. 890 1.490

H- 4,246 1.204 Mercury 4,760 1.450

He 3.281 1.000 Ethwvl alcohol 3.940 1.200
Adr 1.117 340 Solids:*

Ar 1.040 317 Aluminum 16,900 5.150

CO> B73 266 Steel 16,600 5.060

CH, 607 185 Hickory 13.200 4,020

S EUF, 207 91 Ice 10.500 3,200

*Plane waves. Solids also have a shear-wave

Example 6.4: speed.
Estimate the speed of sound of carbon monoxide at 200-kPa pressure and 300°C in m/s.

Solution
From Table A.4, for CO, the molecular weight is 28.01 and k = 1.40. Thus from Eq. (9.3) R =

8314/28.01 = 297 m?/(s® - K), and the given temperature is 300°C + 273 = 573 K. Thus we
estimate

oo = (KRT)'? = [1.40(297)(573)]"* = 488 m/s Ans.
Example 6.5:
Verity the speed of sound for air at O °C listed in Table B.4.
Solution:

In Table B.4, we find the speed of sound of air at O °C given as 331.4 m/s. Assuming that
air behaves as an ideal gas, we can calculate the speed of sound as

c = V' RTk (1)
The value of the gas constant is obtained from Table 1.8 as R = 286.9 J/(kg - K)
and the specific heat ratio is listed in Table B.4 as k= 1.401

By substituting values of R, k, and 7T into Eq. 1 we obtain
c = V[(286.9) J/(kg - K)](273.15K)(1.401)[ 1 (kg - m)/(N - s>)][1(N - m)/J] (Ans)

= 331.4 m/s

The value of the speed of sound calculated with Eq. 6.29 agrees very well with the
value of ¢ listed in Table B .4.

skskoskockoskskocskskskskoskoskskoskskskskskskskoskoskosk sk sk sk sk skosko sk ks sk sksko sk sk sk skskosk sk
6.2.2 Example on Compressibility Effects:

One of the main assumptions is that the fluid is incompressible. Although this is reasonable
for most liquid flows, it can, in certain instances, introduce considerable errors for gases.

In the previous section, we saw that the stagnation pressure is greater than the static
pressure by an amount pV?/2, provided that the density remains constant. If this dynamic
pressure is not too large compared with the static pressure, the density change between two
points is not very large and the flow can be considered incompressible. However, since the
dynamic pressure varies as V2 the error associated with the assumption that a fluid is in-
compressible increases with the square of the velocity of the fluid. To account for com-
pressibility effects we must return to Eq. 3.6 and properly integrate the term [ dp/p when p
is not constant.

A simple, although specialized, case of compressible flow occurs when the tempera-
ture of a perfect gas remains constant along the streamline—isothermal flow. Thus, we con-
sider p = pRT, where T is constant. (In general. p, p, and T will vary.) For steady, inviscid,
isothermal flow, the Bernoulli's equation becomes
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RT J — + — V + gz = constant

where we have used p = p/RT. The pressure term is easily integrated and the constant of
integration evaluated if z,, p;, and V| are known at some location on the streamline. The re-

sult is V2
2g

Equation 6.32 is the inviscid, isothermal analog of the 1n<.ompressible Bernoulli equation. In
the limit of small pressure difference, p,/p, = 1 + (p;, — p2)/pP>, = 1 + &, with ¢ < | and
Eq. 6.32 reduces to the standard incompressible Bernoulli equation. This can be shown by
use of the approximation In(1 + &) = & for small £. The use of Eq. 6.32 in practical appli-
cations is restricted by the inviscid flow assumption, since (as is discussed in Section 6.1 )
most isothermal flows are accompanied by viscous effects.

A much more common compressible flow condition is that of isentropic (constant en-
tropy) flow of a perfect gas. Such flows are reversible adiabatic processes—“no friction or

(6.32)

<o

heat transfer”—and are closely approximated in many physical situations. As discussed fully
in section 6.1 ., for isentropic flow of a perfect gas the density and pressure are related by
p/p* = C. where k is the specific heat ratio and C is a constant. Hence, the J dp/p integral
of Eq. 3.6 can be evaluated as follows. The density can be written in terms of the pressure
as p = p"”‘C ¥ so that Bernoulli's eqn. becomes

: |
C'x Jp_'ﬁ‘ dp + EVQ + gz = constant

The pressure term can be integrated between points (1) and (2) on the streamline and the con-
stant C evaluated at either point (C'* = pi/*/p, or C'* = p}/*/p,) to give the following:
p2
ok (K ok _
Cl,ka; p~Vedp = CV¥ (,{-_ 3 1)[p(2k D& _ Pl 1]

L))

Thus. the final form of Bernoulli's eqn. for compressible, isentropic, steady flow of a perfect
as is . 2 : 2
- ( . >ﬁ+£+g~ ( : )&+L+g.ﬂ (6.33)
k— 1 2
The similarities between the results for compressible isentropic flow (Eq. 6.33 ) and incom-
pressible isentropic flow (the Bernoulli equation, Eq.6.32) are apparent. The only differences
are the factors of [k/(k — 1)] that multiply the pressure terms and the fact that the densities
are different (p; # p»). In the limit of “low-speed flow™ the two results are exactly the same
as is seen by the following.

We consider the stagnation point flow of figure 6.2 to illustrate the difference be-
tween the incompressible and compressible results. As is shown in section 6.1 , Eq. 6.33 can
be written in dimensionless form as

_ - kfl— 1
p3p7p1 = {(1 + . 5 1Maf> — 1} (compressible) (6.34)
1 2

where (1) denotes the upstream conditions and (2) the stagnation conditions. We have as-
sumed z; = z,, V, = 0, and have denoted Ma, = V,/c¢, as the upstream Mach number—the
ratio of the fluid velocity to the speed of sound, ¢, = VART),.

A comparison between this compressible result and the incompressible result is per-
haps most easily seen if we write the incompressible flow result in terms of the pressure ratio
and the Mach number. Thus, we divide each term in the Bernoulli equation, pVi/2 + p; = p,.

by p, and use the perfect gas law, p, = pRT),, to obtain P '

Since Ma, = V,/VkRT), this can be written as P 2RT,
— kMa?
pgp P _ 5 L (incompressible) (6.35)
1 £
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Stagnation point

Stagnation streamline
V2=0

Sz B FIGURE 6.2
( @ B =R+ Vlzm @ ‘ Stagnation points on
\ ! \ bodies in flowing fluids.
F, =local static pressure Stagnation point ¥2=0 (b)
(a) B, =stagnation pressure

Equations 6.33 and 6.34 are plotted in Fig. 6.3 . In the low-speed limit of Ma; — 0, both of

the results are the same. This can be seen by denoting (k — 1)Ma3}/2 = & and using the
binomial expansion, (1 + )" =1 + »n& + n(n — 1) 8%/2 + ---, where n = k/(k — 1), to
write Eq. 6.34 as M2 | 5 X

P2 o oLk 2:1] (l + a1 Ma?T + 1 Ma + ) (compressible)

For Ma, <€ 1 this compressible flow result agrees with Eq. 6.35 . The incompressible and
compressible equations agree to within about 2% up to a Mach number of approximately
Ma; = 0.3. For larger Mach numbers the disagreement between the two results increases.

Thus, a “rule of thumb” is that the flow of a perfect gas may be considered as incom-
pressible provided the Mach number is less than about 0.3. In standard air (7, = 59°F,
¢y = VKRT, = 1117 ft/s) this corresponds to aspeed of V| = ¢;Ma, = 0.3(1117 ft/s) = 335
ft/s = 228 mi/hr. At higher speeds, compressibility may become important.

0.3 7
Compressible /
(Eq. 634) ~. /
0.2
= = R '”Cgmprﬁeggib'e m FIGURE 6.3 Pressure
= (Eq. 6-35) ratio as a function of Mach number
o1 for incompressible and compressible
) (isentropic) flow.
k= 1.4
(@] ==
o 0.2 0.4 0.6 0.8
May
Example 6.6:

A Boeing 777 flies at Mach 0.82 at an altitude of 10 km in a standard atmosphere. Deter-
mine the stagnation pressure on the leading edge of its wing if the flow is incompressible;
and if the flow is compressible isentropic.

Solution:
From Tables 1.8 and C.2 we find that p;, = 26.5 kPa(abs), T, = —49.9 °C, p = 0.414 kg/m",
and k& = 1.4. Thus, if we assume incompressible flow, Eq.6.35 gives
2 — kMaj 0.82)°
pe=pr_ KMai O824
or 21 2 2
P2 — pp = 0471 (26.5 kPa) = 12.5 kPa (Ans)

On the other hand, if we assume isentropic flow, Eq. 6.34 gives

_ 1.4 — 1 14/(1.4—1)
Pr = Pv_ {[1 + %(0‘82)2] — 1} — 0.555

or P
P — p1 = 0.555(26.5 kPa) = 14.7 kPa (Ans)
We see that at Mach 0.82 compressibility effects are of importance. The pressure (and, to a
first approximation, the lift and drag on the airplane; see Part(5) ) is approximately
14.7/12.5 = 1.18 times greater according to the compressible flow calculations. This may
be very significant. As discussed in section 6.1 . for Mach numbers greater than 1 (super-
sonic flow) the differences between incompressible and compressible results are often not
only quantitative but also qualitative.
Note that if the airplane were flying at Mach 0.30 (rather than 0.82) the corresponding
values would be p, — p; = 1.670 kPa for incompressible flow and p, — p; = 1.707 kPa for
compressible flow. The difference between these two results is about 2 percent.

Dr. Mohsen Soliman - 16/125 - MEP 580 Compressible Flow



m TABLE c.2
Properties of the U.S. Standard Atmosphere (SI Units)y®

Dwnamic

Acceleration Density. Viscosity,
Altitude Temperature of Gravity, Pressure, g P F1
(m) (=) = (my/s?) IN//m*(abs)] (key/mY) (N -s,/mM>)
— 1,000 21.50 9.B10 1.139 E + 5 1.347 E + O 1.821 E — 5
(8] 15.00 9807 1.013 E + 5 1.225 E + O 1.789 E — 5
1000 8.50 9804 8.988 E + 4 1.112 E + O 1.758 E — 5
2000 2.00 9.801 T.o9s50 E + 4 1.00¥7 E + O 1.726 E — 5
3000 —4. .49 Q.77 T.O12 E + 4 9093 E — 1 1.694 E — 5
4 OO — 1098 9. 74 6.166 E + 4 B.194 E — 1 1.661 E — 5
S5.000 — 17.47 9. 791 5.405 E + 4 T.364 E — 1 1.628 E — 5
[N 0.8 —23.96 O9.TEE 4.722 E + 4 G601 E — 1 1.595 E — 5
TOO0 — 3045 Q.T8S 4.111 E + 4 59000 E — 1 1.561 E — 5
B.000 — 36.94 Q.TR2 3.565 E + 4 5.258 E — 1 1.527 E — 5
O OO0 —43.42 Q. TTO 3.080 E + 4 4.671 E — 1 1.493 E — 5
10,000 — 49 90 9.T7T6 2650 E + 4 4.135 E — 1 1.458 E — 5
15,000 — 56.50 9.761 1.211 E + 4 1.948 E — 1 1.422 E — 5
20 OO0 — 56.50 9.745 5.529 E + 3 B.801 E — 2 1.422 E — 5
25 000 —51.60 9Q.T30 2.549 E + 3 4 .008 E — 2 1.448 E — 5
30 OO0 — 46,64 9715 1.197 E + 3 1.841 E — 2 1.475 E — 5
A0 OO0 —22.80 9.684 2.871 E + 2 3996 E — 3 1.601 E — 5
S0.000) —2.50 9.654 T.OT8 E + 1 1.027 E — 3 1.704 E — 5
GO OO0 —26.13 9.624 2196 E + 1 3.007 E — 4 1.584 E — 5
TOOOD —53.57 9.594 5.221 E + 0O B.283 E — 5 1.438 E — 5
BO OO0 —74.51 9.564 1.052 E + 0O 1.846 E — 5 1.321 E — 5
*Drata abridged from 0.8 Srandard Ammosphere, 1976, LS. Government Printing Office, Washington, D oC.

6.2.3 The Mach Cone and The Categories of Compressible Flow:

In Section 6.2.2, we learned that the effects of compressibility become more significant as
the Mach number increases. For example, the error associated with using pV?/2 in calculat-
ing the stagnation pressure of an ideal gas increases at larger Mach numbers. From Fig. 6.3
we can conclude that incompressible flows can only occur at low Mach numbers.

Experience has also demonstrated that compressibility can have a large influence on
other important flow variables. For example, in Fig. 6.4 the variation of drag coefficient
with Reynolds number and Mach number is shown for air flow over a sphere. Compress-
ibility effects can be of considerable importance.

To further illustrate some curious features of compressible flow, a simplified example
1s considered. Imagine the emission of weak pressure pulses from a point source. These pres-
sure waves are spherical and expand radially outward from the point source at the speed of
sound, c. If a pressure wave is emitted at different times, 7,,.. We can determine where

10 Ma—12 20 3.0 o 1.5
fa
4.5
0.9
1.1
0.8 Lo
0.7 0.9
0.6 0.7
Cp 0.5 0.6
O.4 B FIGURE 64
0.5 The variation of the drag coeffi-
0.3 cient of a sphere with Reynolds
0.3 number and Mach number.
0.2
0.1
8]
2 3 4 5 6 7 8 9
Re x 107°
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several waves will be at a common instant of time, 7. by using the relationship

r= (I o rvs,'a‘.fe)":‘
where r is the radius of the sphere-shaped wave emitted at time = {#,,.. For a stationary point
source, the symmetrical wave pattern shown in Fig. 6.5 a is involved.

When the point source moves to the left with a constant velocity, V, the wave pattern
is no longer symmetrical. In Figs.6.5b 6.5¢ | and 6.5 d are illustrated the wave patterns
at r = 3 s for different values of V. Also shown with a *“ 4+ are the positions of the moving
point source at values of time, 7, equal to O s, 1 s, 2 s, and 3 s. Knowing where the point
source has been at different instances is important because it indicates to us where the dif-

ferent waves originated.

=

Wave emitted at 7, =2 s Wave emitted at 7,

ls

Wave emitted at 7, =1

Wave emitted at 7,
s Wave emitted at 7, =C

/ Wave emitted atz,,,.=0s

Source location
atr=23s

(&)

Zone of silence Zone of action Wave emitted at 7,5 = 2 5

Tangent plane Wave emitted at 7. =1 s

(Mach wave)

= Wave emitted at 7, =0s

&)

Wave emitted at 7, . =25

_./-
T
Source location
atr=3s

/ /Wave emitted at 7,,,,, = 1 s

/ / .~ /Wave emitted at 7, =0 s

Zone of silence

Source location —7 "~ _
atr=3s /4 Zone of action
Mach cone
(d)
I V
2V
3V
B FIGURE 6.5 {(a) Pressure waves atf = 3 s, V = 0; (b) Pressure waves at r = 3 s,

V < ¢: (c¢) Pressure waves atr = 3s. V = ¢: (d) Pressure waves atr = 3s, V = c.
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From the pressure wave patterns of Fig. 6.5 | we can draw some useful conclusions.
Before doing this we should recognize that if instead of moving the point source to the left,
we held the point source stationary and moved the fluid to the right with velocity V, the re-
sulting pressure wave patterns would be identical to those indicated in Fig. 6.5

When the point source and the fluid are stationary, the pressure wave pattern 1s sym-
metrical (Fig. 6.5 a ) and an observer anywhere in the pressure field would hear the same
sound frequency from the point source. When the velocity of the point source (or the fluid)
is very small in comparison with the speed of sound, the pressure wave pattern will still be
nearly symmetrical. The speed of sound in an incompressible fluid is infinitely large. Thus,
the stationary point source and stationary fluid situation are representative of incompressible
flows. For truly incompressible flows, the communication of pressure information through-
out the flow field is unrestricted and instantaneous (¢ = ).

When the point source moves in fluid at rest (or when fluid moves past a stationary
point source), the pressure wave patterns vary in asymmetry, with the extent of asymmetry
depending on the ratio of the point source (or fluid) velocity and the speed of sound. When
V/e < 1, the wave pattern is similar to the one shown in Fig. 6.5 b . This flow is considered
subsonic and compressible. A stationary observer will hear a different sound frequency com-
ing from the point source depending on where the observer is relative to the source because
the wave pattern is asymmetrical. We call this phenomenon the Doppler effect. Pressure
information can still travel unrestricted throughout the flow field, but not symmetrically or
instantaneously.

When V/c = 1, pressure waves are not present ahead of the moving point source. The
flow is sonic. If you were positioned to the left of the moving point source, you would not
hear the point source until it was coincident with your location. For flow moving past a sta-
tionary point source at the speed of sound (V/c = 1), the pressure waves are all tangent to
a plane that is perpendicular to the flow and that passes through the point source. The
concentration of pressure waves in this tangent plane suggests the formation of a significant
pressure variation across the plane. This plane is often called a Mach wave. Note that com-
munication of pressure information is restricted to the region of flow downstream of the Mach
wave. The region of flow upstream of the Mach wave is called the zone of silence and the
region of flow downstream of the tangent plane is called the zone of action.

When V = ¢, the flow is supersonic and the pressure wave pattern resembles the one
depicted in Fig. 6.5 d . A cone (Mach cone) that is tangent to the pressure waves can be con-
structed to represent the Mach wave that separates the zone of silence from the zone of ac-
tion in this case. The communication of pressure information is restricted to the zone of ac-
tion. From the sketch of Fig. 6.5 d . we can see that the angle of this cone, «. is given by

: = = — 6.36
sin v ( )

B FIGURE 6.5 The schlieren visualization of flow (supersonic to
subsonic) through a row of compressor airfoils. (Photograph provided by
Dr. Hans Starken of the DLR Kiln-Porz, Germany.)
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Equation 6.36 is often used to relate the Mach cone angle, «, and the flow Mach number,
Ma, when studying flows involving V/¢ = 1. The concentration of pressure waves at the sur-
face of the Mach cone suggests a significant pressure, and thus density, variation across the
cone surface. (See the photograph at the beginning of this chapter.) An abrupt density change
can be visualized in a flow field by using special optics. Examples of flow visualization meth-
ods include the schlieren, shadowgraph, and interferometer techniques (see Ref. 5). A schlieren
photo of a flow for which V == ¢ is shown in Fig. 6.6 . The air flow through the row of com-
pressor blade airfoils is as shown with the arrow. The flow enters supersonically (Ma, = 1.14)
and leaves subsonically (Ma, = 0.86). The center two airfoils have pressure tap hoses con-
nected to them. Regions of significant changes in fluid density appear in the supersonic por-
tion of the flow. Also. the region of separated flow on each airfoil is visible.
This discussion about pressure wave patterns suggests the following categories of fluid
flow:
1. Incompressible flow: Ma = 0.3. Unrestricted. nearly symmetrical and instantanecous
pressure communication.
2. Compressible subsonic flow: 0.3 << Ma <C 1.0. Unrestricted but noticeably asymmet-
rical pressure communication.

3. Compressible supersonic flow: Ma = 1.0. Formation of Mach wave: pressure com-
munication restricted to zone of action.

In addition to the above-mentioned categories of flows, two other regimes are commonly re-
ferred to: namely, transonic flows (0.9 = Ma = 1.2) and hypersonic flows (Ma = 5). Mod-
ern aircraft are mainly powered by gas turbine engines that involve transonic flows. When a
space shuttle reenters the earth’s atmosphere, the flow is hypersonic. Future aircraft may be
expected to operate from subsonic to hypersonic flow conditions.

Example 6.7:
An aircraft cruising at 1000-m elevation, z, above you moves past in a flyby. How many sec-
onds after the plane passes overhead do you expect to wait before you hear the aircraft if it
1s moving with a Mach number equal to 1.5 and the ambient temperature 1s 20 °C?
Solution:

Since the aircraft is moving supersonically (Ma > 1), we can imagine a Mach cone origi-
nating from the forward tip of the craft as is illustrated in Fig. E6.7 . When the surface of

Mach cone —_

Aircraft moving with velocity
Vand Mach number Ma

5]

WM FIGURE E 6.7

x = Vf—-—l
the cone reaches the observer, the “sound”™ of the aircralt is perceived. The angle « in
Fig. E 6.7 is related to the elevation of the plane, z. and the ground distance, x, by

a:tan_]i:tan_'@ (1)
X Vi
Also. assuming negligible change of Mach number with elevation, we can use Eq. 6.36 to
relate Mach number to the angle «. Thus, Ma = 1 / sin « (2)
Combining Eas. | and 2 we obtain
Ma = ! 3)

sin [tan~! (1000/V1)]
The speed of the aircraft can be related to the Mach number with
V = (Ma)c (4)
where ¢ is the speed of sound. From Table B.4. ¢ = 343.3 m/s. Using Ma = 1.5, we get
from Egqs. 3 and 4 1.5 = 1

sin{tan_][ 1000 m ]}
or (1.5)(343.3 m/s)r
t=2.17s (Ans)
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6.3 Adiabatic and Isentropic Steady Flow (Stagnation-Reference Properties):

As mentioned in Sec. 6.1, the isentropic approximation greatly simplifies a compress-
ible-flow calculation. So does the assumption of adiabatic flow. even if nonisentropic.

Consider high-speed flow of a gas past an insulated wall, as in Fig. 6.7 . There is no
shaft work delivered to any part of the fluid. Therefore every streamtube in the flow
satisfies steady-flow energy equation {1st law of thermodynamics, see part 1)in the form
of hy +3Vi+ gz = +3V3+ g5 — g+ w, (6.37)
where point 1 is upstream of point 2. We saw that potential-energy changes of a gas
are extremely small compared with kinetic-energy and enthalpy terms. We shall ne-
glect the terms gz; and gz- in all gas-dynamic analyses.

Inside the thermal and velocity boundary layers in Fig. 6.7 the heat-transfer and
viscous-work terms g and w, are not zero. But outside the boundary layer ¢ and w,, are
zero by definition, so that the outer flow satisfies the simple relation

hy +1V3 = hy + 1V3 = const (6.38)
The constant in Eq. (6.38) is equal to the maximum enthalpy which the fluid would
achieve if brought to rest adiabatically. We call this value fig. the sragnation enthalpy
of the flow. Thus we rewrite Eq. (6.38) in the form

h + %VZ = hp = const (6.39)

_______ 87> Sy ifPr<1

— - ———
, 5y

Fig. 6.7 Velocity and stagnation-
enthalpy distributions near an insu-
lated wall in a typical high-speed
gas flow.

__—Insulated wall

This should hold for steady adiabatic flow of any compressible fluid outside the bound-
ary layer. The wall in Fig.6.7 could be either the surface of an immersed body or the
wall of a duct. We have shown the details of Fig. 6.7 : typically the thermal-layer thick-
ness &7 is greater than the velocity-layer thickness 8y because most gases have a di-
mensionless Prandtl number Pr less than unity (see, e.g., Ref. 19, & part (4)). Note that
the stagnation enthalpy wvaries inside the thermal boundary layer, but its average wvalue
is the same as that at the outer layer due to the insulated wall.

For nonperfect gases we may have to use the steam tables [15] or the gas tables [16]
to implement Eq. (6.39). But for a perfect gas i1 = ¢,7, and Eq. (§.39) becomes

epT + V7 = ¢,To (6.40)
This establishes the stagnation temperature 75 of an adiabatic perfect-gas flow, i.e., the
temperature it achieves when decelerated to rest adiabatically.
An alternate interpretation of Eq. (6.39) occurs when the enthalpy and temperature
drop to (absolute) zero, so that the velocity achieves a maximum value
Vinax = (2;?-0_)|}2 == (2('-})TD)]{2 (5.41)
No higher flow velocity can occur unless additional energy is added to the fluid through
shatt work or heat transfer (Sec.&6.8 ).

6.3.1 The Mach Number-Stagnation Relations:

The dimensionless form of Eq. (6.40) brings in the Mach number Ma as a parameter,
by using the speed of sound of a perfect gas. Divide through by ¢,7 to obtain

& T,
1 + 5o T =7 (6.42)
But, from the perfect-gas law, ¢,T = [kR/(k — D]T = c'rzf"(k — 1), so that Eq. (6.42) be-
comes (k — DHV? Ty,
L+ 2a” T
or To _ 4 K= 1 g2 Ma = ~ (6.43)
Jr 3 Ol
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This relation is plotted in Fig. 6.8 wversus the Mach number for &k = 1.4. At Ma = 5 the
temperature has dropped to £7,.
Since a =« T'?, the ratio ag/a is the square root of (6.43)

@ - E 1/2 o L o > 1/2
. _(.T,.) —[1+2(ﬂ I)Ma] (6.44)

ol
Equation (6.44) is also plotted in Fig.6.8 . At Ma = 5 the speed of sound has dropped
to 41 percent of the stagnation value.
Note that Egs. (6.43) and (6.44) require only adiabatic flow and hold even in the pres-
ence of irreversibilities such as friction losses or shock waves.

1.0

Fig. 6.8 Adiabatic (T/Ty and a/agp)
and isentropic (p/po and pfpg) prop-
erties versus Mach number for

k= 1.4.

I |
O 1 2 3 4 5
Mach number
It the flow is also isentropic, then for a perfect gas the pressure and density ratios
can be computed from Eq. (6.9) as a power of the temperature ratio

po _ (To &b » T
o | - | = |1+ 5 (k— 1) Ma (65.45a)
O i Ta \ /(= 1) | LAk — 1)

L,:T: \ 7 ) = ‘ L+ 5k —1D Mf!“ (6.45b)

These relations are also plotted in Fig. 6.8 ; at Ma = 5 the density is 1.13 percent of
its stagnation value. and the pressure is only 0.19 percent of stagnation pressure.

The quantities pg and pp are the isentropic stagnation pressure and density, respec-
tively, 1.e.. the pressure and density which the flow would achieve if brought isentrop-
ically to rest. In an adiabatic nonisentropic flow pg and pg retain their local meaning,
but they vary throughout the flow as the entropy changes due to friction or shock waves.

The quantities fig. Ty, and ag are constant in an adiabatic nonisentropic flow (see Sec.
6.7 for further details).

6.3.2 The Relationship to Bernoulli’s Equation:

The isentropic assumptions (& 45) are effective, but are they realistic? Yes. To see why,
differentiate Eq. (6.39)

Adiabatic: dh + Vdv =10 (6.46)
Meanwhile, from Eq. (6.6). if ds = O (isentropic process),
dan =4 (6.47)
Combining (6.46) and (6.47), we find that an isentropic streamtube flow must be
L rvav=o (6.49

But this is exactly the Bernoulli relation, see part (4), for steady frictionless flow with
negligible gravity terms. Thus we see that the isentropic-flow assumption is equivalent
to use of the Bernoulli or streamline form of the frictionless momentum equation.
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6.3.3 The Critical Reference Properties at Sonic Velocity:

The stagnation values (dao. To. Po- po) are useful reference conditions in a compressible

flow, but of comparable usefulness are the conditions where the flow is sonic. WMa =
1.0. These sonic. or critical, properties are denoted by asterisks: p¥*, p* a¥*, and T,
They are certain ratios of the stagnation properties as given by Eqs. (6.43) to (0.43)
when Ma = 1.0: for £ = 1.4

B / - W KAk — 1) ES - W LAk — 1)
IZ = (k i 1 ) = 0.5283 f;— = (ﬁ) = 0.6339
(8] y (8] y
' ‘ : ’ (6.49
s o > . aF o 2 W 172 . ) )
= — 0-8333 - *(g — ) = 0.9129
o] C (=% -

In all isentropic flow. all critical properties are constant; in adiabatic nonisentropic flow,
a™ and ¥ are constant, but p¥* and P& may wvary.
The critical velocity V* equals the sonic sound speed o™ by definition and is often
used as a reference wvelocity in isentropic or adiabatic flow
2k N 142
1 R7o) (6.50)

Ve = ar = RTH'? =

The usefulness of these critical values will become clearer as we study compressible
duct flow with friction or heat transfer later in this chapter.

6.3.4 Some Useful Numbers for Air:

Since the great bulk of our practical calculations are for air, &k = 1.4, the stagnation-
property ratios p/pg, ete.. from Eqs. (6.43) to (6.45). are tabulated for this value in Table
B.1. The increments in Mach number are rather coarse in this table because the values
are only meant as a guide; these equations are now a trivial matter to manipulate on a
hand calculator. Thirty years ago every text had extensive compressible-flow tables with
Mach-number spacings of about 0.01, so that accurate values could be interpolated.

For & = 1.4, the following numerical versions of the isentropic and adiabatic flow
formulas are obtained: )
ITQ =1+ 0.2 Ma2 % = (1 + 0.2 Ma>)25
Po (6.51)

= (1 + 0.2 Ma~)>>
Or, 1if we are given the properties. it i1s equally easy to solve for the Mach number
(again with kX = 1.4)
e 245 247
Ma2:5(—0—1):5(@) —1 :5(1"—0) —1 (6.52)
T _. P P

Note that these isentropic-flow formulas serve as the equivalent of the frictionless adi-
abatic momentum and energy equations. They relate velocity to physical properties for
a perfect gas, but they are not the “solution™ to a gas-dynamics problem. The complete

solution is not obtained until the continuity equation has also been satistied. for either
one-dimensional (Sec.6.4 ) or multidimensional (Sec. 6.9) flow.

One final note: These isentropic-ratio—versus—Mach-number formulas are seduc-
tive, tempting one to solve all problems by jumping right into the tables. Actually, many
problems involving (dimensional) velocity and temperature can be solved more easily
from the original raw dimensional energy equation ( 6.40) plus the perfect-gas law (6.2).
as the next example will illustrate.

Example 6.8:

Air flows adiabatically through a duct. At point 1 the velocity is 240 m/s, with 77, = 320 K and
p1 = 170 kPa. Compute (a) Ty, () por. (€) po. (d) Ma, (€) Viae and (f) VE At point 2 further
downstream V>, = 290 m/s and p, = 135 kPa. (g) What is the stagnation pressure pg,?

Solution

For air take kK = 1.4, ¢, = 1005 m~/(s® - K). and R = 287 m~/(s* - K). With V, and T, known,
we can compute Ty, from Eq. (6 40 without using the Mach number:

Vi — 320 + (240 m/s)?

=T, +
Tor =T, 2¢, 2[1005 m*/(s” - K)|

= 320 + 20 = 349 K Ans. (a)
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Then compute Ma, from the known temperature ratio, using Eq. (6.52)
349
320

Ma2 = 5( — 1) = 0.453 Ma, = 0.67 Ans. (d)

Alternately compute a; = V ART| = 359 m/s, whence Ma, = V|/a, = 240/359 = 0.67. The
stagnation pressure at section 1 follows from Eq. (6.51):

Por = pi(1 + 0.2 Ma7)*® = (170 kPa)[1 + 0.2(0.67)%]° = 230 kPa Ans. (b)

We need the density from the perfect-gas law before we can compute the stagnation density:
_ _p _ _170.000
PL=RT, T (287)(320)

= 1.85 kg/m”

whence Por = pi(1 + 0.2 MaD?” = (1.85)[1 + 0.2(0.67)°1*° = 2.29 kg/m" Ans. (¢)

Alternately. we could have gone directly to pg = po/(RTy) = (230 E3)/[(287)(349)] = 2.29 kgf'm}‘
Meanwhile, the maximum velocity follows from Eq. (§.41)

Vinax = (2¢,T0)"? = [2(1005)(349)]"2 = 838 m/s Ans. (e)
and the sonic velocity from Eq. (6.50) is
2k 12 2(1.4) 12 .
Lf* = = _— 3 = 3 5.
(k 1 RTO) [1‘4 T (287X 49)] 42 m/s Ans. (f)

At point 2, the temperature is not given, but since we know the flow is adiabatic. the stagnation
temperature is constant: Tp, = T, = 349 K. Thus, from Eq. ( 6.40),

V;—’ = 349 — (_29%
2cp 2(1005)
Then. although the flow itself is not isentropic. the local stagnation pressure is computed by the
local isentropic condition

_ Too =1 349\35 ‘
Poz = ;_}2(—?;) = (135)( 307) = 211 kPa Ans. (g)

This is 8 percent less than the upstream stagnation pressure pg;. Notice that, in this last part, we
took advantage of the given information (7., po. V3) to obtain pg, in an efficient manner. You

may verify by comparison that approaching this part through the (unknown) Mach number Ma,
is more laborious.

T2:T02_ = 307 K

6.4 One-Dimensional Isentropic Flow With Area Changes:

By combining the isentropic- and/or adiabatic-flow relations with the equation of con-
tinuity we can study practical compressible-flow problems. This section treats the one-
dimensional flow approximation.

Figure 6.9 illustrates the one-dimensional flow assumption. A real flow, Fig.6.9 a,
has no slip at the walls and a velocity profile V(x, y) which varies across the duct sec-
tion. If, however, the area change is small and the wall radius of curvature large

dan < 1 hix) <€ R(x) (6.53)

dx
then the flow is approximately one-dimensional, as in Fig.6.9 b, with V = V(x) react-

ing to area change A(x). Compressible-flow nozzles and diffusers do not always sat-
isfy conditions (6.53), but we use the one-dimensional theory anyway because of its
simplicity.
For steady one-dimensional flow the equation of continuity is
() V(X)A(x) = m = const (6.54)
Before applying this to duct theory, we can learn a lot from the differential form of
Eq. (6.54)

dp dV dA

7+V+A_O (6.55)
The differential forms of the frictionless momentum equation (6.48) and the sound-
speed relation (6.27) are recalled here for convenience:
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Area

¥ A(X)
J—sx Vix)

Fig. 6.9 Compressible flow through

a duct: (a) real-fluid velocity pro- Wall radius of

file: (&) one-dimensional approxi- curvature R(x)

mation. (a) )

Momenturmn Eozd + VoV = 0O

. L 5 &.55)
Sound speed: dpr = a” dp

MNow eliminate o and o between Eqs. (6.59 and (6.56) to obtain the following rela-
tion between velocity change and area change in isentropic duct flow:
gV A 1 o dpr

v A Ma® — 1 T o pVz (6.3
Inspection of this equation. without actually solving it., reveals a fascinating aspect of
compressible flow: Property changes are of opposite sign for subsonic and supersonic
flow because of the term Ma”® — 1. There are four combinations of area change and
Mach number., summarized in Fig.&_ 10
From earlier chapters we are used to subsonic behavior (Ma =< 1): When area in-
creases. velocity decreases and pressure increases. which is denoted a subsonic dif-
Tuser. But in supersomnic flow (IWa == 1). the wvelocity actually increases when the area
increases., a supersonic nozzle. The same opposing behavior occurs for an area de-
crease. which speeds up a subsonic flow and slows down a supersonic flow.

Duct geometiry Subsonic Ma < 1 Supersonic Ma > 1

(a)/

dV <=0 dV =0
dA =0 dp =0 dp <0
Subsonic diffuser Supersonic nozzle
Fig 6.10Effect of Mach number on \
property changes with area change

in duct flow. \
(b)
dV =0 dV <0
dA <0 dp <0 dp =0
/ Subsonic nozzle Supersonic diffuser

What about the sonic point Ma = 17 Since infinite acceleration is physically im-
possible. Eq. (6.57) indicates that dV can be finite only when dA = 0, that is, a mini-
mum area (throat) or a maximum area (bulge). In Fig.6.11 we patch together a throat
section and a bulge section. using the rules from Fig.s.10. The throat or converging-
diverging section can smoothly accelerate a subsonic flow through sonic to supersonic
flow, as in Fig.6.11a. This is the only way a supersonic flow can be created by ex-
panding the gas from a stagnant reservoir. The bulge section fails: the bulge Mach num-
ber moves away from a sonic condition rather than toward it.

Although supersonic flow downstream of a nozzle requires a sonic throat, the op-

posite is not true: A compressible gas can pass through a throat section without be-
coming sonic.

Fig.6.11From Eq. (9.40), in flow A min
through a throat {a) the fluid can \_/

A max

|

accelerate smoothly through sonic Subsonic Ma =1 Supersonic M Maﬁ ! M
and supersonic flow. In flow —_— ! (Supersonic: : Supersonic)
through the bulge (&) the flow at /_\ Ma|> 1

the bulge cannot be sonic on physi- \:_/
cal grounds. (a) ®)
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6.4.1 Example on Detailed Prove of Equations (6.57):

When fluid flows steadily through a conduit that has a flow cross-section area that varies
with axial distance., the conservation of mass {(continuity) equation
m = pAV = constant (E.1 )

can be used to relate the flow rates at different sections. For incompressible flow, the tluid
density remains constant and the flow welocity from section to section varies inversely with
cross-section arca. However., when the flow is compressible. density., cross-section area, and
flow wvelocity can all vary from section to section. We proceed to determine how fluid den-
sity and flow velocity change with axial location in a variable area duct when the fluid is an
ideal gas and the flow through the duct is steady and isentropic.

In Part (4) . Newton’s second law was applied to the inviscid (frictionless) and steady
flow of a fluid particle. For the streamwise direction. the result Bernoulli's equation for
either compressible or incompressible flows is

dp + $p d(V3) + vdz = 0O CE.2 )
The frictionless flow from section to section through a finite control volume is also governed
by Eq. E.2 . it the flow is one-dimensional, because every particle of ftluid involved will

have the same experience. For ideal gas flow, the potential energy difference term. ¥ dz. can
be dropped because of its small size in comparison to the other terms. namely., dp and d(‘/z).
Thus., an appropriate equation of motion in the streamwise direction for the steady. one-
dimensional, and isentropic (adiabatic and frictionless) flow of an ideal gas is obtained from

Eq. E.2 as dp dVv
z = (E.3 )
F= ) \%

If we form the logarithm of both sides of the continuity equation (Eq. E.1 ). the re-
sult is Inp + In A + In V = constant « E14 )
Differentiati Eq. e o o, 4A A

ifferentiating Eq. E.4 we get P, < 4 £ — 0
or e A Vv
_dv der 4 dA (E.5 )
v rel A )
MNow we combine Eqs. E.3 and E.5 to obtain
dp ] vz ) _dA E6
pV?2 dp/dp /) A (E. )

Since the flow being considered is isentropic. the speed of sound is related to wvaria-
tions of pressure with density by Eq. 6.27 | repeated here for convenience as

I op
c = 4/
\'I dp S
Equation 6.27 ., combined with the definition of Mach number

v
Ma = — ( E7)
and Eq. E.6 vields o c 1A
2 (1 — Ma2) = £ ( E.8 )
pV= A
Equations E.3 and E.8 merge to form
dV dA 1 ( Eo)
vV A (1 — Ma?) :

We can use Eq. E.9 to conclude that when the flow is subsonic (Ma <C 1), velocity
and section area changes are in opposite directions. In other words, the area increase asso-
ciated with subsonic flow through a diverging duct like the one shown in Fig. 6.10 a is ac-
companied by a velocity decrease. Subsonic flow through a converging duct (see Fig. 6. 10b )
involves an increase of velocity. These trends are consistent with incompressible flow be-
havior., which we described earlier in this book. for instance. in parts 2 and 4 .

Equation E.2 also serves to show us that when the flow is supersonic (Ma == 1), ve-
locity and area changes are in the same direction. A diverging duct (Fig. 6.10a ) will accel-
erate a supersonic flow. A converging duct (Fig. 6.10b ) will decelerate a supersonic flow.
These trends are the opposite of what happens for incompressible and subsonic compress-
ible flows.

To better understand why subsonic and supersonic duct flows are so different, we com-

bine Eqs. E.5 and E.2 to form dpr dA Ma?

7 A (1 — Mad) (Edo

Using Eq.E.10 ., we can conclude that for subsonic flows (Ma <I 1), density and area changes
are in the same direction, whereas for supersonic flows (Ma = 1). density and area changes
are in opposite directions. Since pAV must remain constant (Eq. E.1 ). when the duct di-
verges and the flow is subsonic, density and area both increase and thus flow wvelocity must
decrease. However, for supersonic flow through a diverging duct, when the area increases,
the density decreases enough so that the flow velocity has to increase to keep pAV constant.

By rearranging Eq. 11.48, we can obtain dA _ _A (1 — Ma2) (E.11 )
v

Equation E.11 gives us some insight into what happens when Ma = 1. For Ma = 1,

Eq. E.11 requires that dA/dV = 0. This result suggests that the area associated with Ma = 1

is either a minimum or a maximum amount.

Dr. Mohsen Soliman -26/125 - MEP 580 Compressible Flow



6.4.2 Analysis of Flow in a Converging-Diverging Duct:

A converging-diverging duct (Fig. 6.11a ) involves a minimum area. If the flow enter-
ing such a duct were subsonic, Eq. E.9 discloses that the fluid velocity would increase in
the converging portion of the duct, and achievement of a sonic condition (Ma = 1) at the
minimum area location appears possible. If the flow entering the converging-diverging duct
is supersonic., Eq. E.9 states that the fluid velocity would decrease in the converging por-
tion of the duct and the sonic condition at the minimum area is possible.

A diverging-converging duct (Fig. 6.11b ). on the other hand. would involve a maxi-
mum area. If the flow entering this duct were subsonic, the fluid velocity would decrease in
the diverging portion of the duct and the sonic condition could not be attained at the maxi-
mum area location. For supersonic flow in the diverging portion of the duct. the fluid ve-

locity would increase and thus Ma = 1 at the maximum area is again impossible.
For the steady isentropic flow of an ideal gas. we conclude that the sonic condition
(Ma = 1) can be attained in a converging-diverging duct at the minimum area location. This

minimum area location is often called the rhroar of the converging-diverging duct. Further-
more, to achieve supersonic flow from a subsonic state in a duct, a converging-diverging area
variation is necessary. For this reason, we often refer to such a duct as a converging-diverging
nozzle. Note that a converging-diverging duct can also decelerate a supersonic flow to subsonic
conditions. Thus, a converging-diverging duct can be a nozzle or a diffuser depending on
whether the flow in the converging portion of the duct is subsonic or supersonic. A supersonic
wind tunnel test section is generally preceded by a converging-diverging nozzle and followed
by a converging-diverging diffuser (see Ref. 1). Further details about steady. isentropic, ideal
gas flow through a converging-diverging duct are discussed in the next section.

It is convenient to use the stagnation state of the fluid as a reference state for com-
pressible flow calculations. The stagnation state is associated with zero flow velocity and an
entropy value that corresponds to the entropy of the flowing fluid. The subscript O is used to
designate the stagnation state. Thus, stagnation temperature and pressure are T, and p,. For
example, if the fluid flowing through the converging-diverging duct of Fig. 6.11a were drawn
isentropically from the atmosphere. the atmospheric pressure and temperature would repre-
sent the stagnation state of the flowing fluid. The stagnation state can also be achieved by
isentropically decelerating a flow to zero velocity. This can be accomplished with a diverg-
ing duct for subsonic flows or a converging-diverging duct for supersonic flows. Also, as dis-
cussed earlier in sec.6.2.2 | an approximately isentropic deceleration can be accomplished
with a Pitot-static tube (see Fig. 6.2). It is thus possible to measure, with only a small amount
of uncertainty. values of stagnation pressure, pg. and stagnation temperature. 5. of a flow-
ing fluid.

In Section 6.2 ., we demonstrated that for the isentropic flow of an ideal gas (see Eq.6.18)

P _ Po

% — constant = —-

~ Po
The streamwise equation of motion for steady and frictionless flow (Eq. E.2 ) can be
expressed for an ideal gas as dp V2

? + d N = 0 (E.12 )

since the potential energy term. Vv dz can be considered as being negligibly small in com-
parison with the other terms involved.

By incorporating Eq. 6.18 into Eq. E.12 we obtain

1/k 2
ro”  dp AV
po ()~ —l—d(2>—0 (E.13)

Consider the steady. one-dimensional, isentropic flow of an ideal gas with constant ¢,
and ¢, through the converging-diverging nozzle of Fig.6.11a . Equation E.13 is valid for
this flow and can be integrated between the common stagnation state of the flowing fluid to
the state of the gas at any location in the converging-diverging duct to give

Iy V2
= (e _2Y Y _ o (E.14)
k 1 X\ po o 2
By using the ideal gas equation of state with Eq. E.14 we obtain
kR V2
S (Ty—T) — = 0 (E.15)
kK — 1 2 Rk
It is of interest to note that combining Eq E.15and ¢, = e — 1 leads to
V2
cp(To—T) — = 0
hich results i , -
which results in Frg — (h 4+ > ) =0 (E.16 )

where /i, is the stagnation enthalpy. If the steady flow energy equation (see Partl) is applied
to the flow situation we are presently considering. the resulting equation will be identical to
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Eq.E.16 . Further, we conclude that the stagnation enthalpy is constant. The conservation
of momentum and energy principles lead to the same equation (Eq. E.16 ) for steady isen-
tropic flows.The definition of Mach number (Eq. E.7) and the speed of sound relationship for
ideal gases (Eq. 6.29 ) can be combined with Eq. E.15 to vield

T 1

To 1 + [(k — 1)/2]Ma> (E-17)

With Eq. E.17 we can calculate the temperature of an ideal gas anywhere in the converging-
diverging duct of Fig. 6.11a if the flow is steady, one-dimensional. and isentropic. provided
we know the wvalue of the local Mach number and the stagnation temperature.

We can also develop an equation for pressure variation. Since p/p = RT, then

BN
o
Kf(k—1)
(2)- (D)
0

Combining Eqs. E.19 and E.17 leads to

From Eqs. E.18 and 6.18 we obtain

P ! MEn E.20
po_{1+[(k1>/2]Ma2} (=.29)

For density variation we consolidate Egs. E.17 . E.18 |, and E.20 to get

p 1 1L/(k—1)
Po {1 + [(k — 1)/2]Ma2} (E-21)

6.4.3 The T-S Diagram:

A very useful means of keeping track of the states of an isentropic flow of an ideal gas
involves a temperature-entropy (7 — s) diagram, as is shown in Fig.6.11¢c. Experience has
shown (see, for example, Refs. 2 and 3) that lines of constant pressure are generally as are
sketched in Fig.6.11c. An isentropic flow is confined to a vertical line on a 7" — s diagram.
The wvertical line in Fig.6.11cis representative of flow between the stagnation state and any
state within the converging-diverging nozzle. Equation E.17 shows that fluid temperature

T

Pa

‘TCI

P B FIGURE ©6.11 C The T—s diagram
relating stagnation and static states.

T

5
decreases with an increase in Mach number. Thus, the lower temperature levels ona T — s
diagram correspond to higher Mach numbers. Equation E.20 suggests that fluid pressure
also decreases with an increase in Mach number. Thus, lower fluid temperatures and pres-
sures are associlated with higher Mach numbers in our isentropic converging-diverging duct
example.

One way to produce flow through a converging-diverging duct like the one in Fig. 6.11a
is to connect the downstream end of the duct to a vacuum pump. When the pressure at the
downstream end of the duct (the back pressure) is decreased slightly, air will flow from the
atmosphere through the duct and vacuum pump. Neglecting friction and heat transfer and
considering the air to act as an ideal gas, Eqs. E.17 , E.20, and E.21 and a T — s diagram
can be used to describe steady flow through the converging-diverging duct.

If the pressure in the duct is only slightly less than atmospheric pressure, we predict
with Eq. E.20 that the Mach number levels in the duct will be low. Thus, with Eq. E.21
we conclude that the variation of fluid density in the duct is also small. The continuity equa-
tion (Eq. E.1 ) leads us to state that there is a small amount of fluid flow acceleration in the
converging portion of the duct followed by flow deceleration in the diverging portion of the

duct. We considered this type of flow when we discussed the Venturi meter in ideal flow.
The T — s diagram for this flow is sketched in Fig.6.11d
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We next consider what happens when the back pressure is lowered further. Since the
flow starts from rest upstream of the converging portion of the duct of Fig.6.11a |, Eqs. E.9
and E.11 reveal to us that flow up to the nozzle throat can be accelerated to a maximum
allowable Mach number of 1 at the throat. Thus, when the duct back pressure is lowered suf-
ficiently, the Mach number at the throat of the duct will be 1. Any further decrease of the
back pressure will not affect the flow in the converging portion of the duct because, as is

discussed in Section 6.5 | information about pressure cannot move upstream when Ma = 1.
When Ma = 1 at the throat of the converging-diverging duct, we have a condition called
choked flow.
T
Po
P
Pz
TO
T .
r M FIGURE 6.11d The I'—s diagram for
2 - .
Venturi meter flow.
)
(1 (@
&
The stagnation and critical pressures and temperatures are shown on the 7' — s diagram
of Fig.6.11e.
T
Po
TO
1)
p* = [ 2 || k-1 IP
k+ 1] ¢ B FIGURE 6.1le The relationship
T = ( P 2 - '| T, between the stagnation and critical states.
-+ I

&

6.4.4 Further Analysis of The Perfect-Gas Isentropic- Relations:

We can use the perfect-gas and isentropic-flow relations to convert the continuity re-
lation ( 6.54) into an algebraic expression involving only area and Mach number, as fol-
lows. Eqguate the mass flow at any section to the mass flow under sonic conditions
(which may not actually occur in the duct)
pu‘l e p:!: A S NS
A ptr VR

or ar = 5 v (6.58)
Both the terms on the right are functions only of NMach number for isentropic flow.
From Eqs. (6.45) and (6.49)

e s g 2 l Q1M E—1)
p—:p—&:{i [1 + =k — 1) Ma2]} (6.59)

P PO P =+ 1
From Eqs. (6.43) and (6.49) we obtain
Ve (A,RTzhj,l"Z . (A’Rﬂ”Q PR L2 Ty 12
v Vv - v o ) (?)

1 _2 1+L(k—1)M-27-”27 (6.60)
Ma | &k + 1 2 el | '

Combining Egs. (6.58) to (6.60), we get the desired result

A 1 I + 2k — 1) Ma™ j(1/2xk+ Dick— 1)
A*  Ma ‘ Lk + 1) ‘ (6.61)
For k = 1.4, Eq. (6.61) takes the numerical form
A 1 (1 4+ 02Ma>? (.62
A*  Ma 1.728 -62)

which is plotted in Fig.06.12. Equations (6.62) and (6.51) enable us to solve any one-
dimensional isentropic-airflow problem given. say, the shape of the duct A(x) and the
stagnation conditions and assuming that there are no shock waves in the duct.

Figure6.12Zshows that the minimum area which can occur in a given isentropic duct
flow is the sonic, or critical. throat area. All other duct sections must have A greater
than A*. In many flows a critical sonic throat is not actually present., and the flow in
the duct is either entirely subsonic or, more rarely, entirely supersonic.
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Y
~ Cuarwve fit
Eq-. (&.65b )
2.0 —
A
A =
1.0 } | 1 }
Exact Eq. ( &.62)
O | | | |
(8] O.S 1.0 1.5 2.0 2.5

™iach number
Fig.6.12 Area ratio versus MWlach number for isentropic flow of a perfect
zZas withh & = 1.4k,

6.4.5 The Choking:

From Eq. (6.58) the inverse ratio A¥%/A equals pV/(p*V¥+), the mass flow per unit area
at any section compared with the critical mass flow per unit area. From Fig.6.12 this
inverse ratio rises from zero at a = O to unity at Ma = 1 and back down to zero at
large Ma. Thus., for given stagnation conditions. the maximuim possible mass flow
passes through a duct when its throat is at the critical or sonic condition. The duct is

then said to be choked and can carry no additional mass flow unless the throat is
widened. If the throat is constricted further. the mass flow through the duct must de-
crease. From Eqs. (6.49) and (5.50 ) the maximum mass flow 1s

i I 2 W LA — 1) 2k . 152
Himax = PFEAFVE = pol 7= ) AN (g7 RTo)
S 2 W L2+ 1A k— 1)
= ,;-”2( 1 ) A*FpolRT)'? (6.63a)
For £ = 1.4 this rer:luce;—; to - o 0.6847 poA*
1 nax — D.684T7AFpo(RTG) "~ = (6.63b)

(RT)"~
For isentropic flow through a duct, the maximum mass flow possible is proportional

to the throat arca and stagnation pressure and inversely proportional to the square root
of the stagnation temperature. These are somewhat abstract facts, so let us illustrate
with some examples.

6.4.6 The Local Mass Flow Function:

Equation (6.63) gives the rmiaxirmunt mass flow, which occurs at the choking condition
(sonic exit). It can be modified to predict the actual (nonmaximum) mass flow at any
section where local area A and pressure g are known.! The algebra is convoluted. so
here we give only the final result, expressed in dimensionless form:

wr NV RT Y 2K

!'\']_'.-;,m—[’l »wav function = —(/— —— = % 3 |
C Clic A Po \ 2 1 | Po :_.u

¢y CE— 1k
1 — | ——
\F o J

(o.64)

We stress that p» and A in this relation are the [{ocal values at position x. As p/fpg falls,
this function rises rapidly and then levels out at the maximum of Eq. (6.63). A tfew wval-
ues may be tabulated here for &£ = 1.4:

Felyzns I 1.0 I .98 I 0.95 I 0.9 I 0.8 I 0.7 I 0.6 I =0.5283

Function I 0.0 I O 1978 I 03076 I 04226 I O.5607 I 06383 I O.67ew I 0.6847

Equation {(6.64 ) is handy il stagnation conditions are known and the flow is not choked.

The only cumbersome algebra in these problems is the inversion of Eq. (6.62) to
compute the Mach number when AZAF is known. If available, EES is ideal for this sit-
uation and will yvield Ma in a flash. In the absence of EES. the following curve-fitted

formulas are suggested: given A/AYF, they estimate the Mach number within =2 per-
cent for £ = 1.4 it you stay within the ranges listed fTor each formula:
1 + 0.27(A/A*F) 2 ) A
1.728A/A* 1.34 = —Z50 = == o (6.65a)
subsonic flow
1 — 0.88(1n )77 1.0 A 1.34
— O.88 O == —— =< 1.3
( n A*) = (6.65b)
Ma = ;A s A
1 +1.2(— — 1 1.0 << — << 2.9
(A* ) A (6.65c)
supersonic flow
' A asq( 2 e 20 = 2 — = (6.65d)
216 Ak e (A:!:) - A - -

Formulas (6.65a ) and (6.65d ) are asyvmptotically correct as A/A%* —» oo, while ( 6.65b)
and (6.65c¢c ) are just curve lits. However, formulas ( 6.65b) and (6.65c) are seen in Fig.
©6.12 to be accurate within their recommended ranges.

Note that two solutions are possible for a given A/A Y, one subsonic and one super-
sonic. The proper solution cannot be selected without further information. e.g.. known
pressure or temperature at the given duct section.
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Possibly
Subsonic sSUupersonic
| T hroat

Example 6.9: VvV, = 180 m/s ! |
|

Assurme
—!—— | —_— | | isentropic

71 = 500 kPa | | o
T, = 4?0 =

As = 0036 m= As = 0.036 m=2

A, = 0.05 m?2

Air flows isentropically through a duct. At section | the area is 0.05 m~ and V, = 180 m/s, p, = 500
kPa. and 7, = 470 K. Compute (a) Ty, (&) Ma,. (¢) py. and (d) both A* and . If at section 2 the
area is 0.036 m~, compute Ma, and p if the flow is (¢) subsonic or (f) supersonic. Assume k = 1.4.

Solution

Part (a)
A general sketch of the problem is shown in Fig.E6.9. With V| and T, known, the energy equa-

tion (6.40) gives

72 2
To = Ty + 5= = 470 + 5280 = 486 K Ans. (a)
Part (b) R N
The local sound speed a; = VART, = [(1.4)287470)]"* = 435 m/s. Hence
'L_;’
Ma, = L+ = 180 _ 414 Ans. (b)
Part {c) ay 435
With Ma; known. the stagnation pressure follows from Eq. (6.51)
Po = (1 + 0.2 Ma7)*? = (500 kPa)[1 + 0.2(0.414)%]*° = 563 kPa Ans. ()
Part (d)
Similarly, from Eq. (6.62). the critical sonic-throat area is
A, (0 +02 Ma$)? 1+ 0.2(0.41427° — 1.547
Ax T 1.728 Ma, - 1.728(0.414) T
. e A 0.05 m” 5 - _
o1 AW = 1547 — 1547 0.0323 m Ans. (d)

This throat must actually be present in the duct if the flow is to become supersonic.
We now know A¥. So to compute the mass flow we can use Eq. (6.63), which remains valid,
based on the numerical value of A%, whether or not a throat actually exists:
o poA* ) (563.000)(0.0323)
= 0.6847 —F——— = 0.6847 - =
NV RT, V(28T H486)

Or we could fare equally well with our new “local mass flow™ formula, Eq. (6.64)., using, say,
the pressure and area at section 1. Given p,/pgs = 500/563 = 0.889, Eq. (6.64) vields

33.4 kgls Ans. (d)

. N287(486) [2(1.4) —_— Oart 4 ) ) kg .
il 563.00000.05) \ﬁ (0.889) [1 — (0.8589) 1 = 0.447 = 33.4 ~ Ans. (d)

Part (e)
Assume subsonic flow corresponds to section 2F in Fig. E6.9 . The duct contracts to an area ra-
tio A,/A* = 0.036/0.0323 = 1.115. which we find on the left side of Fig.6.12 or the subsonic
part of Table B.1. Neither the figure nor the table is that accurate. There are two accurate op-
tons. First, Eq. (56.65b) gives the estimate Mua, = 1 — 0.881n (1.1 15)74% = 0.676 (error less than
0.5 percent). Second, EES (App. E) will give an arbitrarily accurate solution with only three
statements (in SI units):

A2 = 0.036

Lstar = 0.0323

A2 /Astar = (1+0.2*Ma2 2) 3,1.2 3,/Ma2

Specify that you want a subsonic solution (e.g., limit Ma, << 1), and EES reports
Ma-. = 0.6758 Ans. (e)

[Ask for a supersonic solution and yvou receive Ma, = 1 .4001, which is the answer to part (f).]

The pressure is given by the isentropic relation
Po J65 KPa

P2 = 1 + 0.2(0.676)2°° ~  1.358
Part (e) does nor require a throat, sonic or otherwise; the flow could simply be contracting sub-

= 415 kPa Ans. (e)

sonically from A to A,.
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Part (f)

This time assume supersonic flow, corresponding to section 2F in Fig. E6.9. Again the area ra-
tio is A-/A* = 0.036/0.0323 = 1.115, and we look on the right side of Fig.6.12or the supersonic
part of Table B.1—the latter can be read quite accurately as Ma, == 1.40. Again there are two
other accurate options. First, Eq. (6.65¢) gives the curve-fit estimate Ma, = 1 + 1.2(1.115 —
1)1'Y2% = 1.407, only 0.5 percent high. Second, EES will give a very accurate solution with the
same three statements from part (e). Specify that you want a supersonic solution (e.g.. limit

Ma, = 1), and EES reports Ma, = 1.4001 Ans. (f)
Again the pressure is given by the isentropic relation at the new Mach number:

o Po _ 563 kPa _ :

P2 = 11 &+ 0.2(1.4001)7 > 3.183 177 kbPa Ans. ()

Note that the supersonic-flow pressure level is much less than p- in part (€). and a sonic throat
must have occurred between sections 1 and 2F

Example 6.10:

It is desired to expand air from pg = 200 kPa and 75 = 500 K through a throat to an exit Mach
number of 2.5. If the desired mass flow is 3 kg/s. compute («a) the throat area and the exit (/)
pressure, () temperature. (d) velocity, and (e) area., assuming isentropic flow, with &k = 1.4.

Solution
The throat area follows from Eq. (6.64). because the throat flow must be sonic to produce a su-

perSOHiC e}(lt: ) n-:-._(RTD)lf'z 3.0[28?(500)] 12 5 l s
AT = 0.6847pa  0.6847(200.000) _ 00830 mT = @D
or Do = 10.3 cm Ans. (a)
With the exit Mach number known. the isentropic-flow relations give the pressure and temper-
ature: 7, 200,000 :
Pe = [1 + 0'£F2.5)2]3_5 = 17.08 = 11.700 Pa Ans. (b)
T. = Lo 22 _ 5k Ans. (¢)

1 + 0.2(2.5) 2.25

The exit velocity follows from the known Mach number and temperature
V. = Ma, (kRT.HY? = 2.5[1.42873222)]"? = 2.5(299 m/s) = 747 m/s Ans. (d)
The exit area follows from the known throat area and exit Wach number and Eq. (6.62):

A, [1 + 0.2(2.5)7]° )
i 1.728(2.5) — =264
or A, = 2.64A% = 2.64(0.0083 m>) = 0.0219 m? = +7=D2
or D, =167 cm Ans. (e)

One point might be noted: The computation of the throat area A* did not depend in any way on
the numerical value of the exit Mach number. The exit was supersonic: therefore the throat is
sonic and choked. and no further information is needed.

Example 6.11:

A converging duct passes air steadily from standard atmospheric conditions to a receiver pipe
as illustrated in Fig. E6.11a . The throat (minimum) flow cross-section area of the converging

Converging duct Receiver pipe
Standard
atmosphere
Flow = ——
() /—1 B FIGURE Eo.11

duct is 1 X 10~ * m?. Determine the mass flowrate through the duct if the receiver pressure
is (a) 80 kPa (abs), (b) 40 kPa (abs). Sketch temperature-entropy diagrams for situations (a)

and (b).
SOt OM == oo o m o mm -
To determine the mass flowrate through the converging duct we use Eq.E.1. Thus,
m = pAYV = constant
or in terms of the given throat area. Ag,.
11 = ppAmVin (1)

We assume that the flow through the converging duct is isentropic and that the air be-
haves as an ideal gas with constant ¢, and c,. Then, from Eq.E.21
1

P
&:{
Lo 1+ [(k —
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300 300

Pa= 101 kPa (abs) P = 101 kPa (abs)
290 Th= 288 K 290 Ty = 288 K
280 Pth, « = 80 kPa (abs) 280
270 Ty o = 269 K 270
— \Situation (1) =
o- 260 r- 260
250 Pih, » = 53.3 kPa (abs) = p* 250 p* =52.3 kPa (abs)
240 Tih, » =240 k 240 - T+ =240 K
Situation (&) R < p*
230 230 > Pre =P
T<T%*
220 220
4 P
(5 " (ke - K) Tikg - KD (el
m FIGURE Eo6.11 (Continued)

The stagnation density, p,. for standard atmosphere is 1.23 kg/m” and the specific heat ratio
is 1.4. To determine the throat Mach number, May. we can use Eq. E.20

1 kf(k— 1)
Pu _ { ' | : } 3
o 1 + [(kKk — 1)/2]May,
The critical pressure, p¥*, is obtained from Eq. 6.49 as
p* = 0.528p, = 0.528p,, = (0.528)[ 101 kPa(abs)] = 53.3 kPa(abs)

If the receiver pressure, p,., is greater than or equal to p¥*, then py, = p.. If p.. << p¥*, then
Pa = pP*F and the flow is choked. With py,. pg. and & known, Mag, can be obtained from Eq. 3,
and py, can be determined from Eq. 2.
The flow velocity at the throat can be obtained from Eqs. 6.29 and E.7 as

Vih = Ma, ¢y, = Ma NV RTk 4)

The value of temperature at the throat, 7T),, can be calculated from Eq.E.17,
T _ L _ (5)
To 1 + [(kK— 1)/2]Mag,
Since the flow through the converging duct is assumed to be isentropic, the stagnation tem-
perature is considered constant at the standard atmosphere value of T, = 15 K + 273 K =
288 K. Note that absolute pressures and temperatures are used.
(a) For p,. = 80 kPa(abs) = 53.3 kPa(abs) = p*, we have p, = 80 kPa(abs). Then from
Eq. 3 80 kPa(abs) { 1 }1_4,(._4_ D

101 kPa(abs) L1 + [(1.4 — 1)/2]Ma},

or Ma,, = 0.587
From Eq. 2 Pih - { 1 }1/(1.4—1)
1.23 ke/m> L1 + [(1.4 — 1)/2](0.587)?
or P = 1.04 kg/m?
From Eq. 5 T 1
288 K 1 + [(1.4 — 1)/2](0.587)3
or Ty, = 2609 K

Substituting Ma,, = 0.587 and T, = 269 K into Eq. 4 we obtain

Ve = 0.587 \V/[286.9 J/(kg - K)](269 K)(1 M)[1(kg - m)/(N - s>)][1(N - m)/J]
or Vip = 193 m/s
Finally from Eq. 1 we have

m = (1.04 kg/m?)(1 X< 107* m?)(193 m/s) = 0.0201 kg/s (Ans)

(b) For p,, = 40 kPa(abs) < 53.3 kPa(abs) = p*, we have p,, = p* = 53.3 kPa(abs) and

May, = 1. The converging duct is choked. From Eq. 2

e B 1 }1/(1.4—1)
1.23 kg/m? 1+ (1.4 — 1)/2](1)?

ot pa = 0.780 kg/m?
From Eq. 5 T 1
or 288 K 1 + [(1.4 — 1)/2](1)>

From Eq. 4. Tm = 240K

Ve = (1) \/[286.9 J/(kg - K)](240 K)(1.D[1(kg - m)/(N - s?)][1(N -m)/J] = 310 m/s
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Finally from Eq. 1
1 = (0.780 kg/m>)(1 > 10 * mH (310 m/s) = 0.0242 kg/s (AnNs)

From the walues of throat temperature and throat pressure calculated above ftor
flow situations (a) and (b). we can construct the temperature—entropy diagram shown in
Fig. E6.11b .

Note that the flow from standard atmosphere to the receiver for receiver pressure. pr ..
greater than or equal to the critical pressure. p¥. is isentropic. When the receiver pressure is
less than the critical pressure as in situation (b) above. what is the flow like downstream from
the exit of the converging duct? Experience suggests that this flow. when p, . << p¥*.is three-
dimensional and nonisentropic and involves a drop in pressure from pg, to p... a drop in tem-
perature, and an increase of entropy as are indicated in Fig. E6.11c .

o1 0.5 1.0 5.0 10.0
1.0 . 10,0
0. 9.0
o.8 8.0
o7 TF.0
”
Pa o.s " &0
e —
T A
T A
Ty A
F=3 o.5 5.0
o
oO.a A0
0.2 3.0
0.z 2.0
.1 1.0
(s N w] [N e]
o1 0.5 1.0 5.0 10.0

MMa

B FIGURE D.1 Isentropic flow of an ideal gas with & = 1.4, (Graph provided by Pro-
fessor Bruce A. Reichert of Kansas State University.)

Isentropic flow Eqgs. E.17 | E.20 . and E.21 have been used to construct IFig. ID.1 in
Appendix D for air (kK = 1.4). Examples 6.12 and 6.13 illustrate how these graphs of 7/T.
p/po. and p/pg as a function of Mach number, Ma, can be used to solve compressible flow
problems.

Example 6. 12
Solve Example 6.11 using Fig. D.1 of Appendix D.

Solution:
We still need the density and velocity of the air at the converging duct throat to solve for
mass flowrate from m = puAnVa (1)

(a) Since the receiver pressure, p,. = 80 kPa(abs), is greater than the critical pressure,
p* = 53.3 kPa(abs), the throat pressure, py,. is equal to the receiver pressure. Thus

Pam 80 kPa(abs)

Po 101 kPa(abs)
From Fig. D.1, for p/py = 0.79, we get from the graph

= 0.792

Ma,, = 0.59

T _ o4 2>
Ty
Fth O.85 (3)
~o

Thus. from Eqs. 2 and 3

T — (0.94) 288 K) — 271 K
Pm = (0.85W(1.23 kg/m”) = 1.04 kg/m°>

ancd
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Furthermore. using Eqs. 6.29 and E.7 we get
Vi = May, W RIWK

= (0.59)V[286.9 J/(kg - K)[(269 K)(1.4)[ 1(kg - m)/(N - s2) ][ 1(N - m)/J ]

= 194 m,/s
Finally. from Eq. 1
= (1.04 kg/m>)(1 > 10 m?)(194 m/s) = 0.0202 kg/s (Ans)
(b) For p. = 40 kPa(abs) << 53.3 kPa(abs) = p¥*. the throat pressure is equal to 353.3
kPa(abs) and the duct is choked with Ma,, =— 1. From Fig. D.1, for Ma 1 we get
T[h
=T — 0.83 )
and 7o
P 0.64 )
From Eqs. 4 and 5 we obtain o

Tm = (0.83)(288 K) = 240 K

om = (0.64)(1.23 kg/m”) = 0.79 kg/m"
Also, from Eqs. 6.29 and E.7 we conclude that

Vin = May, N Rk

= (1) V' [286.9 J/(kg - K) [(240 K)(1.4)[ 1(kg - m)/(IN - s ][ 1 (N - m)/T]
Then, trom Eq. 1
= (0.79 kg/m>)(1 =< 107* m?)(310 m/s) = 0.024 kg/s (Ans)
The walues from Fig. ID.1 resulted in answers for mass flowrate that are close to
those using the ideal gas equations (see Example .11 ).

The temperature—entropy diagrams remain the same as those provided in the solu-
tion of Examplea. 11 .

and

310 m/s

Example 6.13:
The static pressure Lo stagnation pressure ratio —
at a point in a flow streoam is measured with (1) static pressure
a Pitot-static tube (sece iz, E6.13 ) as being (2) stagnation pressure
cqual to 0.82. The stagnation temperature of
the fluid is 658 °F. v (i)
Determine the flow velocity if the fluid is > .
(a) air. (b) helium. @

. B FIGUREE 6.13 The Pitot-static tube.
Solution:

We consider both air and helium., flowing as described above, to act as ideal gases with con-
stant specific heats. Then, we can use any of the ideal gas relationships developed in this
chapter. To determine the flow velocity., we can combine Eqs. 6.29 and E.7 to obtain
Vo= Ma VWV RTK (1)
By knowing the value of static to stagnation pressure ratio, g2/, and the specific heat ratio
we can obtain the corresponding Mach number from Eq.E. .20 . or for air, from Fig. 121,
Figz. 2.1 cannot be used for helium, since & for helium is 1.66 and Fig. D01 is for & = 1.4
only. With Mach number, specific heat ratio, and stagnation temperature known, the value
of static temperature can be subscquently ascertained from Eq. E.17 (or Fig. 2.1

for air).
(o) For air, p/rq = O0.82; thus from Fig. 2.1,

Ma = 0.54 (2)

and ?L_ = .94 (3)
Then. from Eq. 3 . o ) )

7 = (0.94)[(68 + 460) “R] = 496 °R 4)

and using Eqs. 1. 2, and 4 we gzet

Vo= (0.54) V[1.716 > 107 (ft - Ib)/(slugz - "R)J(496 “R)(1.4)[ 1 (slug - f1)/(Ib - s7)]

or Vo= 5900 /= {(ANS)
(b) For helium. p/p, = 0.82 and & = 1.66. By substituting these values into Eq. E.20 we get
16641 66— 1)
0.82 = { ! }
or I + [(1.66 — 1)/2] M=a~
Ma = 0.499
From Eq. E.17 we obtain T 1
Thus=, T 1 + [(k — l),/?]l"»"'lul

1
. i
{1 4+ [(1.66 — 1)/27](0.499)*
From Eq. 1 we obtain

Vo= (0.499) V[1.242 >= 10%(ft - Ib)/(slug - "R)](488 "R)(1.66)[ 1(slug - f1)/(1b - s7)]

[(68 + 460) “R] = 488 °R

VvV = 1580 ft/s (ANs)

Note that the isentropic flow equations and Fig. D.1 for &£ = 1.4 were used presently
to describe fluid particle isentropic flow along a pathline in a stagnation process. Even though
these equations and graph were developed for one-dimensional duct flows, they can be used
for frictionless. adiabatic pathline flows also.

Furthermore. while the Mach numbers calculated above are of similar size for the air

and helivm flows, the flow speed is much larger for helinm than for air because the speed
of sound in helium is much larger than it is in air.
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Example 6.14:

Adr enters subsonically from standard atmosphere and flows isentropically through a choked

L"l?['l.\"(_‘]‘gilib—tlivul‘gi]]g duct huving a circular cross-section area, A, that varies with axial dis-

tance from the throat, x, according to the formula A = 0.1 + x°

where A is In square meters and x is in meters. The duct extends from ¥ = — 0.5 m to
x = 0.5 m. For this flow situation, sketch the side view of the duct and graph the varia-
tion of Mach number, static temperature to stagnation temperature ratio, 7/7,. and static pres-
sure to stagnation pressure ratio, p/p,. through the duct from x = —0.5 m to x = +0.5 m.
Also show the possible fluid states at v = —0.5 m, Om, and + 0.5 m using temperature-
entropy coordinates.

Solution:

The side view of the converging-diverging duct is a graph of radius » from the duct axis as
a function of axial distance. For a circular flow cross section we have

A = 77 (1)
o A = 0.1 + &° (2)
Thus, combining Eqs. | and 2, we have L ((L] + _\,J)I,’J 3)

where

T

and a graph of radius as a function of axial distance can be casily constructed (sce
Fig. E6.14a),

Since the converging-diverging duct in this example is choked, the throat area is also
the critical area, A", From Eq. 2 we see that (x = 0 at the throat)

A* = 0.1 m? (4)
For any axial location, from Eqs. 2 and 4 we get
A _ 0.1 + «x (5)
A 0.1
Values of A/A™ from Eq. 5 can be used in Eq. 6.61 to calculate corresponding values of
Mach number. Ma. For air with & = 1.4, we could enter Fig. 1.1 with values of A/A" and

read off values of the Mach number. With values of Mach number ascertained, we could usc
Eqs. E.17 and E.20 to calculate related values of 7/7, and p/p,. For air with & = 1.4,

ample, we elect to use values from Fig. Dol

0.4
0.3 ()
f_ 0.2
0.1 Hm FIGURE E&6.14
(8]
0.5 —0.4 -0.2 [a] 0.2 0.4 0.5
a. im
3.0
(&)
Supersonic
2.0
Ma W FIGURE Eo6.14 (Conftinued)
1.0
Subsonic Subsonic
o= 101 kPa (abs) P.=p.= 99 kPa (abs)
—0.5 0.4 —0.1 0 0.2 0.4 0.5 210 ~
x, M 0 T,=288K
1.0 290
570 . J.=T.=285K
0.9 . c a
Subsonic 250 / Py = 54 kPa (abs)
0.8 Subsonic ) T,=39 K
0.7 Subsonic 230 b b
T o6 Subsonic 7Ty « 210
T ’ B~ (d)
0.5 190
P ga _ 170
E . Supersonic 150
0.3 Ps =4 kPa (abs)
130
0.2 (<) 116 T,=112 K
o.1 Supersonic d
) 90
0.0 5, e
-0.5 -0.4 -0.2 O . m 02 0.4 0.5 (kg - K)
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The following table was constructed by using Eqs. 3 and 5 and Fig. 1D 1.

With the air entering the choked converging-diverging duct subsonically, only one isen-
tropic solution exists for the converging portion of the duct. This solution involves an ac-
celerating flow that becomes sonic (Ma = 1) at the throat of the passage. Two isentropic
flow solutions are possible for the diverging portion of the duct—one subsonic., the other
supersonic. If the pressure ratio., p/pg. is set at 0.98 at x = + 0.5 m (the outlet), the subsonic
flow will occur. Alternatively, if /g is set at 0.04 at x = + 0.5 m. the supersonic flow field
will exist. These conditions are illustrated in Fig. E6.14.. An unchoked subsonic flow through
the converging-diverging duct of this example is discussed in Example 11.10. Choked flows
involving flows other than the two isentropic flows in the diverging portion of the duct of
this example are discussed after Example 6.16 .

From Fig. IDD.1

From Eqg. 3. From Eqg. 5.

2 (1) (1) P ™A T/ To P/ Po State
Srebhrsornic Solwtiorn
—O.5 O. 334 3.5 O.17 0,909 0.9 P
—O.4 0.288 2.6 .23 .99 .97
— 0.3 0. 246 1.9 0.32 0.98 0.93
— 0.2 o.211 1.+ O.47 0.96 0.86
—O.1 0,187 1.1 0.69 0,91 0. 73

[8) 0,178 1 1.00 0.83 O.53 £
—“+O. 1 O.187 1.1 0.69 0,91 0. 73
+ 0.2 0.211 1.4 O. 47 0.96 0.86
+ 0.3 0. 246 1.9 0.32 0.98 0.93
—+ O 0.288 2.6 0.23 0,99 O.97
+ 0.5 O. 344 3.5 O.17 0.99 0.98 <
Sreppersornic Solwtior:
—“+O. 1 O.187 1.1 1.37 0. 73 L33
+ 0.2 0.211 1.4 1.76 O.62 018
+ 0.3 0. 246 1.9 2.14 .52 -
—+ O 0.288 2.6 248 0.5 0,06
+ 0.5 O.334 3.5 2.80 .39 0.0 o

Example 6.15:

Adr enters supersonically with 75 and pg equal to standard atmosphere values and flows isen-
tropically through the choked converging-diverging duct described in Example 6.14 . Graph
the wvariation of Mach number, Ma, static temperature to stagnation temperature ratio., 7./7,.

and static pressure to stagnation pressure ratio., p/pg. through the duct from x = —0.5 m to
x = + 0.5 m. Also show the possible fluid states at x = — 0.5 m. O m. and + 0.5 m by using
temperature-entropy coordinates.

Solution:

With the air entering the converging-diverging duct of Example 6.14 supersonically instead
ot subsonically. a unique isentropic flow solution is obtained for the converging portion of
the duct. WNWow, however., the flow decelerates to the sonic condition at the throat. The two
solutions obtained previously in Example 6.14 for the diverging portion are still valid. Since
the area wvariation in the duct is symmetrical with respect to the duct throat, we can use the
supersonic flow wvalues obtained from Example 6.14 for the supersonic flow in the converg-
ing portion of the duct. The supersonic flow solution for the converging passage 1S sumina-
rized in the following table. The solution values for the entire duct are graphed in Fig. E6.15.

From Fig. ID.1

x (m) AS A Na T/ Ty P Po State
— 0.5 3.5 2.8 0.39 0.04 &
— 0.4 2.6 2.5 0.45 0.06
— 0.3 1.9 2.1 0.52 0.10
— 0.2 1.4 1.8 0.62 0.18
— 0.1 1.1 1.4 0.73 0.33
(8] 1 1.0 0.83 0.53 P
0.4 3.0
0.2 Supersonic
Fom 0.2 2.0 Supersonic
0.1 (ez)
o Ma
—0.5 0.4 —0.2 Lo} 0.2 0.4 0.5
v, m 1.0
Subsonic
WM FIGURE E 6.15 (&)
o
—0.5 —0.4 —0.2 o x, 0.2 0.4 0.5
o= 101 kPa (abs) P. = 99 kPa (abs)
1.0 - 210 “m
0.9 () Subsonic - 290 %}“@j z88 K
. = T.= 286 K
~—Subsonic 270 .
0.8 — Pr= 54 kPa (abs)
0.7 . > . 250 41"&:240 k
T Supersonic Supersonic 230 ; >
7. 0.6
° ,/ = 210
o Q.5 = 190 ()
o 0.4 170
0.3 Supersonic s 150
upersonic 7. = pa= 4 kPa (abs)
0.2 130 <
o.1 110 7‘{4 T, =T,= 112 K
0.0 Q20
—0.5 —0.4 —0.2 Lo} 0.2 0.4 0O.5 < J
2, M T kg - KD
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Example 6.16:

Adr flows subsonically and isentropically through the converging-diverging duct of Example
0.14 . Graph the variation of Mach number, Ma, static temperature to stagnation temperature
ratio, 7/7,. the static pressure to stagnation pressure ratio. g2/, through the duct from
= =05 mtox = +0.5mforMa = 048 at v = 0 m. Show the corresponding temperature-
entropy diagram.
Solution:
Since for this example, Ma = 048 at x = O m. the isentropic flow through the converging-
diverging duct will be entirely subsonic and not choked. For air (£ = 1.4) flowing isentrop-
ically through the duct, we can use Fig. 0.1 for flow field guantities. Entering Fig. 23,1 with
Ma = 0.48 we read off p/p, = 085, T/7, = 0.96, and A/A" = 1.4, Even though the duct
flow is not choked in this example and A% does not therefore exist physically, it still repre-
sents a valid reference. For a given isentropic flow, pg. T and A% are constants. Since A at
x = 0Om is equal to 0.10 m? (from Eq. 2 of Example 6.14), A* for this example is

A = A 010mMT g e (1)

(A/A™) 1.4

With known values of duct area at different axial locations., we can calculate L'nt‘l‘t..:ﬁ[':ut'u.lil‘lg
area ratios, A/A™, knuwing A* = 0.07 m-. Hawing values of the area ratio, we can use Fig. E.1l
and obtain related values of Ma, T/7,. and p/p,. The following table summarizes flow quan-
tities obtained in this manner. The results are graphed in Fig. EG.16.

0.4 1.0
(€25
o \\J Ma Subsonic Subsonic
F.om 0.2 - _._.___._,_..—F""'-F—_h-"""l-.._‘_____‘_-_
o1] @ —0.5 0.4 —0.2 O . m 0.2 0.4 0.5
=] _ .
—0.5 0.4 —0.2 0O . m 02 0.4 0.5 coe Pg= 101 kPa (abs)
1.0 —=._.____7_.___________._=— o Py =, = 100 KPa (abs)
o ol - : ff'r = 288 K
. T zaa - - T
0.8 | subsonic /7, Subsonic g T,=7T,=285K
4 .7 284
- D.6 : =
To - 280 5, = B6 kPa (abs)
0.5 = sme - Pe=
P = T,= 276 K
0.4 b "
- 272
0.3 ()
268
0.2 ()]
0,1 264
0,0 260
0,5 0,4 -0.2 8] 0.2 0.4 0.5 o —d
X, m "k - K

B FIGURE E 6.16
A more precise solution for the flow of this example could have been obtained with
isentropic flow equations by following the steps outlined below.
1. Use Eq. E20 o get p/po at x = 0 knowing kX and Ma = 0.48.
2. From Eq. 6.61 . obtain value of A/A* at x = 0 knowing k& and Ma.
3. Determine A* knowing A and A/A®* at x = 0.
4. Determine A/A* at different axial locations, x.
5. Use Eq. 6.61 and A/A* from step 4 above to get values of Mach numbers at differ-
ent axial locations.
6. Use Egs. E.17 and E.20 and Ma from step 5 above to obtain /7T, and p/py at dif-
ferent axial locations., x.
There are an infinite number of subsonic, isentropic flow solutions for the converging-
diverging duct considered in this example.

From Fig. D.1

Calculated,

x () ASAE Ma T/T, 7/Po State
— 0.5 5.0 .12 0.99 .99 I
— 0.4 3.7 0.16 0.99 0.98
—0.3 2.7 0.23 0.99 0.96
—0.2 2.0 0.31 0.98 0.94
—0.1 1.6 040 0.97 0.89

0] 1.4 048 0.96 0O.85 2]
+0.1 1.6 0.40 0.97 0.89
+0.2 2.0 0.31 0.98 0.94
+ 0.3 2.7 0.23 0.99 0.96
+ 0.4 3.7 0.16 0.99 0.98
+ 0.5 5.0 .12 0.99 0.99 [
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| (ax) | ()

A
1.0 I
| (e) | ()
8] 1.0 Ma o 1.0 Ma
H FIGURE 6.13 (a) Subsonic to subsonic isentropic flow (not choked). (#) Subsonic to

subsonic isentropic flow (choked). (¢) Subsonic to supersonic isentropic flow (choked)
(d) Supersonic to supersonic isentropic flow (choked). (¢) Supersonic to subsonic isentropic flow
(choked). ( f) Supersonic to supersonic isentropic flow (not choked).

The isentropic flow behavior for the converging-diverging duct discussed in Exam-
ples 6.14, 6.15, and ©6.16 is summarized in the area ratio—Mach number graphs sketched in
Fig. 6.13 . The points a. b, and ¢ represent states at axial distance x = —0.5 m, O m, and
+0.5 m. In Fig. 6.13 «a. the isentropic flow through the converging-diverging duct is sub-
sonic without choking at the throat. This situation was discussed in Example 6.16 . Fig-
ure 6.13 b represents subsonic to subsonic choked flow (Example 6.14) and Fig. 6.13 ¢ is
for subsonic to supersonic choked flow (also Example 6.14). The states in Fig. 6.13 d are
related to the supersonic to supersonic choked flow of Example 6.15 ; the states in Fig. 6.13 ¢
are for the supersonic to subsonic choked flow of Example 6.15. Not covered by an exam-
ple but also possible are the isentropic flow states a. b, and ¢ shown in Fig. 6.13 f for su-
personic to supersonic flow without choking. These six categories generally represent the
possible kinds of isentropic, ideal gas flow through a converging-diverging duct.

For a given stagnation state (i.e.. 7o and pg fixed), ideal gas (k = constant), and
converging-diverging duct geometry, an infinite number of isentropic subsonic to subsonic
(not choked) and supersonic to supersonic (not choked) flow solutions exist. In contrast, the
isentropic subsonic to supersonic (choked). subsonic to subsonic (choked). supersonic to sub-
sonic (choked), and supersonic to supersonic (choked) flow solutions are each unique. The

(a)

(c) __//_/_____,.—-—:—\____\‘_&

|
+0.5 -0.5 o X, m +0.5

|
Q
8
[ J I
i
3

|
|
P |
|
V B
[
|
_//l\ ()
___.-—"""—-4—-'""—-.__ z)
(b) —_— — fm
| |
-0.5 o X, m +0.5 —-0.5 0 X, m +0.5
B FIGURE 6.14 (a) The variation of duct radius with axial distance. () The varia-

tion of Mach number with axial distance. (c) The variation of temperature with axial distance.
(d) The variation of pressure with axial distance.

Dr. Mohsen Soliman -39/125 - MEP 580 Compressible Flow



P

above-mentioned isentropic flow solutions are represented in Fig. 6.14 . When the pressure
at x = +0.5 (exit) is greater than or equal to p; indicated in Fig. 6.14 d, an isentropic flow
is possible. When the pressure at x = +0.5 is equal to or less than py. isentropic flows in
the duct are possible. However, when the exit pressure is less than pp and greater than pyg as
indicated in Fig. 6.15 , isentropic flows are no longer possible in the duct. Determination of
the value of pyp is discussed 1in next sections.

Some possible nonisentropic choked flows through our converging-diverging duct are
represented in Fig. 6.15 . Each abrupt pressure rise shown within and at the exit of the flow
passage occurs across a very thin discontinuity in the flow called a normal shock wave. Ex-
cept for flow across the normal shock wave, the flow is isentropic. The nonisentropic flow
cquations that describe the changes in fluid properties that take place across a normal shock

m FIGURE 6.15 Shock forma-
tion in converging-diverging duct flows.

lF’IH ; :
n

X

wave are developed in Section 6.5 . The less abrupt pressure rise or drop that occurs after
the flow leaves the duct is nonisentropic and attributable to three-dimensional obligue shock
waves. If the pressure rises downstream of the duct exit, the flow is considered overexpanded.
If the pressure drops downstream of the duct exit, the flow is called underexpanded. Further
details about over- and underexpanded flows and oblique shock waves are beyond the scope
of this text. Interested readers are referred to texts on compressible flows and gas dynamics
(for example, Refs. 5, 6. 7, and 8) for additional material on this subject.

6.5 Normal Shock Waves:
6.5.1 The Fixed Normal Shock Wave:

A common irreversibility occurring in supersonic internal or external flows is the
normal-shock wave sketched in Fig.6.16 Except at near-vacuum pressures such shock waves
are very thin (a few micrometers thick) and approximate a discontinuous change in flow
properties. We select a control volume just before and after the wave, as in Fig.6.16

The analysis is identical to that of Fig.6.1 ; i.e., a shock wave is a fixed strong pres-
sure wave. To compute all property changes rather than just the wave speed, we use
all our basic one-dimensional steady-flow relations, letting section 1 be upstream and
section 2 be downstream:

1V = p V> = G = const (6.66a )
P —p2=p2Vs— p Vi (6.66b)
Energy: hy, ++V3 = h, + V3 = h, = const (6.66c)
. 2 7~ .
Perfect gas: Pr__ P2 (6.66d)
M T P75
Constant cp: h = c,T k = const (6.66e)
Fixed
normal
shock .
= Isoenergetic
|| To, = To2
@: :@
| I
Isentropic : :
upstrearnm P\"I_-_ ;! [ NI_._ ]
— aq = | A <<
=51 ! : | - Isentropic
: I downstream
! : 5= 5,> 5,
|| A% > A%
T — Poz < Po1
Thin
Fig.6.16 Flow through a fixed control

volume

normal-shock wave.
A 1 = A2
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Note that we have canceled out the areas A = A->. which is justified even in a variable
duct section because of the thinness of the wave. The first successful analyses of these
normal-shock relations are credited to W. J. M. Rankine (1870) and A. Hugoniot (1887).
hence the modern term Rankine-Hugonior relarions. If we assume that the upstream
conditions (p,. V. p1. 2. T) are known. Eqs. (6.66 ) are five algebraic relations in the
five unknowns (p>. Vo, p>. fio. T5). Because of the velocity-squared term. two solutions
are found. and the correct one is determined from the second law of thermodynamics,
which requires that s> = 5.

The wvelocities V; and V> can be eliminated from Eqs. (6.66a) to ( 6.66c) to obtain
the Rankine-Hugoniot relation

1 . 1 1 .
fi- — 11y —?(;33—;;?.)(——{—— (6.67)
2 P2z I3y
This contains only thermodynamic properties and is independent of the equation
of state. Introducing the perfect-gas law h = c,T = kp/[(k — 1)pl. we can rewrite
this as > 1 + >/ Ak + 1
Pz __ Bpr=/pa g == > (6.68)
£ B+ pa/p, k— 1
We can compare this with the isentropic-flow relation for a very weak pressure wave
in a perfect gas 5 1/
£2 :(—Fz) (6.69)
~1 7
Also. the actual change in entropy across the shock can be computed tfrom the pertect-
gas relation
S2 ol P2 (P \F .
- = In (6.70)
Cv P\ P2,
Assuming a given wave strength ps>/p,. we can compute the density ratio and the en
tropy change and list them as follows for & = 1.4:
P2 P2l 5> — 84
P Eq- (9.51) Isentropic Co
0.5 0.6154 0.6095 —0.0134
0.9 0.9275 0.9275 —0.00005
1.0 1.0 1.0 0.0
1.1 1.00704 1.00705 0.00004
1.5 1.3333 1.3359 0.0027
2.0 1.6250 1.6407 0.0134

We see that the entropy change is negative if the pressure decreases across the shock.
which violates the second law. Thus a rarefaction shock is impossible in a perfect gas.”
We see also that weak-shock waves (po/p, = 2.0) are very nearly isentropic.

For a perfect gas all the property ratios across the normal shock are unique functions
ol &k and the vpstream Mach number Ma,. For example. i’ we eliminate p-> and V5 from

Eqs. (6.66a) to ( 6.66¢c) and introduce /1 = kp/[(k — 1)p]l. we obtain
P2 1 2p V7 ] :
_— = — (k — 1 6.71
P21 Ak + 1 [ P21 ( ) ( )
But for a perfect gas p.V?/p. = kV?/(kRT.) = k I\‘Ia?. so that Eq. ( €.71) is equivalent to
Pz _ 1 150 Ma3 — (x — D] (6.72)
-  + 1 2k ay (K ) .

From this equation we see that, for any Ak, p> = p; only if Ma, = 1.0. Thus for flow
through a normal-shock wave., the upstream Mach number must be supersonic to sat-
isty the second law of thermodynamics.
What about the downstream Mach number? From the perfect-gas identity pV?® =
kr MaZ, we can rewrite Eq. ( 6.66b) as
P2 1 + k Maj (6.73
P 1+ &k Ma2 -13)
which relates the pressure ratio to both Mach numbers. By equating Eqgs. (6.72) and
(6.73) we can solve for (k — 1) Ma7 + 2 Cera
2k Ma7 — (kK — 1) '

[\']ili =

Since Ma; must be supersonic., this equation predicts for all £ = 1 that Ma> must be
subsonic. Thus a normal-shock wave decelerates a flow almost discontinuously from
supersonic to subsonic conditions.

Further manipulation of the basic relations (6.66 ) for a perfect gas gives additional
equations relating the change in properties across a normal-shock wave in a perfect gas

P> _ (k + 1)y Mas _ vV
o1 (k — 1) Ma7 + 2 Vs
7> 5 > 2k May — (kK — 1) :
5 e co— Aday = = -
[ Kk 1) Ma7] & + 157 Ma3 (6.75)

7
T()Q - ?_-()I
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Poz _ Poz __ (kK + 1) May AE—1) k + 1 LCE—1>
Por Po1 2 + (k— 1) May 2k May — (kK — 1)

Of additional interest is the fact that the critical. or sonic. throat area A* in a duct in-
creases across a normal shock

2 This is true also for most real gases; see Ref. 14, sec. 7.3.

AE Mz 2 4 (k — 1) Ma= [{V2Dk+10k—1)
2 o [ ( ) q‘] (6.76)

A  Ma, |2 + (kK — 1) Ma>
All these relations are given in Table B.2 and plotted versus upstream Mach number
Ma,; in Fig.6.17 for &k = 1.4. We see that pressure increases greatly while temperature
and density increase moderately. The effective throat area A* increases slowly at first
and then rapidly. The failure of students to account for this change in A* is a common
source of error in shock calculations.

The stagnation temperature remains the same, but the stagnation pressure and den-
sity decrease in the same ratio: iLe.. the flow across the shock is adiabatic but non-
isentropic. Other basic principles governing the behavior of shock waves can be sum-
marized as follows:

1. The upstream flow is supersonic. and the downstream flow is subsonic.

2. For perfect gases (and also for real fluids except under bizarre thermodynamic
conditions) rarefaction shocks are impossible, and only a compression shock can
exist.

3. The entropy increases across a shock with consequent decreases in stagnation

pressure and stagnation density and an increase in the effective sonic-throat area.

4. Weak shock waves are very nearly isentropic.

[&3

fed )

Fig.6_-.18 Normal shocks form in
Botky imtermal amd externml flowse:
Cord MNormal shock im a duct; mode
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Flowar, ya o sy off LS. Adje Fornce
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Normal-shock waves form in ducts under transient conditions. e.g.. shock tubes., and
in steady flow for certain ranges ot the downstream pressure. Figure 6.18 a shows a
normal shock in a supersonic nozzle. Flow is from left to right. The oblique wave pat-
tern to the left is formed by roughness elements on the nozzle walls and indicates that
the upstream flow is supersonic. Note the absence of these Mach waves (see Sec. 6.10 )
in the subsonic flow downstream.

Normal-shock waves occur not only in supersonic duct flows but also in a variety
of supersonic external flows. An example is the supersonic flow past a blunt body
shown in Fig. 6.18b . The bow shock is curved, with a portion in front of the body
which is essentially normal to the oncoming flow. This normal portion of the bow shock
satisties the property-change conditions just as outlined in this section. The flow in-
side the shock near the body nose is thus subsonic and at relatively high temperature
T5 = T. and convective heat transler is especially high in this region.
Each nonnormal portion of the bow shock in Fig. 6.18 b satisfies the oblique-shock
relations to be outlined in Sec. 6.9. Note also the oblique recompression shock on the
sides of the body. What has happened is that the subsonic nose flow has accelerated
around the corners back to supersonic flow at low pressure. which must then pass
through the second shock to match the higher downstream pressure conditions.
Note the fine-grained turbulent wake structure in the rear of the body in Fig. 6.18b .

The turbulent boundary layver along the sides of the body is also clearly visible.
The analysis of a complex multidimensional supersonic flow such as in Fig. 6.18 is
beyvond the scope of this book. For further information see, e.g.. Ref. 14, chap. 9, or
Ref. 8, chap. 16.

6.5.2 The Moving Normal Shock Wave:

The preceding analysis of the fixed shock applies equally well to the moving shock if
we reverse the transformation used in Fig. 6.1 . To make the upstream conditions sim-
ulate a still fluid. we move the shock of Fig.6.16 to the left at speed V,: that is. we fix
our coordinates to a control volume moving with the shock. The downstream flow then
appears to move to the left at a slower speed V|, — V5 following the shock. The ther-
modynamic properties are not changed by this transformation, so that all our Egs. ( 6.67)
to ( 6.76) are still valid.

Example 6.17:

Air flows from a reservoir where p=300kPaand 7= 500K
through a throat to section 1 in Fig.E6.17 where there is a
normal-shock wave. Compute

(ci) Pi- ([3‘) P2 (c) Poz2s (d) Aé. (e) Poz.

(f) A%, (g) pa, (h) Tos, and (i) Ts. 1 m?2

Es.17 2 m2 _ .
Solution 3 m?2

The reservoir conditions are the stagnation properties. which, for assumed one-dimensional adi-
abatic frictionless flow, hold through the throat up to section 1

Po1 = 300 kPa To1 = 500 K
A shock wave cannot exist unless Ma, is supersonic: therefore the flow must have accelerated

through a throat which is sonic A, = A% = 1 m2
We can now find the Mach number Ma,; from the known isentropic area ratio
A 2
é-Ll_ — an =20
From Eq. (6.65¢) A% I m

Ma; = | + 1.2(2.0 — D'? = 2.20
Further iteration with Eq. (g.62) would give Ma, = 2.1972, showing that Eq. (6.65¢) gives sat-
isfactory accuracy. The pressure p,; follows from the isentropic relation (6.45) (or Table B.1)

—’;"' = [1 + 0.2(2.20)°1*° = 10.7
1
3 4 .
or P11 = % = 28.06 kPa Ans. (a)
The pressure p, is now obtained from Ma,; and the normal-shock relation (6.72) or Table B.2
Pz _ 1 o cinomz A1 = 5 48
Y 54 [2.8(2.20) 0.4] 5.48
or P> = 5.48(28.06) = 154 kPa Ans. (b)

In similar manner, for Ma; = 2.20, pg>/po; = 0.628 from Eq. (6.75) and A¥/AT = 1.592 from
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Eq. (6.76). or we can read Table B.2 for these values. Thus

Poz = 0.628(300 kPa) = 188 kPa Ans. (c)
A% = 1.592(1 m?2) = 1.592 m?> Ans. (d)
The flow from section 2 to 3 is isentropic (but at higher entropy than the flow upstream of the
shock). Thus Pos = Poz = 188 kPa Ans. (e)
A% = A% = 1.592 m-> Ans. (f)
Knowing A%, we can now compute ps by finding Mas; and without bothering to find Mas (which
happens to equal 0.547). The area ratio at section 3 is
As 3 m? e
Ak 1502 m2 B8
Then. since Mas is known to be subsonic because it is downstream of a normal shock. we use
Eq. (6.65a) to estimate 1 4+ 0.27/(1.884)°
Masz =~ 1.728(1.884) — 0.330

The pressure ps3 then follows from the isentropic relation (6.435) or Table B.1
£03 11 + 0.2(0.330)2]>5 = 1.078

3
188 kPa
or P3 = Tﬁ:&q = 174 kPa Ans. (g)
Meanwhile, the flow is adiabatic throughout the duct: thus
T()] = ng = TQ?. = 500 K Ans. (h)

Theretfore, finally, from the adiabatic relation (&§.43)
T
% = 1 + 0.2(0.330)° = 1.022
3
] 500 K ; .
or T = m = 489 K Ans. (i)
Notice that this type of duct-flow problem. with or without a shock wave, requires straightfor-
ward application of algebraic perfect-gas relations coupled with a little thought given to which

formula is appropriate for the particular situation.

p =147 1bf/in? abs
T=520°R

Example 6.18 (on moving shock wave):
An explosion in air. & = 1.4, creates a spherical shock
wave propagating radially into still air at standard
conditions. At the instant shown in Fig. E 6.18, the
pressure just inside the shock is 200 Ibf/in® absolute.
Estimate (a) the shock speed C and
) the air velocity V just inside the shock. E 6.18
Solution
Part (a)
In spite of the spherical geometry the flow across the shock
moves normal to the spherical wave-front: hence the normal-shock
relations (6.67) to (6.76) apply. Fixing our control volume to the
moving shock. we find that the proper conditions to use in Fig.6.16 are

N2

S 200 1ot abs_

)

C = V) Py = 14.7 1bf/in? absolute T, = 520°R
V=V — VWV P22 = 200 Ibf/in? absolute
The speed of sound outside the shock is a, = 49T}'(2 = 1117 ft/s. We can find Ma,; tfrom the

known pressure ratio across the shock -
P> 200 1bt/in® absolute

= 13.61
P 14.7 Ibt/in2 absolute ?
From Eq. (8.72) or Table B.2
i 1 §
13.61 = 5— (2.8 Maj — 0.4) or Ma,; = 3.436
Then, by definition of the Mach number,
C =V, = Ma, a, = 3.436(1117 ft/s) = 3840 ft/s Ans. (a)

Part (b)
To find V>, we need the temperature or sound speed inside the shock. Since Ma; is known, from
Eq. (6.75) or Table B.2 for Ma,; = 3.436 we compute T5/77 = 3.228. Then

T> = 32287, = 3.228(520°R) = 1679°R
At such a high temperature we should account for non-perfect-gas effects or at least use the gas
tables [16]. but we won’'t. Here just estimate from the perfect-gas energy equation (&.40Q) that

V3 = 2¢,(T) — T») + Vi = 2(6010)(520 — 1679) + (3840)> = 815,000
or V> = 903 ft/s
Notice that we did this without bothering to compute Ma,., which equals 0.454, or @, = 4973% =
2000 ft/s.
Finally, the air velocity behind the shock is
V=V, — V., = 3840 — 903 = 2040 ft/s Ans. (b)
Thus a powerful explosion creates a brielf but intense blast wind as it passes.”

¥ This is the principle of the shock-tube wind runnel. in which a controlled explosion creates a brief
flow at very high Mach number, with data taken by fast-response instruments. See, e.g.. Rel. 5. sec. 4.5.
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6.6 Operation of Converging and Diverging Nozzles:

By combining the isentropic-flow and normal-shock relations plus the concept of sonic
throat choking. we can outline the characteristics of converging and diverging nozzles.

6.6.1 Operation of Converging Nozzles:

First consider the converging nozzle sketched in Fig. 6.19a . There is an upstream reser-
voir at stagnation pressure pg. The flow is induced by lowering the downstream out-
side, or back, pressure p, below pg, resulting in the sequence of states a to ¢ shown in
Fig. 6.19b and c.

For a moderate drop in p, to states a and b. the throat pressure is higher than the

critical value p¥* which would make the throat sonic. The flow in the nozzle is sub-
sonic throughout, and the jet exit pressure p,. equals the back pressure p,. The mass
flow is predicted by subsonic isentropic theory and is less than the critical value #i ..
as shown in Fig. 6.19¢c.

For condition c. the back pressure exactly equals the critical pressure p* of the throat.

The throat becomes sonic, the jet exit flow is sonic, p,. = p,. and the mass flow equals
its maximum value from Eq. ( 6.63). The flow upstream of the throat is subsonic every-
where and predicted by isentropic theory based on the local area ratio A(x)/A* and

1.0

Table B.1.
e d o«
1.0 . o .
P, | Fig.6.19 Operation of a converging
Po |:> P, — } b nozzle: (a) nozzle geometry show-
\ } ing characteristic pressures;
(a) | Jet i } (b) pressure distribution caused
| boundary Mt )
! | il } a by various back pressures;
| a7 Subsonic \ (c) mass flow versus back pressure.
b jet N \
| ' ) \
************** P ‘ | D
. | Supersonic * ©
Sm.nc |E d} llp?;t m 0 [? I 0 pﬂ
point | e oinansio —
x I expansion p[)
(b)

Finally, if’ p,, is lowered further to conditions & or e below p*_ the nozzle cannot re-
spond lurther because it is choked at its maximum throat mass flow. The throat re-
mains sonic with p,., = p*., and the nozzle-pressure distribution is the same as in state
c. as sketched in Fig. 6.19b . The exit jet expands supersonically so that the jet pres-
sure can be reduced from p¥* down to p,. The jet structure is complex and multidi-
mensional and is not shown here. Being supersonic. the jet cannot send any signal up-
stream to influence the choked flow conditions in the nozzle.

If the stagnation plenum chamber is large or supplemented by a compressor, and if
the discharge chamber is larger or supplemented by a vacuum pump., the converging-
nozzle flow will be steady or nearly so. Otherwise the nozzle will be blowing down,
with pgo decreasing and p, increasing, and the flow states will be changing from. say,
state e backward to state a. Blowdown calculations are usually made by a quasi-steady
analysis based on isentropic steady-flow theory for the instantaneous pressures po(r)
and p,(1).

Example 6.19:

A converging nozzle has a throat area of 6 cm” and stagnation air conditions of 120 kPa and
400 K. Compute the exit pressure and mass flow if the back pressure is (a) 90 kPa and (b) 45
kPa. Assume kK = 1.4.

Solution
From Eq. (6.49) for £ = 1.4 the critical (sonic) throat pressure is
ES
‘?T = (0.5283 or p¥* = (0.5283)(120 kPa) = 63.4 kPa
70

If the back pressure is less than this amount, the nozzle flow is choked.
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Part (a)

For p,, = 90 kPa = p*, the flow is subsonic. not choked. The exit pressure is p. = p,;. The throat
Mach number is found from the isentropic relation (6.52) or Table B.1:
. N 2T 12O N 2T
MaZ = 5[{‘”—0) — 1] — 5[( 1“0) — 1] — 0.4283 Ma, — 0.654
e . 20

To tfind the mass flow., we could proceed with a serial attack on Ma,.., .. a.. V.. and p_. hence

to compute p.A_ V.. However, since the local pressure is known. this part is ideally suited for the

dimensionless mass-flow function in Eq. (6.64). With p./pg = 90/120 = 0.75. compute
. Va - i~ P
m:{f?To =/ ~(1;4) (0.75)214[1 — (0.75)°%14] = 0.6052
0 N T (0.0006)( 120.000)
hence i = 0.6052 = = 0.129 kg/s Arns. (a)
N 287 (400)
for Pe = P — 90 kPa Arns. (a)

Part (b)
For p, = 45 kPa << p*. the flow is choked. similar to condition « in Fig. 6.19b . The exit pres-

sure is sonic: P. = p¥ = 63.4 kPa Ars. (b)
The (choked) mass flow is a maximum from Eq. (6.63Db):
i i 0.6847paA. 0.6847(120.000)(0.0006)
rgd P B— (RTo)172 [287(400)] 72 . 145 kg/s Arns. (b)

Any back pressure less than 63.4 kPa would cause this same choked mass flow. INote that the
50 percent increase in exit Mach number. from 0.654 to 1.0, has increased the mass flow only
12 percent, from 0.128 to O.145 kg/s.

6.6.2 The operation of Converging-Diverging Nozzles:

Now consider the converging-diverging nozzle sketched in Fig. 6.20a . If the back pres-
sure p,; 1s low enough, there will be supersonic flow in the diverging portion and a va-
riety of shock-wave conditions may occur, which are sketched in Fig. 6.20b . Let the

back pressure be gradually decreased.

1.0

Possible - ] H G F E D C
normal shock ‘ Pp | B
Throat | ( ‘7 T I (c)
|
I Possible _iit Dcsign I A
. lexiet Mo .
Po P I [](, L,:ISH:"L.C):]:L?, max P]LS%U[L |
| g ) ratio |
| } |
| | | )
_ | Adverse | \ | > ﬁ
(a) ! pressure . _ 0 2 1.0 P
10 . I eradient | . P_ﬂ
(b) \'\\\\ B Fig. 6.20 Operation of a converg-
p* D ing-diverging nozzle: (a) nozzle
N £ geometry with possible flow con-
0 Sonic ! F G c .' C
throat figurations; (b) pressure distribution
P al : H .
7 I Supersonic | I caused by various back pressures;
|
0 (c) mass flow versus back pressure.

For curves A and B in Fig. 6.20b the back pressure is not low enocugh to induce
sonic flow in the throat., and the flow in the nozzle is subsonic throughout. The pres-
sure distribution is computed from subsonic isentropic area-change relations. e.g.. Table
B.1. The exit pressure p,. = p,;. and the jet is subsonic.

For curve C the area ratio A_./A, exactly equals the critical ratio A_/ for a subsonic
Ma, in Table B.1. The throat becomes sonic, and the mass flux reaches a maximum in Fig.
65.20c . The remainder of the nozzle flow is subsonic, including the exit jet. and p. = 2.

Now jump for a moment to curve . Here p, is such that p,/po exactly corresponds
to the critical-area ratio A_/A* for a supersonic Ma_. in Table B.1. The diverging flow
is entirely supersonic. including the jet flow. and p. = p,. This is called the design
pressure ratio of the nozzle and is the back pressure suitable for operating a supersonic
wind tunnel or an efficient rocket exhaust.

Now back up and suppose that p, lies between curves C and A, which is impossi-
ble according to purely isentropic-flow calculations. Then back pressures 2 to F oc-
cur in Fig. 6.20b . The throat remains choked at the sonic value. and we can match p_. =

B

P by placing a normal shock at just the right place in the diverging section to cause a
siubsonic-diffitser flow back to the back-pressure condition. The mass flow remains at
maximum in Fig. 6.20c . At back pressure F the required normal shock stands in the
duct exit. At back pressure < no single normal shock can do the job. and so the flow
compresses outside the exit in a complex series ol oblique shocks until it matches pr,,.
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Finally. at back pressure [f. p, is lower than the design pressure M. but the nozzle is
choked and cannot respond. The exit flow expands in a complex series of supersonic
wave motions until it matches the low back pressure. See. e.g.. Ref. 9, sec. 5.4, for fur-
ther details of these off-design jet-flow configurations.

Note that for p,; less than back pressure C. there is supersonic flow in the nozzle
and the throat can receive no signal from the exit behavior. The flow remains choked,
and the throat has no idea what the exit conditions are.

Note also that the normal shock-patching idea is idealized. Downstream of the shock
the nozzle flow has an adverse pressure gradient, usually leading to wall boundary-
layer separation. Blockage by the greatly thickened separated layer interacts strongly
with the core flow (recall Fig. 4.21 _ part 4 ) andusually induces a series of weak two-
dimensional compression shocks rather than a single one-dimensional normal shock
(see, e.g.. Ref. 14, pp. 292 and 293, for further details).

Example 6.20:

A converging-diverging nozzle (Fig. 6.20a ) has a throat area of 0.002 m? and an exit area
of 0.008 m~>. Air stagnation conditions are pg = 1000 kPa and T3 = 500 K. Compute the exit
pressure and mass flow for (a) design condition and the exit pressure and mass flow it (b) p, =
300 kPa and (c) p, = 900 kPa. Assume kK = 1.4.

Solution
Part (a)
The design condition corresponds to supersonic isentropic flow at the given area ratio AJA, =

0.008/0.002 = 4.0. We can find the design Mach number either by iteration of the area-ratio for-
mula (6.62), using EES, or by the curve fit (6.65d)
Ma, gesign = [216(4.0) — 254(4.0)>71V° = 2.05 (exact = 2.9402)

The accuracy of the curve fit is seen to be satistfactory. The design pressure ratio follows from

Fa- (65D Lo — 1 + 0.2(2.95)717° = 34.1

Pe
_ 1000 kPa _ 54 5 1 py Ans. (a)

or . desi
Pe.dl..slgn 34.1
Since the throat is clearly sonic at design conditions, Eq. { 6.63b) applies

0.6847paA, 0.6847(10° Pa)(0.002 m>)

mdc‘sign - "?}'EI‘I‘NCIX - (RTO)I e - [287(500)]1 = Ans. (“7)
Part (b) = 361 ke/s
For p; = 300 kPa we are definitely far below the subsonic isentropic condition C in Fig.6.20b
but we may even be below condition F with a normal shock in the exit, i.e.. in condition G.
where oblique shocks occur outside the exit plane. If it is condition G, then p. = p. gesign — 29.3
kPa because no shock has yet occurred. To find out., compute condition F by assuming an exit
normal shock with Ma, = 2.95, that is. the design Mach number just upstream of the shock.
From Eq. (6.72) P2 _ % [2.8(2.95)2 — 0.4] — 9.99

71 2.4
or P2 = 9.99p, = 9995, jesign — 293 kPa
Since this is less than the given p, = 300 kPa. there is a normal shock just upstream of the exit
plane (condition £). The exit flow is subsonic and equals the back pressure
Pe = Pp = 300 kPa Ans. (b)

Also T = Filmax — 3.01 kg/s Ans. (b)
The throat is still sonic and choked at its maximum mass low.
Part (c)
Finally. for p, = 900 kPa., which is up near condition C, we compute Ma_,. and p_. for condition
C as a comparison. Again AJ/A, = 4.0 for this condition. with a subsonic Ma_. estimated from

the curve-fitted Eq. (6.65a): o
Ma () ~ ~ 92T 147 ot = 0.14655
a(C) = 1.728(4.0) = 0. (exact = 0. 55)
Then the isentropic exit-pressure ratio for this condition is
‘;1—0 —[1 + 0.2¢0.147)21*5 = 1.0152
1000
or N, = ———= = 985 kPa
. _ Pe ™ T0152 _ N
The given back pressure of 900 kPa is less than this value, corresponding roughly to condition
D in Fig. 6.20b. Thus for this case there is a normal shock just downstream of the throat, and
the throat is choked Pe = pp = 900 kPa M = Hlgax = 3.61 kg/s Ans. (c)
For this large exit-area ratio, the exit pressure would have to be larger than 985 kPa to cause a
subsonic flow in the throat and a mass flow less than maximum.

6.6.3 The Isentropic Flow Tables:
Similar to fig.D-1, the equations E.17, E.20, E.21 and 6.62 of the isentropic flow of
perfect-gas are tabulated below in Table B6.1 (for the case of k=1.4):
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Table B6.1 Isentropic Flow of a Perfect Gas, k = 1.4

Ma P p-"p... T/Ty AlA

0.0 1.0 1.0 1.0 S

0.02 0.9997 09998 (.9900 28.9421
004 0.0089 0.0992 00,9997 144815
006 0,997 5 ooR2 0,9993 06659
008 0.9955 0.096E 09987 T.2616
0.1 0.9930 0.9950 L9980 e
012 0.9900 0.9928 09971 4. H643
014 09864 (0,9903 09961 41824
0 la 0.9823 L9873 0.9949 36727
018 09776 (RN Th] 0.9936 3.2779
0.2 09725 (LORD3 09921 2.9635
022 09668 09762 0.9904 27076
0.24 0.9607 R [ R=E 2.4956
0.26 09541 09670 Q9867 23173
0.28 0.9470 09619 L9846 2. 1656
0.3 0.9395 (0.9564 0.9823 20351
0.32 09315 0,950 09790 1.9219
.34 09231 0.9445 09774 1.8229
0.36 09143 93RO0 09747 1.7T358
038 09052 M9x13 Q9719 1.6587
0.4 (.8956 09243 (L9690 1.5901
042 (.BEST 09170 L0659 1.5289
044 O.8T55 0.9094 09627 1.4740
.46 0.B8650 09016 0.9594 1.4246
.48 0.8541 L8925 L.9559 1.3R01
0.5 08430 LEES2 09524 1.3398
052 Q8317 DETGH 00487 1.3034
.54 08201 0E6TI 0.04409 1.2703
056 O.BOE2 ME5R9 09410 1.2403
.58 07962 08498 L9370 1.2130
0.6 0.7840 .8405 L9328 1.1REZ
062 07716 210 L9286 1.1656
.64 0.7591 ME213 09243 1.1451
0.66 0.7465 OELLS 09199 1.1265
068 0. 7338 08016 09153 1.1097
0.7 07209 .79 & 09107 1.05944
072 0. TOED LT84 0,906 1 1.0806
1.48 0.2804 04032 06954 11629
1.5 0.2724 0.3950 06897 1.17a62
1.52 02646 0.3869 06840 1.1899
1.54 02570 0.3789 06783 1.204 2
1.56 02496 03710 6T 1.2190
1.58 0.2423 0.3633 66T 1.2344
1.6 2353 L3557 6614 1.2502
1.62 0.2284 0.3483 06558 1.2666
1.64 0.2217 0. 3409 O6S02 1.2836
1.66 02151 0.3337 0.6447 1.3010
1.68 0. 2088 0.3266 0.63092 1.2190
1.7 0.2026 03197 0.6337 1.3376
1.72 01966 03129 06283 1.35a7
1.74 0. 1907 0.3062 0.6229 1.3764
1.76 L1850 0.2006 06175 1.29a7
1.78 01794 0.293]1 el2l 1.4175
1.8 O 1740 0.2868 O.60e R 1.4390
1.82 L1688 0. 2806 O.e0ls 1.4610
1.84 01637 0.2745 05963 1.4836
1.86 01587 02686 0.5910 1.5069
1.88 0.1539 0.2627 0.5859 1.5308
1.9 01492 02570 05807 1.5553
1.92 01447 02514 05756 1.5804
1.94 0. 1403 0.2459 05705 16062
1.96 01360 02405 5655 1.6326
1.98 L1318 0.2352 05605 1.6597
2.0 01278 02300 5556 1.6875
2.02 0.1239 0.2250 05506 1.7160
2004 01201 0. 2200 0.5458 1.7451
2,006 o.1164 0.2152 05409 1.7750
2,08 L1128 0.2104 0.5361 1.8056
2.1 0. 1094 0.2058 05313 1.8369
2.12 O 1060 0.2013 0.5266 18690
214 01027 01968 0.5219 19018
216 (RNl 01925 05173 1.9354
2.18 00965 0. 1882 0.5127 1.9698
2.2 0935 1841 05081 20050
2.22 (NI T 0.1 800 05036 20400
2.24 OLOBTE 0176l 04901 20777

Ma Piro Fef ) T/Ty A4
0.74 0.6951 7712 09013 10681
0.76 06821 0.7609 0. 8964 1.0570
078 0L G6e90 7505 08915 1.0471
0.8 06560 0.7400 0.BR6S5 1.03R2
0,82 06430 0.7295 0B8RS 1.0305
.84 06300 ATIED 08763 1.0237
086 06170 QTOE3 08711 10179
.88 06041 06977 0.8659 10129
0.9 0.5913 L6RTO 0. Baiha 10089
092 0.57T8ES 6764 08552 1.0056
0,04 05658 L665E 0. 5498 1.0031
0,96 05532 L6551 08444 1.0014
098 0.5407 L6445 08389 1.0003
1.0 05283 L6339 08333 1.0000
1.02 05160 L6234 0.8278 1.0003
1.04 05039 Ga129 0.8222 10013
106 04919 06024 08165 1.0029
1.08 0. 4800 0.5920 08108 1.0051
1.1 0. 4684 L5R17 08052 1.0079
1.12 04568 05714 0. 7994 10113
1.14 0. 4455 L5612 0.7937 1.0153
1.16 0.4343 L5511 07879 1.0198
1.18 0.4232 0.5411 07822 1.0248
1.2 0.4124 05211 07764 1.0304
1.22 0. 4007 05213 0. 7706 1.0366
1.24 0.29]12 05115 0. 7648 1.0432
1.26 03809 5019 0.7590 1.0504
1.28 03708 04923 07532 1.0581
1.3 03609 L4R20 0.7474 1.0663
1.32 0.2512 04736 0.7416 1.0750
1.34 02417 04644 0. 7358 1.0=42
1.36 0.3323 L4553 0.7 300 1.0940
1.38 0.3232 04463 0.7242 1.1042
1.4 0.3142 04374 0.7184 11149
1.42 03055 Q4287 0.7126 1.1262
1.44 0.2969 04201 0. 7069 1.1379
1.4é 02886 04116 07311 11501
2.56 0.0533 0.1232 0.4328 2.TR91
2.58 0.0517 0.1205 042809 2.8420
2.6 0.0501 0.1179 0.4252 2. 8060
262 0.04 86 01153 04214 za511
264 0.0471 O.1128 04177 30073
266 0.0457 O.1103 04141 3.0647
268 00443 0. 1079 04104 31233
2.7 0.0430 01056 0. 4068 3.1830
272 0.0417 O.1033 04033 32440
2.74 00404 0.1010 0.39958 3.3061
276 0.0392 0.0989 0.3963 3.3695
278 0.0380 0.0967 0.3928 34342
2.8 0.0368 0.0946 0.3894 3.5001
2.82 0.0357 0.0926 0.3860 3.5674
2.84 0.0347 0.0906 0.3827 3.6359
2856 00336 QL0886 0.3794 37058
288 00326 00867 0.3761 37771
2.9 0.0317 0.0849 0.3729 3.8498
2.92 00307 O.0831 0. 3696 39238
2.94 0.0298 00813 0.3665 3.90993
2.96 0.0289 0.0796 0.3633 40763
298 0.0281 00779 0. 3602 4.1547
3.0 0.0272 00762 0.3571 4. 2346
3.02 0.0264 0.0746 0.3541 4. 3160
3.04 0.0256 00730 0.3511 43990
3.06 0.0249 00715 0.3481 4. 4835
3.08 0.0242 0.0700 0.3452 4 5696
Al 0.0234 0.0685 0.3422 46573
3z 0.0228 0.0671 0.3393 4. 7467
a4 0.0221 0.0657 0.3365 4. 8377
ale 0.0215 0.0643 0.3337 49304
ERE) 0.0208 0.0630 033009 5.02458
iz 0.0202 0.0617 0.3281 51210
3.22 00196 0.0604 0.3253 5.2189
324 0.0191 0.0591 0.3226 5.3186
326 0.0185 0.0579 0.3199 54201
328 0.0180 0.0567 0.3173 55234
33 0.0175 Q0555 0.3147 56286
332 0.0170 00544 0.3121 5.T358
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Table B.6.1 (Cornt.) Isentropic Flow of a Perfect Gas., k= 1.4

Ma pipe P o TIT, AlA Ma Plpa P e I'T; A/A
2.26 0.0851] 0.1721 0.4947 21153 134 00165 00533 0.3095 58448
2.28 (L0825 0. 1683 0.4903 21538 3.36 0.0160 0.0522 03065 5.9558
23 0.OR00 0.1646 0.4859 21931 338 0.0156 00511 0. 3044 6.0687
2.32 00775 0. 1609 04816 22333 34 0.0151 0.0501 0.3019 6. 1837
2.34 0.0751 01574 04773 2.2744 342 0.0147 0.0491] 0.2995 6.3007
2.36 0.0728 0.1539 0.4731 23164 344 0.0143 00481 0.2970 64198
2.38 0.0706 0.1505 04688 2.3593 ER Y 0.0139 0.0471 0.2946 6.5400
24 0.0684 0.1472 0.4647 24031 348 0.0135 0.0462 0.2922 6.6642
242 0.0663 0.1439 0.4606 2.4479 A5 0.0131 00452 0.2899 6. 7896
244 0.0643 0.1408 0.4565 2.4936 352 0.0127 0.0443 0.2875 6.9172
246 00623 0.1377 0.4524 2.5403 354 0.0124 0.0434 0.2852 T.0471
248 00604 0.1346 0.4484 25880 156 0.0120 00426 0.2829 7.1791
2.5 0.0585 0.1317 O.d444 26367 3158 00017 0.0417 0. 2806 T.3135
2.52 0.0567 0.1288 0.4405 26865 A6 00114 0.0409 0.2784 T.4501
2.54 00550 0.1 260 0.4366 27372 362 00111 0.0401 0.2762 7.589]
.64 0.0108 0.0393 0.2740 T.7305 434 00042 00202 02098 14,4456
.66 00105 0.0385 0.2718 78742 4,36 0.0041 00198 02083 14.6965
3.68 00102 00378 0.2697 20204 4,38 00040 00194 02067 149513
37 00099 0.0370 0.2675 21691 4.4 00039 0.0191 0.2053 15.2099
372 00096 0.0363 0.2654 23202 442 00038 00187 02038 15.4724
3.74 00094 0.0356 0.2633 24739 444 00037 00184 02023 15.7388
iTe 0.0091 0.0349 0.2613 H.6302 446 00036 00181 0.2009 160002
378 00089 0.0342 0.2592 8.7801 448 00035 00178 01994 16,2837
38 00086 0.0335 0.2572 8.9506 4.5 00035 00174 01980 16.5622
382 0.0084 0.0329 0.2552 9.1148 4,52 00034 00171 0. 1966 16,8449
3.54 00082 0.0323 0.2532 92817 4.54 00033 00188 01952 171317
3.86 00080 0.0316 0.2513 94513 4.56 0.0032 00185 01938 17.4228
3.88 00077 0.0310 0.2493 9.6237 4.58  0.003] 00163 01925 17.7181
39 00075 0.0304 0.2474 9.7990 4.6 0.0031 nolen 001911 180178
392 0.0073 0.0299 0.2455 9.9771 462 00030 00157 01898 18,3218
304 0.0071 0.0293 0.2436 101581 464 00029 00154 01885 186303
396 0.0069 0.0287 0.2418 10,3420 4.66 00028 00152 01872 18.9433
398 00068 0.0282 0.2399 10.5289 4.68 00028 00149 01859 19.2608
4.0 00066 0.0277 0.238]1 1L T188 4.7 00027 00146 O.1846 19.5828
4.02 00064 0.0271 0.2363 19117 472 00026 00144 01833 19.9095
4.04 0.0062 0.0266 0.2345 1.1a77 474 00026 00141 01820 20,2409
4.06 00061 0.0261 0.2327 11.3068 476 00025 00139 L1808 205770
4.08 0.0059 0.0256 0.2310 11.5091] 478 00025 00137 01795 209179
4.1 0.0058 0.0252 0.2293 117147 4.8 00024 00134 017832 21.2637
4.12 0.0056 0.0247 0.2275 11.9234 4.82 00023 00132 01771 216144
4.14 00055 0.0242 0.2258 12,1354 484 00023 00130 OLIT59 219700
4.16 00053 00238 0.2242 123508 486 00022 00128 01747 22,3306
4.18 00052 0.0234 0.2225 12.5695 488 00022 00125 (L1735 22,6963
4.2 00051 0.0229 0.2208 12,7916 4.9 0.0021 00123 01724 230671
4,22 00049 0.0225 0.2192 150172 4,92 0.002] 00121 01712 23,4431
4.24 0.0048 0.0221 0.217a 13.2463 494 00020 00119 01700 238243
4.26 0.0047 0.0217 0.2160 134789 4956 00020 00117 01689 242109
4.28 0.0046 0.0213 0.2144 13.7151 498 00019 00115 01678 246027
4.3 0.0044 0.0209 0.2129 13.95449 5.0 00019 00113 01667 250000

4.32 0.0043 0.0205 0.2113 14,1984

6.6.4 The Normal Shock Wave Tables:

Similar to fig.6.17, all the various equations of the change of the flow properties
across the Normal Shock Wave are tabulated below in Table B6.2 (for the case of a
perfect gas with k=1.4).
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Table B6.2 Normal-Shock Relations for a Perfect Gas, £ = 1.4

Ma, Ma, > Paip, Vi/'Va = padp,y T, PozPoa 15/A
1.0 1.0000 1.0000 10000 1.0000 1.0000 1.0000
1.02 0.9805 1.0471 1.0334 1.0132 1.0000 1.0000
1.04 0.9620 1.0952 1.0671 1.0263 0.9999 1.0001
1.06 0.9444 1.1442 1.1009 1.0393 0.9998 1.0002
1.08 0.9277 1.1941 1.1349 1.0522 0.9994 1.0006
1.1 0.9118 1.2450 1.1691 1.0649 0.9989 1.0011
1.12 0.8966 1.2968 1.2034 1.0776 0.9982 1.0018
1.14 0.8820 1.3495 1.2378 1.0903 0.9973 1.0027
1.16 0.8682 1.4032 1.2723 1.1029 0.9961 1.0040
1.18 0.8549 1.4578 1.3069 1.1154 0.9946 1.0055
1.2 0.8422 1.5133 1.3416 1.1280 0.9928 1.0073
1.22 0.8300 1.5698 1.3764 1.1405 0.9907 1.0094
1.24 0.8183 1.6272 1.4112 1.1531 0.9884 1.0118
1.26 0.8071 1.6855 1. 4460 1.1657 09857 1.0145
1.28 0.7963 1.7448 1.4808 1.1783 0.9827 1.0176
1.3 0.7860 1.8050 1.5157 1.1909 0.9794 1.0211
1.32 0. 7760 1.8661 1.5505 1.2035 09758 1.0249
1.34 0.7664 1.9282 1.5854 1.2162 0.9718 1.0290
1.36 0.7572 1.9912 1.6202 1.2290 0.9676 1.0335
1.38 0. 7483 2.0551 1.6549 1.2418 09630 1.0384
1.4 0.7397 2.1200 1.6897 1.2547 0.9582 1.0436
1.42 0.7314 2.1858 1.7243 1.2676 0.9531 1.0492
1.4 0.7235 2.2525 1.7589 1.2807 09476 1.0552
1.46 0.7157 2.3202 1.7934 1.2938 0.9420 1.0616
1.48 0.7083 2.3888 1.8278 1.3069 0.9360 1.0684
1.5 07011 24583 1.8621 1.3202 09208 1.0755
1.52 0.6941 2.5288 1.8963 1.3336 0.9233 1.0830
1.54 0.6874 2.6002 1.9303 1.3470 0.9166 1.0910
1.56 0.6809 2.6725 1.9643 1.3606 0.9097 1.0093
1.58 0.6746 2.7458 1.9981 1.3742 0.9026 1.1080
1.6 0.6684 2.8200 2.0317 1.3880 0.8952 1.1171
1.62 0.6625 2.8951 2.0653 14018 0.8877 1.1266
1.64 0.6568 29712 2.0986 1.4158 0.8799 1.1365
1.66 0.6512 3.0482 2.1318 1.4299 0.8720 1.1468
1.68 0.6458 31261 2.1649 1.4440 0.8639 1.1575
1.7 0.6405 3.2050 2.1977 1.4583 0.8557 1.1686
1.72 0.6355 3.2848 2.2304 1.4727 0.8474 1.1801
1.74 0.6305 3.3655 2.2629 14873 0.8389 1.1921
1.76 0.6257 3.4472 2.2952 1.5019 0.8302 1.2045
1.78 0.6210 3.5298 2.3273 1.5167 08215 1.2173
1.8 0.6165 3.6133 2.3592 1.5316 0.8127 1.2305
1.82 0.6121 3.6978 2.3909 1.5466 0.8038 1.2441
1.84 0.6078 37832 24224 1.5617 07948 1.2582
1.86 0.6036 3.8695 2.4537 1.5770 0.7857 1.2728
1.88 0.5996 3.9568 2.4848 1.5924 0.7765 1.2877
1.9 0.5956 4.0450 2.5157 1.6079 0.7674 1.3032
1.92 0.5918 4.1341 2.5463 1.6236 0.7581 1.3191
1.94 0.5880 4.2242 2.5767 1.6394 0.7488 1.3354
1.96 0.5844 4.3152 2.6069 1.6553 0.7395 1.3522
1.98 0.5808 4.4071 2.6369 1.6713 0.7302 1.3695
2.0 0.5774 4.5000 2.6667 1.6875 0.7200 1.3872
2.02 0.5740 4.5938 2.6962 1.7038 0.7115 1.4054
2.04 0.5707 4.6885 2.7255 1.7203 0.7022 1.4241
2.06 0.5675 4.7842 2.7545 1.7369 0.6928 1.4433
2.08 0.5643 4.8808 2.7833 1.7536 0.6835 1.4630
2.1 0.5613 4.9783 2.8119 1.7705 0.6742 1.4832
2.12 0.5583 5.0768 2.8402 1.7875 0.6649 1.5039
2.14 0.5554 5.1762 2.8683 1.8046 0.6557 1.5252
2.16 0.5525 5.2765 2.8962 1.8219 0.6464 1.5469
2.18 0.5498 5.3778 2.9238 1.8393 0.6373 1.5692
2.2 0.5471 5.4800 2.9512 1.8569 0.6281 1.5920
2.22 0.5444 5.5831 2.9784 1.8746 0.6191 1.6154
2.24 0.5418 5.6872 3.0053 1.8924 0.6100 1.6393
2.26 0.5393 5.7922 3.0319 1.9104 0.6011 1.6638
2.28 0.5368 5.8981 3.0584 1.9285 0.5921 1.6888
2.3 0.5344 6.0050 3.0845 1.9468 0.5833 1.7144
2.32 0.5321 6.1128 3.1105 1.9652 0.5745 1.7406
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Table BB .2 (Conr.) Mormal-Shock Relations for a Perfect Gas., & = 1.4

Mz, Ny, P2 Vil'Ve = ooy r./T, PoziPoy 1247
2.34 05297 ©.2215 31362 1.9838 0. 5658 1. 7674
2.36 05275 6.3312 31617 20025 05572 1. 7948
2.38 5253 G441 8 3. 1869 20213 054806 1.8228
2.4 5231 6.5533 32119 20403 05401 1.8514
2.42 05210 G.60658 322367 20595 05317 1.8806
2.44 5189 6. 7792 32612 20788 05234 1.9105
246 5169 6. 8935 32855 ZO09E2 O.5152 19410
2.45 O.5149 TOOE8 23095 21178 05071 1.9721
2.5 O.5130 T. 1250 33333 21375 O 4990 20039
2.52 Oo.5111 T.2421 3. 3569 21574 04911 20364
2.54 05092 T. 2002 33803 21774 04832 20690
256 O.5074 T 4Tz 3. 4034 21976 04754 2. 1035
2.58 O.5056 T.5991 2. 4263 22179 O 4a7T7 21381
2.6 O.5039 T. 7200 34490 22383 O 4601 21733
262 05022 T 8418 324714 2. 2590 04526 22093
264 05005 T.O645 3. 4937 22797 04452 2.2461
266 04988 B.0O882 35157 230006 O 4379 2. 2835
265 4972 B.2128 32.5374 23217 04307 23218
2.7 O.49506 B.3383 35590 2.3429 042306 2. 3608
272 O 4941 B 4648 35803 23642 04166 2. 4005
2.74 0. 4926 B.5922 26015 23858 O 4097 24411
276 O.4911 B.7205 36224 2. 4074 04028 2. 4825
278 O 4B96 B.B49E 36431 24292 03961 25246
2.8 04882 B.O800 26636 24512 O.3R9S 2.5676
2.82 0. 4868 21111 36838 2. 4T33 O 3829 26115
2.854 4854 92432 2. TO39 2. 4955 D.3765 26561
2.86 04840 9.3762 3. T238 25179 03701 27017
288 04827 95101 3. T434 25405 O.3639 2. 7481
2.9 O 4214 Q6450 2. T7629 2.5632 03577 27954
2.92 O 4801 9.TR08 3. 7821 258061 03517 2.8430
294 O 47TER D91 7Ts 3. 8012 26091 03457 28927
296 04776 1O O552 2 B200 26322 0. 3398 29427
298 0. 4764 LD 1938 3.8387 2.6555 0. 3340 29937
3.0 4752 LO.3333 3.8571 26790 O 3283 304506
3.02 O 4740 LD 4TS 38754 27026 03227 30985
3.04 04729 1O.elS52 3.8935 2. 7264 03172 3.1523
3.06 LERE S ) LD 7TSTS 3.9114 27503 O3118 3.2072
3.08 0. 4706 1O SO0 s 3.9291 27744 03065 3. 2630
3.1 O 4695 11 0450 3.94006 27986 03012 33199
3.1z 4685 11.1901 3.9639 2.8230 0. 2960 33778
3.14 O 4a7T4 11.3362 3.9811 2.8475 02910 343638
316 O 460l 11.4832 39981 28722 O.2R60 3.4969
3.18 O 4654 116311 4014 28970 02811 35580
3.2 4643 11.7800 40315 29220 02762 36202
3.22 LERE Tate 3 11.9298 40479 29471 02715 36835
3.2« O 4624 12 0805 4042 29724 O 2668 3. T480
3.26 O 4al14 122322 4. 0803 29979 02622 38136
3.28 04605 12. 3845 40963 3.0234 02577 3.8803
3.3 4596 12.5383 41120 3.0492 02533 39483
3.32 4587 1269258 4. 1276 3.0751 O 2489 40174
32.34 4578 12 8482 4. 1431 2. 1011 024496 40877
3.36 O .4569 L3.0045 4. 1583 31273 0. 2403 4.1593
3.38 .45 13.1618 4. 1734 31537 02363 4.2321
3.4 4552 13 3200 4. 1884 31802 02322 4. 3062
342 04544 13,4791 4. 2032 3.2009 0. 2282 4.3815
344 0.4535 13,6302 4.2178 3.2337 0.2243 4.4581
A 46 04527 13 8002 4 2323 3. 2607 0. 2205 4. 5361
348 O 4519 1329621 4. 2467 3.2878 0.2167 46154
A5 04512 14,1250 4. 2609 3.3151 0.2129 46960
a.s2 0.4504 142888 4.2749 3.3425 0.2093 4.7780
aA.54 04496 14,4535 4. 2HRES 3.3701 0. 2057 4. 8614
A.506 04489 14. 6192 4. 30206 3.3978 0. 2022 49461
3.58 0.4481 147858 4.3162 3.4257 0.1987 5.0324
a6 0.4474 14.9533 4.3296 3.4537 0.1953 5.1200
362 04467 151218 4. 3420 34819 0. 1920 5.2091
3.o4 O 4460 15.2912 4.3561 3.5103 01887 5.2997
3.66 0.4453 154615 4.3692 3.5388 0.1855 5.3918
368 O 4446 15 6328 4. 3821 3 5674 O.1823 5. 4854
a7 04439 1 5. 8050 4. 3949 3.59062 0. 1792 5.5800
3,72 0. 4433 1597581 G 4TS 3.6252 0.1761 5.6773
3,74 0.4426 16.1522 4.4200 3.6543 0.1731 5.7756
A 7o 04420 16,3272 4 4324 3.6836 0. 1702 5.8755
A.T8 O 4414 16.5031 G447 3. 7130 0. 1673 5.9770
3.8 0.4407 16.6800 4.4568 3.7426 0.1645 6.0801
382 04401 16 8578 4 4688 3. TT23 0. 1617 e 1849
2,84 04395 17.0365 4. 4807 3.8022 0.158%9 0. 2915
A B6 O.4389 17.2162 G 4924 3.8323 0.1563 5. 3997
3.88 0.4383 17.3968 4.5041 3.8625 0.1536 6.5096
£~ 04377 17.5783 4. 4156 3.B928 01510 B.6e213
3.92 04372 1 7. 7o0s 4. 5270 3. 9233 0. 1485 6. 7348
3.94 0.4366 17.9442 4.5383 3.9540 0.1460 6.8501
396 04360 1851285 4. 5494 3 O848 0.1435 69672
2,98 04355 15.3138 4.5605 4.0158 0. 1411 F.0861
4.0 04350 155000 4.5714 4.0469 0.1388 T . 2069
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6.7 Flow in a Constant Area Duct (dA=0):

6.7.1 Isentropic Flow in a Constant Area Duct:
For steady, one-dimensional, isentropic flow of ideal gas through a constant-area duct (dA=0
in Fig.6.21), Eq. E.11 suggests that dV = 0 or that flow velocity remains constant. With the
energy equation ( Part (1) ) we can conclude that since flow velocity is constant, the fluid en-

Constant area duct

! Fluid flow s

! m FIGURE .21 Constant-area duct
s flow.

thalpy and thus temperature are also constant for this flow. This information and Eqs. 6.29
and E.7 indicate that the Mach number is constant for this flow also. This being the case,
Eqgs. E.20 and E.21 tell us that fluid pressure and density also remain unchanged. Thus, we
see that a steady, one-dimensional, isentropic flow of an ideal gas does not involve varying
velocity or fluid properties unless the flow cross-section area thll’lée"s.

In Section 6.7.2 we discuss nonisentropic, steady, one-dimensional flows of an ideal
gas through a constant-area duct and also a normal shock wave. We learn that friction and/or
heat transfer can also accelerate or decelerate a fluid.

6.7.2 Non- Isentropic Flow in a Constant Area Duct:

Actual fluid flows are generally nonisentropic. An important example of nonisentropic flo
involves adiabatic (no heat transfer) flow with friction. Flows with heat transfer (dl"lh"l[i-.:

t ows) are generally nonisentropic also. I'1 l'hl& se tlon we Co nwlder the adml‘nt flow of an
R 1 -

(=4

_ A referred
Fanno flow. We also analyze the d1 batic flow of an ideal ga

without friction (Ravieigh flow). The concepts associated with
to turther discussion of normal shock waves.

"['] 77
J'

o
o

a

anno and K'I} 161(71'1 fiows

Section 6.4 showed the elfect of area change on a compressible flow while neglecting
friction and heat transfer. We could now add friction and heat transfer to the area -;,11”11'156
and consider coupled effects, which is done in advanced texts [for example. 8, chap.
8]. Instead., as an elementary introduction, this section treats only the effect of friction,
neglecting area change and heat transfer. The basic assumptions are

. Steady one-dimensional adiabatic flow
Perfect gas with constant specific heats

.

Constant-area straight duct

.

. Negligible shaft-work and potential-energy changes

WLy =

- Wall shear stress correlated by a Darcy friction factor

In effect. we are studyving a Moody-type pipe-Iriction problem but with large changes
in kinetic energy. enthalpy. and pressure in the flow.

Consider the elemental duct control volume of area A and length «x in Fig. 622 .
The area is constant, but other flow properties (p, o. T, 7, V) may vary with x. Appli-

cation of the three conservation laws to this control volume gives three differential
equations

Continuity: pV = g = ' = const

or “p —+ dV_ O (6.77a)
fol \%

X momentums: P?A — (p + dp)A — 7.7 dx = ma(V + dV — V)

or dp + % + pV dV = 0O (6.77b)

Energy: fr + évz = ho — cpTo — cp, T+ éVz

or Cp AT+ V dV — O (B6.77c)

Since these three equs 2. 2. 7.V, and ,—we need two ad-

ditional relations. One is the lﬁelte-;,t gas 1'1\‘\.'
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— - T T T T T T T T
|
v | l—- V+dV
P I I P+ dp
D —— aaa
=4 I I P +dp
Fig. 6.22 Elemental control volume
for flow in a constant-area duct T \ Area A / T'+dT
with friction. h Li 777D£12:::::{)7777J B4 dh
| dx |
X X+ dx
dp Pe) dT
V= PRI or 2 _ <P (6.78)
P fa ra

To eliminate T, as an unknown. it is assumed that wall shear is correlated by a local
Darcy friction factor f

T = w fPVZ = & fkp Ma® (6.79)

where the last form follows from the perfect-gas speed-of-sound expression a” = kp/p.
In practice. f can be related to the local Reyvnolds number and wall roughness from.
say. the Moody chart., Fig. 2.16 .

Equations (6.77) and (6.78) are first-order differential equations and can be inte-
grated. by using Iriction-factor data, from any inlet section 1. where p,. T,. V4. etc..

are known. to determine pi(x). T(x). etc.. along the duct. It is practically impossible to

eliminate all but one wvariable to give. say. a single differential equation for p(x). but
all equations can be written in terms ol the Mach number Ma(x) and the friction fac-
tor. by using the definition of Mach number

V2 = Ma” ART
2 dVv 2 d Ma d7T

or e ( 6.80)

6.7.3 Adiabatic Flow with Friction in a Constant Area Duct (Fanno-Line Flow):

Consider the steady, one-dimensional, and adiabatic flow of an ideal gas through the con-

stant area duct shown in Fig. 6.23 . This is Fanno flow. For the control volume indicated,
the energy equation leads to

O(negligibly  O(flow is adiabatic)
small for O(flow is steady
gas flow) throughout)

. b - V% - “/I2 = .!
m }12 o h] + - + g(z"’ o Z]) = )pet + Wshaf{
or LV
h + —- = hy = constant (6.81 )

Insulated wall\

Section (1) Section (2)

I

. . I . .
Adiabatic flow = ~ B FIGURE 6.23 Adiabatic
Control volume I

el T o constant-area flow.

[———-

where /1y is the stagnation enthalpy. For an ideal gas we gather that

h — hy = c,(T — Tp) ( 6.82)
so that by combining Egs. 6.81 and 6.82 we get

a3

T + = T, = constant
2 ]
or =Lp
V)2
T + (pi)“ = T, = constant ( 6.83)
2c,p”
y
By substituting the ideal gas equation of state into Eq. 6.83 we obtain
(pV)y 1> . _ |
T+ —— = T, = constant ( 6.84)
2¢,(p°/R7)

From the continuity equation (Eq. E.l1 ) we can conclude that the density-velocity
product, pV, is constant for a given Fanno flow since the area, A, is constant. Also, for a par-
ticular Fanno flow, the stagnation temperature, 7Ty, is fixed. Thus, Eq. .84 allows us to cal-
culate values of fluid temperature corresponding to values of lluid pressure in the Fanno flow.
We postpone our discussion ol how pressure is determined until later.
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As with earlier discussions in this chapter, it is helpful to describe Fanno flow with a
temperature-entropy diagram. From the second T ds relationship., an expression for entropy
variation was already derived (Eq. 6.16 ). If the temperature, 7y, pressure, p, and entropy,
s1. at the entrance of the Fanno flow duct are considered as reference values, then Eq. 6.16

yvields

T 2 .
s — s, =c¢c,In—— — R lnL ( 6.85)
T, P
Equations 6.84 and 6.85 taken together result in a curve with 7 — s coordinates as is

illustrated in Fig. 6.24 . This curve involves a given gas (¢, and R) with fixed values of stag-
nation temperature, density-velocity product, and inlet temperature, pressure, and entropy.
Curves like the one sketched in Fig. 6.24 are called Fanno lines.

_— Fanno line

Constanmnt entropy line
I

mFIGURE 6.24
The T—s diagram 1 i
for Fanno flow. I

Example 6.21: N

Air (kK = 1.4) enters [section (1)] an insulated, constant cross-section area duct with the fol-
lowing properties: T, = 518.67 "R , T, = 514.55 °R . P = 14.3 psia

For Fanno flow, determine corresponding values of fluid temperature and entropy change for
various values of downstream pressures and plot the related Fanno line.

Solution:
To plot the Fanno line we can use Eq. 6.84

(pV)’T?
T+ 372/}{,2 = T, = constant 1)
and Eq. 6.85 “rP T P
s — s =¢,In— — RlIn— 2)
T P

to construct a table of values of temperature and entropy change corresponding to different
levels of pressure in the Fanno flow.

We need values of the ideal gas constant and the specific heat at constant pressure to
use in Eqgs. 1 and 2. From Table for air R = 1716 (ft - 1b)/(slug - °R) and ¢ s

B |
1716 (ft - 1b)/(slug - “R) (1.4

or cp = [ ( 1)4( ij )]d4) = 6006 (ft - Ib)/(slug - “R) 3)

ST P —_
From equation of state and speed of sound pV = RT Ma\ RTk
and pV is constant for this flow from continuity and constant A

>

oV = p,V, = 2L Ma,NVRT K (4)

Bu L1 SIASSOF e e
T, 518.67 °R O

and from Eq. E.17 Ma; = N, ( 099203 )/O" =

Thus with Eq. 4
(14.3 psia)(144 in.2/ft2)0.2 V (1.4)[1716(ft - 1b)/(slug - °R)](514.55 °R)[ I (slug - ft)/(1b - s?)]
N [1716(ft - Ib)/(slug - °R)](514.55 °R)

or pV = 0.519 slug/(fi - s)
For p = 7 psia we have from Eq. 1

0.519 slug/(ft* - s)1*7T?2
o [ - . = 518.67 °R

(7 psia)?(144 in.2/1?)?
[1716 (ft - 1b)/(slug - °R)]?

2[6006 (ft - 1b)/(slug - °R)]

or 6.5 X 107°T? + T — 518.67 = 0
Thus. I = 5023 °R (Ans)

From Eq. 2. we obtain s — s; = [6006 (ft - Ib)/(slug - “R)] ln(

1716 (ft - 1b)/(sl "R} 1 7 psia
_ [1716 (fe-1b)/(stug - "R)T In{ =)
or s — s, = 1081 (ft - Ib)/(slug - °R) (Ans)
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Proceeding as outlined above, we construct the table of values shown below and graphed
as the Fanno line in Fig. E 6.21 . The maximum entropy difference occurs at a pressure of
2.62 psia and a temperature of 432.1 °R.

550

r T 5 — 5,

500 e (psia) (°R) [(ft - Ib)/(slug - “R)]
o= 450 7 502.3 1081
=~ 400 6 496.8 1280
5 488 .3 1489
350 4 474.0 1693
300 3 447.7 1844
1000 1200 1400 (ft.|b)1600 1800 262 4321 1863
¥ lugeR) 2 394.7 1783
m FIGURE E»6.21 1.8 378.1 1706
1.5 347.6 1513
6.7.4 General Behavior of Fanno Flow: 1.4 335.6 1421

By eliminating variables between Eqgs. (6.77) to (6.80).we obtain the working relations

cdp > 1 + (k— 1) Ma”® _ dx
= — - - ()
P A Ma 2(1 — Ma> Y D
dp kMa*ﬁ fd'x:iﬂ (5)
P 21 — MaH ! D v
dpo _ dpg _ _L k Mazf dx (c) Property Subsonic Supersonic
Po Po 2 D b Decreases Increases
4 fe] Decreases Increases
dT _ k(k — 1) Ma dx () 1% Increases Decreases
T 2(1 — Ma2) S D Po- Lo Decreases Decreases
1 . > T Decreases Increases
d Ma” > I + 2(k ) Ma dx (e Ma Increases Decreases
Ma2 = k Ma 1 — Ma~ I D Entropy Increases Increases
All these except dpo/po have the factor 1 — Ma” in the denominator, so that, like the

areca-change formulas in Fig.6.10, subsonic and supersonic flow have opposite effects:

We have added to the list above that entropy must increase along the duct for either
subsonic or supersonic flow as a consequence of the second law for adiabatic flow. For
the same reason, stagnation pressure and density must both decrease.

The key parameter above is the Mach number. Whether the inlet flow is subsonic
or supersonic. the duct Mach number always tends downstream toward Ma = 1 be-
cause this is the path along which the entropy increases. If the pressure and density are
computed from Eqgs. (a) and (b) and the entropy from Eq. (.70 ). the result can
be plotted in Fig. 6. A wversus Mach number for & = 1.4. The maximum entropy occurs
at Ma = 1. so that the second law requires that the duct-flow properties continually ap-
proach the sonic point. Since pg and pg continually decrease along the duct due to the
frictional (nonisentropic) losses, they are not useful as reference properties. Instead, the
sonic properties p*, p*, T=, p§, and p§ are the appropriate constant reference quanti-
ties in adiabatic duct flow. The theory then computes the ratios p/p*. T/T%, etc.. as a
function of local Mach number and the integrated friction effect.

4.0
Supcrsonic
Fig. 6.A Adiabatic frictional flow 30— el fow
in a constant-area duct always ap- 1
proaches Ma = | to satisfy the sec- _
ond law of thermodynamics. The E Lo
computed curve is independent of =
. C et Cy - M axirmum
the value of the friction factor. et
at Ma = 1.0 \
1.0y
Subsonic
duct flow
[ _—— | | | |
(8] 0.2 o4 L8 = 0.8 1.0 1.2
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We can learn more about Fanno lines by further analyzing the equations that describe
the physics involved. For example, the second T ds equation (Eq. 6.12 ) is

Tds = dh — — ( 6.12)

For an ideal gas dh = c, dT and p = pRT
dp dp dir

or ? — + = ( 6.806)
Thus, consolidating these two relations and Eqs. 6.12 and 6.86 we obtain
o dp dr
T ds = Cp dl” — RT ? -+ 7 (6.87 )

Also, from the continuity equation (Eq. E.1), we get for Fanno flow pV = constant or

r dV

w _ 4 ( 6.88)

o Vv

Substituting Eq. 6.88 into Eq. 6.87 yields

dav 1T
Tds = c, dT—RT( + < )
or d? o C;J R C;V _) ( 6 89)
dT V dT )
By differentiating the energy equation ( 6.83 ) obtained earlier, we obtain
av —i ( 6.90)
dT )
which, when substituted into Eq. 6.89 | 1esults 1n
ds p 1
— = — 6.91
dT V ) ( )
By differentiating the energy equation ( 6.83 ) obtained earlier, we obtain
&v_ = ( 6.90)
dT 1% :
which, when substituted into Eq. 6.89 . results in
ds Cp (-"p 1 )
— = — R > + = .
dT T (V“ T (691)

The Fanno line in Fig. 6.24 goes through a state (labeled state a) for which ds/dT = 0. At
this state, we can conclude from Eqs. 6.8 and ©6.91 that

V, = VRT Kk ( 6.92)
However, by comparing Eqs. 6.92 and 6.29 we see that the Mach number at state «a is 1.
Since the stagnation temperature is the same for all points on the Fanno line [see energy
equation (Eq. 6.83 )]. the temperature at point a is the critical temperature, T*, for the en-
tire Fanno line. Thus, Fanno flow corresponding to the portion of the Fanno line above the
critical temperature must be subsonic, and Fanno flow on the line below 7% must be

supersonic.

The second law of thermodynamics states that, based on all past experience, entropy
can only remain constant or increase for adiabatic flows. For Fanno flow to be consistent
with the second law of thermodynamics, flow can only proceed along the Fanno line toward
state a, the critical state. The critical state may or may not be reached by the flow. If it is,
the Fanno flow is choked. Some examples of Fanno flow behavior are summarized in

T g T oo T
A Y
A"
N
A"
\
5 1
\ i
‘ a da
! I
: !
I 2
7
J
’ 1
'f
(a) * (b) g (€) y
B FIGURE 625 (a) Subsonic Fanno flow. (b) Supersonic Fanno flow. (¢) Normal

shock occurrence in Fanno flow.
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Fig. 6.25 . A case involving subsonic Fanno flow that is accelerated by friction to a higher
Mach number without choking is illustrated in Fig. 6.25a . A supersonic flow that is decel-
erated by friction to a lower Mach number without choking is illustrated in Fig. 6.25b . In
Fig. ©.25¢ . an abrupt change from supersonic to subsonic flow in the Fanno duct is repre-
sented. This sudden deceleration occurs across a standing normal shock wave that is described
in more detail in Section ©6.5.

The qualitative aspects of Fanno flow that we have already discussed are summarized
in Table 6.A and Fig. 6.26 . To quantity Fanno flow behavior we need to combine a rela-
tionship that represents the linear momentum law with the set of equations already derived
in this chapter.

If the lincar momentum equation ( part (2) ) is applied to the Fanno flow through the
control volume sketched in Fig. 6.27a . the result is

1AL — p2A; — R, = m(V, — V)

where R, is the frictional force exerted by the inner pipe wall on the fluid. Since A; = A, = A
and m = pAV = constant, we obtain R
pi—p2— = pUV2 = V) ( 6.93)
B TABLE 6.A T
Summary of Fanno Flow Behavior
|
——————————— T,
Flow °
Tl _________
Parameter Subsonic Flow Supersonic Flow
Stagnation temperature Constant constant | Ya T+
Ma Increases Decreases
(maximum is 1) (minimum is 1)
Friction Accelerates flow Decelerates flow 11— — ——————
Pressure Decreases Increases S
Temperature Decreases Increases m FIGURE 6.26 Fanno flow.

The differential form of Eq. 6.93 ., which is wvalid for Fanno flow through the semi-
infinitesimal control volume shown in Fig. 6.27b | is

T, 7D dx
—dp — —a = pV dVv (6.94)
The wall shear stress, 7., is related to the wall [riction factor, f, by Eq. 2.54, part 2, as
. ( 6.95)
V2 6.
By substituting Eq. 6.95 and A = 7D?/4 into Eq. 6.94 , we obtain
V2 dx
—dp — fp 5 = pVvVdVv ( 6.96)
- d, V? dx d(V?
or dap | fpVide  pdVY) ( 6.97)

P rp 2 D P 2
Combining the ideal gas equation of state (Eq. 6.1 ), the ideal gas speed-of-sound equation
(Eq. 6.29 ). and the Mach number definition (Eq. E.7 ) with Eq. 6.97 leads to

- a® d(V?
TR e A Maz dVT) ( 6.98)
P 2 D 2 2
Since V = Mac = Ma VRTk. then V2 = MaZRTk
Section (1) Section (2) Semi-infinitesimal control volume
e e <
Control volume | |
Flow == plAl_)"'ll :*(- PoA2  Flow === D PA—”: I*“—(P +0p)A
R || 7, 7D ox
(a) (b) —] l—ox
B FIGURE 6.27 (a) Finite control volume. (b) Semi-infinitesimal control volume.
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or

d(V?) _ d(Ma?)

The application of the energy equation ( part (2) ) to Fanno flow gave Eq. 6.83

V2 Ma? T

is differentiated and divided by temperature, the result is

Substituting Eqs. 6.8 |, 6.29, and

dT

T
which can be combined with Eq.

dT d(v?)
- — =
T 2¢,T

E.7 into Eq. 6.100

dT

yvields

k— 1 L d(V?
kol e L)

Aa

2 vz

5.99 to form
d(Vv?) d(Ma?)/Ma’

V2

1 + [(k — 1)/2]Ma?
We can merge Eqs. 686 , 6.88 ., and 6.99 to get

=0

dp 1 d(V?) d(Ma?)
P2 v? Ma?
Consolidating Egs. 6.103 and ©6.98 leads to
| L, d(V? d(Ma* k 5 dx
— (1 + kMa?) (VD) _ dMa) | K X
2 Ve Ma~ 2 D
Finally, incorporating Eq. ¢.102 into Eq. 6.104 yields
(1 — Ma?) d(Ma?) B fd'x
{1 + [(k — 1)/2]Ma’*}kMa* ~ D

( 6.99)

. If Eq. 6.83

( 6.100)

(6.101)

(6.102)

(6.103)

(6.104)

(6.105)

Equation 6.105 can be integrated from one section to another in a Fanno flow duct. We elect
to use the critical (%) state as a reference and to integrate Eq. 6.105 from an upstream state

to the critical state. Thus

Ma* =1 (1 — Ma?) d(Ma?)

JMa {l + I:(k - l)/2:| ]:Vlﬂz}kl\’134

JH

-

dx

f;

(6.106)

where € is length measured from an arbitrary but fixed upstream reference location to a sec-

tion in the Fanno flow. For an approximate solution, we can assume that the friction factor
is constant at an average value over the integration length, €* — €. We also consider a con-
stant value of k. Thus, we obtain from Eq. 6.106

1 (1 — Ma? k+ 1 k + 1)/2]Ma? € — €
1( / ) m{ [( /2] ,,} _ I ) (6.107)
k  Ma? 2k I+ [(k — 1)/2]Ma? D
For a given gas, values of f(€* — €)/D can be tabulated as a function of Mach number for
Fanno flow. For example, values of f(£* — €)/D for air (k = 1.4) Fanno flow are graphed

as a function of Mach number in Fig. D.2 in Appendix D. Note that the critical state does
not have to exist in the actual Fanno flow being considered, since for any two sections in a

given Fanno flow

S =€) e =€) f

D

D D

_ ({rl -

€2)

The sketch in Fig. ¢.28 illustrates the physical meaning ot Eq. 6.108 .
For a given Fanno flow (constant specific heat ratio, duct diameter, and friction factor)
the length of duct required to change the Mach number from Ma,; to Ma, can be determined
from Eqs. 6.107 and 6.108 or a graph such as Fig. D.2. To get the values of other fluid prop-
erties in the Fanno flow field we need to develop more equations.
By consolidating Eqgs. 6.99 and 6.101 we obtain

d(Ma?)

(6.108)

( 6.109)

( 6.110)

( 6.111)

dar (k — 1)
T 2{1 + [(k — 1)/2]Ma?}
Integrating Eq. ©.109 f{rom any state upstream in a Fanno flow to the critical (*) state leads
to
‘ T (k + 1)/2
T == 1 + [(k — 1)/2]Ma?
v Ma VRTk M [ T
e aL |
v VRTk N T
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Frictionless and adiabatic

h . . . , Imagined
Reference converging-diverging duct Section Section choked flow
section (1) (2) section
Flow s— I = constant
£ Actual duct with Imagined duct
friction factor = friction factor =
() '
{'-':
Frictionless and adiabatic Actual
Reference converging-diverging duct Section Section choked flow
(1} (2) section

section J

Flow s——

I = constant

£, Actual duct with
friction factor = f
=) L
'C-';
mFIGURE ©6.28 () Unchoked Fanno flow. (/) Choked Fanno flow.
0.1 0.5 1.0 5.0 10,
5.0 - Bo
P
p L]
4.0 0 4.0
2.0 3.0
2.0 v 2.0
1;_.-"r
1.0 1.0
‘-“"'-. fiis— 1
~ D
e
£ N
JF-!
H.‘.‘ T
""h-.h--‘ I_""
“Iu-,_‘_“-
]

0.0 0.0
0.1 0.5 1.5 5.0 10,0
Ma

B FIGURE D.2 Fanno flow of an ldeal gas with & = 1L.4. (Graph provided by Professor

Bruce A. Relchert of Kansas State University.)
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Substituting Eq. 6.110 into Eq. 6.111 wields

v k + 1)/2]Ma> 1/2
7_:{ LC )/ 2 Ma } ¢ 6.112)
A% 1 + [(K — 1)/2]Ma?
From the continuity equation (Eq. E.1 ) we get for Fanno flow
A%
P' _ ( 6.113 )
P v
Combining 6.113 and 6.112 results in
1 + [(k — 1)/2]Ma=7 /2
o { [C /21N } Cotia
PF [(k + 1)/2]Ma
The ideal gas equation of state leads to r P T
— = —— ( 6.115)
})"‘ P>'< ks
and merging Eqs. 6.115 | 6.114 | and 6.110 gives
L S B e 12
L I { ( L _ 1} ( 6.116 )
o= Ml 1 + [(& — 1L 2]Nha~
Finally. the stagnation pressure ratio can be written as
=
Lo — (—Pﬂ)(—f}_ )II(PQ) (6117 )
P'f; -~ P* I's]
which by use of Eqs. E20 and 6116 wiclds
1 - k — 1 - [ + 12— 1))
Lo _ [( )(1 + 71»-1.3—)] [ 6.118)
7o Mha E+ 1 >
Walues of F€= — £) 00, T/ VIVE poip® and po/erd for Fanno flow of air (& = 1.4)
are graphed as a funcrion of Mach number (using Eqs. ¢.108 | o110 . 112 . .11 . and
S 118) in Fig. 0.2 The usefulness of Fig. 2 is illustrated in Examples 622623 . and ¢.24

Example 6.22:

Standard atmospheric air [T5 = 288 K. py, = 101 kPa(abs)] is drawn steadily through a
frictionless, adiabatic converging nozzle into an adiabatic. constant-area duct as shown in
Fig. Es.22a . The duct is 2-m long and has an inside diameter of 0.1 m. The average Iric-
tion factor for the duct is estimated as being equal to 0.02. What is the maximum mass
flowrate through the duct? For this maximum flowrate. determine the values of static tem-
perature, static pressure. stagnation temperature, stagnation pressure, and velocity at the in-
let [section (1)] and exit [section (2)] of the constant-area duct. Sketch a temperature-entropy
diagram for this flow.

J00 T Poz2 =
o = 101 kPa {abs) _ . —
it hees Adiabatic duct with friction 290 101 kPa (abs) 84 kPa (abs)
adiabatic nozzle factor = 0.02 T, =288 K
} 280 L=
z AControl velurme 77 kPa [abs)
———————————————————————— 270
S~ | Section(l} |D=01m Section (Z)—a = 1 S =268 K
———————— e —— — - -
{'L',’f—l I 260 Sl
e f=2m -] Fanno line ™ Py =
o t 250 “J| 45 kPa (abs)
Standa? a:trgﬁﬂenc anr 240 2/_’ T,= 240 K
a [} ,
230
B FIGURE E 622 0 10 20 30 40 50 g_g, 3 _
. (B (kg+-K)
Solution:

We consider the flow through the converging nozzle to be isentropic and the flow through
the constant-area duct to be Fanno flow. A decrease in the pressure at the exit of the constant-
area duct (back pressure) causes the mass flowrate through the nozzle and the duct to in-
crease. The flow throughout is subsonic. The maximum flowrate will occur when the back
pressure is lowered to the extent that the constant-area duct chokes and the Mach number at
the duct exit is equal o 1. Any further decrease of back pressure will not affect the flowrate
through the nozzle-duct combination.
For the maximum flowrate condition. the constant-area duct must be choked., and

JlE* — &) Al — £,)  (0.02)(2 m)
D - D (0.1 m)

With & = 1.4 for air and the above calculated value of f{f* — £,)/D = 0.4, we could use
Eq. 6.107 o determine a value of Mach number at the entrance of the duct [section {1)]. With
& = 1.4 and Ma, known, we could then rely on Egs. €110 |, 6112 | 6116, and %.118 to
obtain values of T\/T*, V /V=_ p /p* and pg /p§. Alternatively, for air (kK = 1.4), we can use
Fig. D.2 with f{¢* — €,)/D = 0.4 and read off values of Ma,. T/T*, V/V* p/p* and
Po/Po-

= 0.4 (1)

Dr. Mohsen Soliman - 60/125 - MEP 580 Compressible Flow



The pipe entrance Mach number, Ma,. also represents the Mach number at the throat
{and exit) of the isentropic, converging nozzle. Thus, the isentropic flow equations of Sec-
tion 6.2 or Fig. D.1 can be used with Ma,. We use Fig. D.1 in this example.

With Ma, known, we can enter Fig. D.1 and get values of T/T,. p/po. and py/po.
Through the isentropic nozzle, the values of T, pp. and py are each constant, and thus T, py.
and p, can be readily obtained.

Since T, also remains constant through the constant-area duct (see Eq. 6.84 ), to get T Thus,

Tr* 2 2
= = = .8333 2
T, &k+1 14+1 ’ %
Since Ty = 288 K, we get from Eq. 2,
T* = (0.8333)(288 K) = 240K = T, (3) (Ans)

With T7* known. we can calculate V* from Eqg. 629 as
Ve = VRTR
= W(286.9 N/(kg - K)](240 K)( 1.4)[ I(kg -m)AN - s ][ 1{N-m)/T] (40 (Ans)
= 310 m/s = 1,
Mow V, can be obtained from V= and V,/V*=. Having A,. p,. and V, we can get the mass
flowrate fTom m = pA,V, (5)

Walues of the other variables asked for can be obtained from the ratios mentioned abowve.
Entering Fig. D.2 with f{f* — €)/D = 0.4 we read

T, ) ¥ ) P i Poa )
Ma, = 0.63 (T} —- =11 B)> —~ =066 9/ =17 (0)-— =116 (11

T= V= = Po
Entering Fig. .1 with Ma, = .63 we read
P a :
T hos a2y- P —p76 (13)- —— =083 (14)
?:D o1 jﬁ{hl
Thus, from Egs. 4 and 9 we obtain V= (066310 m/s) = 205 m/s (Ans)
From Eq. 14 we get p; = 0.83p,,; = (0.83)(1.23 kg/m*) = 1.02 kg/m’
(0.1 m)*

and from Eq. 5 we conclude that m = (1.02 kg/m?) [Iz-trnjl] (206 m/s) =1.65 kg/s(Ans)
From Eq. 12, it follows that T, = (0.93)(288 K) = 268 K (Ams)
Equation 13 yields 1 = (0.76)[ 101 kPa (abs)] = 77 kPa (abs) (Ans)
The stagnation temperature, T, remains constant through this adiabatic flow at a value of

TD,I - TO,Z = 288 K {;A.IIS}

The stagnation pressure, p,. at the entrance of the constant-area duct is the same as the con-
stant value of stagnation pressure through the isentropic nozzle. Thus

Po1 = 101 kPa(abs) (Ans)
To obtain the duct exit pressure (p> = p*) we can use Eqs. 10 and 13. Thus,

ps = (i’)—l)( Ll )(po,l) = (%) (0.76)[ 101 kPa(abs)] = 45 kPa(abs) (Ans)

Po.i
For the duct exit stagnation pressure (po, = p5) we can use Eq. 11 as
A 1
Pos = (::“ ) (Pos) = (12) [101 kPa(abs)] = 84 kPa(abs) (Ans)
0.1 -

The stagnation pressure, pg, decreases in a Fanno flow because of friction.

Use of graphs such as Figs. D.1 and D.2 illustrates the solution of a problem involv-
ing Fanno flow. The T" — s diagram for this flow is shown in Fig. E. 6.22 b . where the en-
tropy difference. s, — 5. is obtained from Eq. 6.16 .

st sfeskeskeok ok skeskoskokokok skoskoskoskolokokoskoekoskokokolokosk skokokokokokosioekokokokolokskoeiskolokokoior skoelokokokoksikekeskokolokor skeroskokoek

Example 6.23:

The duct in Example 6.22 is shortened by 50%. but the duct discharge pressure is main-
tained at the choked flow value for Example 6.22 | namely, pgs = 45 kPa(abs)

Will shortening the duct cause the mass flowrate through the duct to increase or decrease?
Assume that the average friction factor for the duct remains constant at a value of f= 0.02.

Solution:
We guess that the shortened duct will still choke and check our assumption by comparing

pqe with p*_ If p, << p*, the flow is choked: if not., another assumption has to be made.
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For choked flow we can calculate the mass flowrate just as we did for Example 6.22.
For unchoked flow, we will have to devise another strategy.

For choked flow S — €,)  (0.02)(1 m)
D N 0.1 m N

and from Fig. D.2, we read the values Ma, = 0.70 and p,/p* = 1.5. With Ma, = 0.70, we

o i >
use Fig. D.1 and get Pi _ 0.72
Po

Now the duct exit pressure (p, = p*) can be obtained from

. - 1
pa = p* = (i )(‘fl )(Po,l}_ (E) (0.72)[ 101 kPa(abs)] = 48.5 kPa(abs)
1 0.1 .

and we see that p; < p*. Our assumption of choked flow is justified. The pressure at the
exit plane is greater than the surrounding pressure outside the duct exit. The final drop of

pressure from 48.5 kPa(abs) to 45 kPa(abs) involves complicated three-dimensional flow
downstream of the exit.

0.2

To determine the mass flowrate we use m = p,A,V, (1)
The density at section (1) is obtained from - 0.79 2)
Po.1

which is read in Fig. D.1 for Ma,; = 0.7. Thus,

Y V, Vi p1 = (0.79)(1.23 kg/m*)=0.97 kg/m> 3)
e get rom — = (.73

! AVES (4)
from Fig. D.2 for Ma; = 0.7. The value of V* is the same as it was in Example ©6.22  namely,
V#E = 310 m/s (5)
Thus, from Eqgs. 4 and 5 we obtain VvV, = (0.73)(310) = 226 m/s (6)

and from Eqgs. 1, 3, and 6 we get

T . 2
m = (0.97 kg/m”>) [(Oim)]

(226 m/s) = 1.73 kg/s (Ans)

The mass flowrate associated with a shortened tube is larger than the mass flowrate for the
longer tube. m = 1.65 kg/s. This trend is general for subsonic Fanno flow. For the same up-
stream stagnation state and downstream pressure, the mass flowrate for the Fanno flow will
decrease with increase in length of duct for subsonic flow. Equivalently, if the length of the
duct remains the same but the wall friction is increased, the mass flowrate will decrease.

st sfesfesfe e s s st st st skeske ke sk st st shestesk sk sk sk steskeskeskokok stestesteskokokoskokokoskokokokokok sk

Example 6.24:

If the same flowrate obtained in Example 6.22 (m = 1.65 kg/s) is desired through the short-
ened duct of Example 6.23 (€, — €, = 1 m), determine the Mach number at the exit of the

duct, M,, and the back pressure, , required. Assume f remains constant at a value of
2 2 .
0.02.

Solution:

Since the mass flowrate of Example 6.22 is desired. the Mach number and other properties
at the entrance of the constant-area duct remain at the values determined in Example 6.22 .
Thus, from Example 6.22 |, Ma, = 0.63 and from Fig. D.2 s — fl}

=04
S E R 0% — . D

For this example, S — &) _ I (1) B S (€ €2)

D . D__ D
o 00w e )

0.1 m D
- AGEED
SO ths — = 0.2 1
so that 5 1)
By using the value from Eq. 1 and Fig. D.2, we get Ma, = 0.70 (Ans)
P2

and —

sle t—)i\ ( )
l ol
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where p,/p* is given in Eq. 2 and p*/p,. p,/po,. and p,, are the same as they were in Ex-
ample 6.22 | Thus, 1
p> = (1.5) (17> (0.76)[ 101 kPa(abs)] = 68.0 kPa(abs) (Ans)

A larger back pressure [68.0 kPa(abs)] than the one associated with choked flow through a
Fanno duct [45 kPa(abs)] will maintain the same flowrate through a shorter Fanno duct with
the same friction coefficient. The flow through the shorter duct is not choked. It would not
be possible to maintain the same flowrate through a Fanno duct longer than the choked one
with the same friction coeflicient, regardless of what back pressure is used.

e sk steske she steske sk stk sk sk sk sk sk sk sk sk sk sk sk skosk sk skt sk stk sk stk sk stk sk skeoteosk stk stk sk stk sk st skoskokoskoskokotkoskoskokoskokokokokokokoskolkorskekor

6.7.5 Further Analysis and Examples of Fanno-Flow:

Let us consider only the length of the constant area duct in Fig.6.28 (i.e., without the
length of the nozzle attached to it). So in Eq.6.106 the lower limit of the integration
on the R.H.S. starts at x =0 (i.e., [ = 0). Equation 6.106 now becomes:

dx r-o 1 — Ma >
.L, I p = .[Muz kK Ma®[l + Lk — 1) Maz] ¢ Ma (6.119
The upper limit is the sonic point, whether or not it is actually reached in the duct flow.
The lower limit is arbitrarily placed at the position x = 0O, where the Mach number is
Ma. The result of the integration is
FL _ 1 — ]\"[il: kK + 1 In (k + 1) Ma” ) 6.120
D k Ma~ 2k 2+ ¢k — 1) Ma~ o '

where f is the average friction factor between O and L*. In practice. an average f is al-
ways assumed. and no attempt is made to account for the slight changes in Reynolds

number along the duct. For noncircular ducts, DD is replaced by the hydraulic diameter
Dy, = (4 > area)/perimeter - 63

Equation (6.120) is tabulated versus Mach number in Table B.3. The length L* is the
length of duct required to develop a duct flow from Mach nunlbel Ma to the sonic
point. Many problems involve short ducts which never become sonic, for which the so-
lution uses the differences in the tabulated “maximum.”” or sonic. length. For example.
the length AL required to develop from Ma; to Mas is given by

f % = (ff;)l — (%)2 ©6.121)

This avoids the need for separate tabulations for short ducts.

It is recommended that the friction factor f be estimated from the Moody chart (Fig.
2.16) for the average Reynolds number and wall-roughness ratio of the duct. Available
data [20] on duct friction for compressible flow show good agreement with the Moody
chart for subsonic flow., but the measured data in supersonic duct flow are up to 50
percent less than the equivalent Moody friction factor.

Formulas for other flow properties along the duct are derived from Eqs. {(a to e)in sec.
6.7.4 Equation (e) can be used to eliminate f dx/D from each of the other relations, giv-

ing, for example. dp/p as a function only of Ma and « Ma?/Ma”. For convenience in

tabulating the results. each expression is then integrated all the way from (p. Ma) to

the sonic point ( p¥*. 1.0). The integrated results are

p 1 4+ 1 [P
p*  Ma |2 + (kK — 1) Ma> (o122
P VE 1 [24 (k— 1) Ma? |12 (6.122b)
p:l: — 1_:" _ Ma :i\' -+ 1 -
T k4 1 (6.122c)
7% a*2 2+ (k — 1) Ma2
po _ po I >+ (k 7]3.5:\3M€l2 (L2~ 10k — 1) (6.122d)
P ok Ma kK+T

All these ratios are also tabulated in Table B.3. For finding changes between points
Ma; and Ma> which are not sonic. products of these ratios are used. For example.
P2 _ P2 Pt (6.123)
P P* P
since p* is a constant reference value for the flow.
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Table B6.3 (Fanno-flow) Adiabatic Frictional Flow in a Constant-Area Duct for k = 1.4

Mia L=/ pip* T/ P = VIVE PP
0.0 = . 1.2000 0.0 o
0.02 1778.4500 54.7701 1.1999 0.0219 28.9421
0.04 440.3520 27.3817 1.1996 0.0438 14.4815
0.06 193.0310 18.2508 1.1991 0.0657 9.6659
0.08 106.7180 13.6843 1.1985 0.0876 7.2616
0.1 66.9216 10.9435 1.1976 0.1094 5.8218
0.12 45.4080 9.1156 1.1966 0.1313 4.8643
0.14 32.5113 7.8093 1.1953 0.1531 4.1824
0.16 241978 6.8291 1.1939 0. 1748 3.6727
0.18 18.5427 6.0662 1.1923 0.1965 3.2779
0.2 14.5333 5.4554 1.1905 0.2182 2.9635
0.22 11.5961 4.9554 1.1885 0.2398 2.7076
0.24 9.3865 4.5383 1.1863 0.2614 2.4956
0.26 76876 4.1851 1.1840 0.2829 23173
0.28 6.3572 3.8820 1.1815 0.3043 2.1656
0.3 5.2993 3.6191 1.1788 0.3257 2.0351
0.32 4.4467 3.3887 1.1759 0.3470 1.9219
0.34 3.7520 3.1853 1.1729 0.3682 1.8229
0.36 3.1801 3.0042 1.1697 0.3893 1.7358
0.38 2.7054 2.8420 1.1663 0.4104 1.6587
0.4 2.3085 2.6958 1.1628 0.4313 1.5901
0.42 1.9744 2. 5634 1.1591 0.4522 1.5289
Ma LD plp= Trr= Pl = VIVE PP
0.44 1.6915 2.4428 1.1553 0.4729 1.4740
0.46 1.4509 2.3326 1.1513 0.4936 1.4246
0.48 1.2453 2.2313 1.1471 0.5141 1.3801
0.5 1.0691 2.1381 1.1429 0.5345 1.3398
0.52 0.9174 2.0519 1.1384 0.5548 1.3034
0.54 0.7866 1.9719 1.1339 0.5750 1.2703
0.56 0.6736 1.8975 1.1292 0.5951 1.2403
0.58 0.5757 1.8282 1.1244 0.6150 1.2130
0.6 0.4908 1.7634 1.1194 0.6348 1.1882
0.62 0.4172 1.7026 1.1143 0.6545 1.1656
0.64 0.3533 1.6456 1.1091 0.6740 1.1451
0.66 0.2979 1.5919 1.1038 0.6934 1.1265
0.68 0.2498 1.5413 1.0984 0.7127 1.1097
0.7 0.2081 1.4935 1.0929 0.7318 1.0944
0.72 0.1721 1.4482 1.0873 0.7508 1.0806
0.74 0.1411 1.4054 1.0815 0.7696 1.0681
0.76 0.1145 1.3647 1.0757 0.7883 1.0570
0.78 0.0917 1.3261 1.0698 0.8068 1.0471
0.8 0.0723 1.2893 1.0638 0.8251 1.0382
0.82 0.0559 1.2542 1.0578 0.8433 1.0305
0.84 0.0423 1.2208 1.0516 0.8614 1.0237
0.86 0.0310 1.1889 1.0454 0.8793 1.0179
0.88 0.0218 1.1583 1.0391 0.8970 1.0129
0.9 0.0145 1.1291 1.0327 09146 1.0089
0.92 0.0089 1.1011 1.0263 0.9320 1.0056
0.94 0.0048 1.0743 1.0198 0.9493 1.0031
0.96 0.0021 1.0485 1.0132 0.9663 1.0014
0.98 0.0005 1.0238 1.0066 (.9833 1.0003
1.0 0.0000 1.0000) 1.0000 1 .0000 1.0000
1.02 0.0005 0.9771 0.9933 1.0O166 1.0003
1.04 0.0018 0.9551 0.9866 1.0330 1.0013
1.06 0.0038 0.9338 0.9798 1.0492 1.0029
1.08 0.0066 0.9133 0.9730 1.0653 1.0051
1.1 0.0099 0.8936 0.9662 1.0812 1.0079
1.12 0.0138 0.8745 0.9593 1.0970 1.0113
1.14 0.0182 0.8561 0.9524 1.1126 1.0153
1.16 0.0230 (.8383 0.9455 1.1280 1.0198
1.18 0.0281 08210 0.9386 1. 1432 1.0248
1.2 0.0336 0.8044 0.9317 1.1583 1.0304
1.22 0.0394 0. 7882 0.9247 1.1732 1.03606
1.24 0.0455 0.7726 0.9178 1.1879 1.0432
1.26 0.0517 0.7574 0.9108 1.2025 1.0504
1.28 0.0582 0.7427 0.9038 1.2169 1.0581
1.3 0.0648 0.7285 0.8969 1.2311 1.0663
1.32 0.0716 0. 7147 0.8899 1.2452 1.0750
1.34 0.0785 0.7012 0.8829 1.2591 1.0842
1.36 0.0855 0.6882 0.8760 1.2729 1.0940
1.38 0.0926 0.6755 0.8690 1.2864 1.1042
1.4 0.0997 0.6632 0.8621 1.2999 1.1149
1.42 0.1069 0.6512 (.8551 1.3131 1.1262
1.4 0.1142 0.6396 0.8482 1.3262 1.1379
1.46 0.1215 0.6282 0.8413 1.3392 1.1501
1.48 0.1288 0.6172 0.8344 1.3520 1.1629
1.5 0.1361 0.6065 0.8276 1.3646 1.1762
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Table B6.3 (Fanno-flow) Adiabatic Frictional Flow in a Constant-Area Duct for k = 1.4

Ma fFL*D plp* T/T pElp = VIVE PolpE
1.52 0.1433 0.5960 0.8207 1.3770 1.1899
1.54 0.1506 0.5858 0.8139 1.3894 1.2042
1.56 0.1579 0.5759 0.8071 1.4015 1.2190
1.58 0.1651 0.5662 0.8004 1.4135 1.2344
1.6 0.1724 0.5568 0.7937 1.4254 1.2502
1.62 0.1795 0.5476 0.7869 1.4371 1.2666
1.64 0.1867 0.5386 0.7803 1.4487 1.2836
1.66 0.1938 0.5299 0.7736 1.4601 1.3010
1.68 0.2008 0.5213 0.7670 1.4713 1.3190
1.7 0.2078 0.5130 0.7605 1.4825 1.3376
1.72 0.2147 0.5048 0.7539 1.4935 1.3567
1.74 0.2216 0.4969 0.7474 1.5043 1.3764
1.76 0.2284 0.4891 0.7410 1.5150 1.3967
1.78 0.2352 0.4815 0.7345 1.5256 1.4175
1.8 0.2419 0.4741 0.7282 1.5360 1.4390
1.82 0.2485 0.4668 0.7218 1.5463 1.4610
1.84 0.2551 0.4597 0.7155 1.5564 1.4836
1.86 0.2616 0.4528 0.7093 1.5664 1.5069
1.88 0.2680 0.4460 0.7030 1.5763 1.5308
1.9 0.2743 0.4394 0.6969 1.5861 1.5553
1.92 0.2806 0.4329 0.6907 1.5957 1.5804
1.94 0.2868 0.4265 0.6847 1.6052 1.6062
1.96 0.2929 (.4203 0.6786 1.6146 1.63206
1.98 0.2990 0.4142 0.6726 1.6239 1.6597
2.0 0.3050 (.4082 0.6667 1.6330 1.6875
2.02 0.3109 (.4024 0.6608 1.6420 1.7160
2.04 0.3168 (.3967 0.6549 1.6509 1.7451
2.06 0.3225 (.3911 0.6491 1.6597 1.7750
2.08 0.3282 ().3856 0.6433 1.6683 1.8056
2.1 ().3339 0.3802 0.6376 1.6769 1.8369
2.12 0.3394 0.3750 0.6320 1.6853 1.8690
2.14 0.3449 0.3698 0.6263 1.6936 1.9018
216 0.3503 0.3648 0.6208 1.7018 1.9354
2.18 0.3556 0.3598 0.6152 1.7099 1.9698
22 0.3609 0.3549 0.6098 1.7179 2.0050
2.22 0.36061 0.3502 0.6043 1.7258 2.0409
2.24 0.3712 0.3455 0.5989 1.7336 2.0777
2.26 0.3763 0.3409 0.5936 1.7412 2.1153
228 0.3813 0.3364 0.5883 1. 7488 2.1538
23 (0.3862 0.3320 0.5831 1.7563 2.1931
2.32 0.3911 0.3277 0.5779 1.7637 2.2333
2.34 0.3959 (0.3234 0.5728 1.7709 2.2744
2.36 0.4006 (.3193 0.5677 1.7781 2.3164
2.38 0.4053 .3152 0.5626 1.7852 2.3593
2.4 0.4099 0.3111 0.5576 1.7922 2.4031
2.42 0.4144 (.3072 0.5527 1.7991 2.4479
2.44 0.4189 0.3033 0.5478 1.80059 2.4936
2.46 (0.4233 0.2995 0.5429 1.8126 2.5403
2.48 04277 0.2958 0.5381 1.8192 2.5880
2.5 0.4320 (0.2921 (.5333 1.8257 2.6367
2.52 0.4362 (0.2885 0.5286 1.8322 2.6865
2.54 0.4404 0.2850 0.5239 1.8386 2.7372
2.56 0.4445 (0.2815 0.5193 1.8448 2.7891
2.58 0.4486 0.2781 0.5147 1.8510 2.8420
2.6 0.4526 0.2747 0.5102 1.8571 2.8960
2.62 0.4565 0.2714 0.5057 1.8632 2.9511
2.64 0.4604 0.2682 0.5013 1.8691 3.0073
2.66 0.4643 0.2650 0.4969 1.8750 3.0647
2.68 0.4681 0.2619 0.4925 1.8808 3.1233
2.7 0.4718 0.2588 0.4882 1.8865 3.1830
2.72 0.4755 0.2558 0.4839 1.8922 3.2440
2.74 0.4791 0.2528 0.4797 1.8978 3.3001
2.76 0.4827 0.2498 0.4755 1.9033 3.3695
2.78 0.4863 0.2470 0.4714 1.9087 3.4342
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Table B6.3 (Fanno-flow) Adiabatic Frictional Flow in a Constant-Area Duct for k = 1.4

Ma fL*D plp* T/T pElp = VIVE Polp
2.8 0.4898 0.2441 0.4673 1.9140 3.5001
2.82 0.4932 0.2414 0.4632 1.9193 3.5674
2.84 0.4966 0.2386 0.4592 1.9246 3.6359
2.86 0.5000 0.2359 0.4552 1.9297 3.7058
2.88 0.5033 0.2333 0.4513 1.9348 3.7771
2.9 0.5065 0.2307 0.4474 1.9398 3.8498
2.92 0.5097 0.2281 0.4436 1.9448 3.9238
2.94 0.5129 0.2256 0.4398 1.9497 3.9993
2.96 0.5160 0.2231 0.4360 1.9545 4.0763
2.98 0.5191 0.2206 0.4323 1.9593 4.1547
3.0 0.5222 0.2182 0.4286 1.9640 4.2346
3.02 0.5252 0.2158 0.4249 1.9686 4.3160
3.04 0.5281 0.2135 0.4213 1.9732 4.3989
3.06 0.5310 0.2112 0.4177 1.9777 4.4835
3.08 0.5339 0.2090 0.4142 1.9822 4.5696
3.1 0.5368 0.2067 0.4107 1.9866 4.6573
3.12 0.5396 0.2045 0.4072 1.9910 4.7467
3.14 0.5424 0.2024 0.4038 1.9953 4.8377
3.16 0.5451 0.2002 0.4004 1.9995 4.9304
3.18 0.5478 0.1981 0.3970 2.0037 5.0248
3.2 0.5504 0.1961 0.3937 2.0079 5.1210
3.22 0.5531 0.1940 0.3904 2.0120 5.2189
3.24 0.5557 0.1920 0.3872 2.0160 5.3186
3.26 0.5582 0.1901 0.3839 2.0200 5.4201
3.28 0.5607 0.1881 0.3807 2.0239 5.5234
33 0.5632 0.1862 0.3776 2.0278 5.6286
3.32 0.5657 0.1843 0.3745 2.0317 5.7358
3.34 0.5681 0.1825 0.3714 2.0355 5.8448
3.36 0.5705 0.1806 0.3683 2.0392 5.9558
3.38 0.5729 0.1788 0.3653 2.0429 6.0687
3.4 0.5752 0.1770 0.3623 2.0466 6.1837
3.42 0.5775 0.1753 0.3594 2.0502 6.3007
3.44 0.5798 0.1736 0.3564 2.0537 6.4198
3.46 0.5820 0.1718 0.3535 2.0573 6.5409
3.48 0.5842 0.1702 0.3507 2.0607 6.6642
3.5 0.5864 0.1685 0.3478 2.0642 6.7896
3.52 0.5886 0.1669 0.3450 2.0676 6.9172
3.54 0.5907 0.1653 0.3422 2.0709 7.0471
3.56 0.5928 0.1637 0.3395 2.0743 7.1791
3.58 0.5949 0.1621 0.3368 2.0775 7.3135
3.6 0.5970 0.1616 0.3341 2.0808 7.4501
3.62 0.5990 0.1590 0.3314 2.0840 7.5891
3.64 0.6010 0.1575 0.3288 2.0871 7.7305
3.66 0.6030 0.1560 0.3262 2.0903 7.8742
3.68 0.6049 0.1546 0.3236 2.0933 8.0204
3.7 0.6068 0.1531 0.3210 2.0964 8.1691
3.72 0.6087 0.1517 0.3185 2.0994 8.3202
3.74 0.6106 0.1503 0.3160 2.1024 8.4739
3.76 0.6125 0.1489 0.3135 2.1053 8.6302
3.78 0.6143 0.1475 0.3111 2.1082 8.7891
3.8 0.6161 0.1462 0.3086 2.1111 8.9506
3.82 0.6179 0.1449 0.3062 2.1140 9.1148
3.84 0.6197 0.1436 0.3039 2.1168 92817
3.86 0.6214 0.1423 0.3015 2.1195 9.4513
3.88 0.6231 0.1410 0.2992 2.1223 9.6237
39 0.6248 0.1397 0.2969 2.1250 9.7990
3.92 0.6265 0.1385 0.2946 2.1277 9.9771
3.94 0.6282 0.1372 0.2923 2.1303 10.1581
3.96 0.6298 0.1360 0.2901 2.1329 10.3420
3.98 0.6315 0.1348 0.2879 2.1355 10.5289
4.0 0.6331 0.1336 0.2857 2.1381 10.7188
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Example 6.25:

Air flows subsonically in an adiabatic 2-cm-diameter duct. The average friction factor is 0.024.

What length of duct is necessary to accelerate the flow from Ma; = 0.1 to Ma- = 0.57 What ad-
ditional length will accelerate it to Masz = 1.07 Assume k& = 1.4,
Solution

Equation 6.121 applies. with values 'Df_}FL*I'D computed from Eq.6.120 or read tfrom Table B6.3

F AL _ 0024 AL (’_}‘_‘L* ) (f L )
D 0.02 m D JMa=o0.1 . D JMa=0.5
= 66,9216 — 1.069] = 65.8525
) ) _ 65.8525(0.02 m) ) ]

Thus Al = 0024 = 55 m Arns. (a)
The additional length AL’ to go from Ma = 0.5 to Ma = 1.0 is taken directly from Table B&.3

AL ¢ FLE ,

s = 1.0691
£2 { D ,)Ma:(:-.s

, o 1.0691(0.02 m)

or Al = ILija—0s = 0054 = 0.9 m Ans. (D)

This is typical of these calculations: It takes 55 m to accelerate up to Ma
0.9 m more to get all the way up to the sonic point.

st s s s st s ke s st sk s s st s s s st sk s s st s s sk st s s sk st s s sk st s sk sk st sk sk sk sk sk ok
Example 6.26:

For the duct flow of Example 6.25 assume that, at Ma, = 0.1, we have p; = 600 kPa and 7| =

450 K. At section 2 farther downstream. Ma, = 0.5. Compute (a) po. (&) T>. (¢) Vo, and (d) poo.-
Solution

0.5 and then only

As preliminary information we can compute V; and pg; from the given data:
Vi = Ma,; a; = O.1[(1.4)(287)(450)]1"* = 0.1(425 m/s) = 42.5 m/s
Por = pi(l + 0.2 Ma7)>° = (600 kPa)[1 + 0.2(0.1)°]"° = 604 kPa

Now enter Table Bo6.30or Eqs. 6.122 to find the following property ratios:

Section Ma pip* T/T= ViV Polps
0.1 10.9435 1.1976 0. 1094 58218
2 0.5 21381 1.1429 0.5345 1.3399
Use these ratios to compute all properties downstream:
. palpF ) 2.1381 ]
P2 = 7 W = (600 kPa) m = 117 kPa Ans. (a)
T5/T* 1.1429
’ — =T — = A49g . }
15 Ty T/ T+ (450 K) 1976 429 K Ans. (b)
Vo/ Vo 0.5345 m
rd — ra P — " 2.5 . ‘.. i — 2 P— ..,. ~
Vs Vi VIV (4 m/s) 0.1094 08 S Ans. (c)
—_ Po2/P5 _ a4 1.3399 _
Poz2 = Poi m = (604 kPa) m = 139 kPa Ans. (d)

Note the 77 percent reduction in stagnation pressure due to friction. The formulas are seductive.
so check your work by other means. For example, check pg> = p2(1 + 0.2 Ma3)>-3.

6.7.6 Choking of Fanno-Flow Due to friction:

The theory here predicts that for adiabatic frictional flow in a constant-area duct, no
matter what the inlet Mach number Ma, is. the flow downstream tends toward the sonic

point. There is a certain duct length L*(Ma,) for which the exit Mach number will be
exactly vnity. The duct is then choked.

But what if the actual length L is greater than the predicted “maximum”™ length L*?
Then the flow conditions must change, and there are two classifications.
Subsonic inlet. If 7. = L.*(Ma,), the flow slows down until an inlet Mach number Ma-
is reached such that L. = L*(Ma-). The exit flow is sonic. and the mass flow has been

reduced by frictional choking. Further increases in duct length will continue to decrease
the inlet Ma and mass flow.
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Supersonic inlet. From Table B6.3 we see that friction has a very large effect on su-
personic duct flow. Even an infinite inlet Mach number will be reduced to sonic con-
ditions in only 41 diameters 1"01‘_]IF = 0.02. Some typical numerical values are shown in
Fig.6.290 . assuming an inlet Ma = 3.0 and }? = 0.02. For this condition L* = 26 di-
ameters. If L is increased beyond 260, the flow will not choke but a normal shock will
form at just the right place for the subsequent subsonic frictional flow to become sonic

exactly at the exit. Figure 6.29 shows two examples, for I/D = 40 and 53. As the length
increases, the required normal shock moves upstream until, for Fig. 6.29 . the shock is
at the inlet tor L/ = 63. Further increase in L causes the shock to move upstream of
3.0
2
=
g .
g 25 F=0.020
=
\ k=14
2.0 —
Fig. 6.29 Behavior of duct flow 15— Y
-~ c

with a nominal supersonic inlet
condition Ma = 3.0: (a) L/D = 26,
flow is supersonic throughout duct;
(b) L/ID = 40 = L¥/D, normal 1.0 ——1——
shock at Ma = 2.0 with subsonic

flow then accelerating to sonic exit

point: (¢) L/D = 53, shock must 0.5 —
now occur at Ma = 2.5; (d) IL/D = d
63, flow must be entirely subsonic

and choked at exit. | | | | |
0] 10 20 30 40 50

Ol=

60

the inlet into the supersonic nozzle feeding the duct. Yet the mass flow is still the same
as for the very short duct, because presumably the feed nozzle still has a sonic throat.
Eventually, a very long duct will cause the feed-nozzle throat to become choked. thus
reducing the duct mass flow. Thus supersonic friction changes the flow pattern if L =
L* but does not choke the flow until L is much larger than L*.

Example 6.27:
Air enters a 3-cm-diameter duct at py = 200 kPa, T, = 500 K, and V| = 100 m/s. The friction
factor is 0.02. Compute (@) the maximum duct length for these conditions, (#) the mass flow if
the duct length is 15 m. and (c¢) the reduced mass flow if L = 30 m.

Solution
Part (a) v L(100 m/s)?
First compute T\ =To— ¢, =500— 1005 m*/(s* - K) =500 — 5 =495 K
a, = (kRT))'? = 20(495)"% = 445 m/s

.. _ Vi _ 100 _ 5,
Thus Ma, a, 145 0.225
For this Ma,;, from Eq. 6.120 or interpolation in Table B6.3

N
IL* =11.0

D
The maximum duct length possible for these inlet conditions is

(JL*D)D  11.0(0.03 m)

L* = 16.5 m Ans. (a)
3 _
Part (b) J 0.02
The given L. = 15 m is less than L*, and so the duct is not choked and the mass flow follows
from inlet conditions Poi 200,000 Pa , 3
— — — ‘3L £
Po1 RT, 287(500 K) 1.394 kg/m
Po1 1.394
mM = [1 + 0‘2(0‘225)2]2.5 = W = 1.359 kg/ll‘l?’
- aa
whence m = p1AV; = (1.359 kg/m'*)[j (0.03 111)2](100 m/s)
= 0.0961 kg/s Ans. (b)
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Part (c¢)

Since L. = 30 m is greater than L*, the duct must choke back until L. = L*, corresponding to a

lower inlet Ma,: L*= L =30m
FL*  0.02(30 1

ILx _ GOm _ 550
D 0.03 m

It is difficult to interpolate for fL/D = 20 in Table B6.3and impossible to invert Eq. 6.120 for
the Mach number without laborious iteration. But it is a breeze for EES to solve Eq. 6.120 for
the Mach number, using the following three statements:

k=1.4
fFLD = 20
FILD= (1 —Ma 2)/k/Ma 2+ (k+ 1) /2/k*LN((k + 1)*Ma 2/ (2 + (k — 1) *Ma 2))

Simply specify Ma << 1 in the Variable Information menu and EES cheertully reports

Ma . tokea — 0.174 (23 percent le=ss)

: = Lo = 497 K
T Lomew 1 +0.2(0.174)"°
1 new= 20(497 K)'*F =446 m/s
V1 mew =Ma, a; = 0.174(446) = 77.6 m/s

Po <)

Pinew = [1 4+ 0.2(0.174)2]12-52 = 1.373 kg/m

. . TT -

Hpaw = P1AVZ = 1.373| - (0.03) (77 .6)

= 0.0753 kg/= (22 percent less) Ans. ()

6.8 Isothermal Flow with Friction:

The adiabatic frictional-flow assumption is appropriate to high-speed flow in short
ducts. For flow in long ducts, e.g.. natural-gas pipelines, the gas state more closely ap-
proximates an isothermal flow. The analysis is the same except that the isoenergetic
energy equation (6.77¢) is replaced by the simple relation
T'= const dIm=20 (6.124)
Again it is possible to write all property changes in terms of the Mach number. Inte-
gration of the Mach-number—{riction relation yields
FLooax 1 — k& Ma”
D k Ma~

(6.125)

= + In (kK Ma”)
which is the isothermal analog of Eq.{6.120) for adiabatic flow.

This friction relation has the interesting result that L.,,x becomes zero not at the
sonic point but at Mag, = 1/k"? = 0.845 if kK = 1.4. The inlet flow, whether subsonic
or supersonic, tends downstream toward this limiting Mach number 1/k"Z. If the tube
length I is greater than L,,,x from Eq. 6.125 | a subsonic flow will choke back to a
smaller Ma, and mass flow and a supersonic flow will experience a normal-shock ad-
justment similar to Fig. 6.29 .

The exit isothermal choked flow 1s not somnic , and so the use of the asterisk is in-
appropriate. Let p’., p’. and V'’ represent properties at the choking point L = L,,... Then
the isothermal analysis leads to the following Mach-number relations for the flow prop-
erties: ? / !

}i, — Malk LL; — £ — Ma k72 (6.126)

The complete analysis and some examples are given in advanced texts [for example,
8. sec. 6.4].

6.8.1 Mass Flow for a Given Pressure Drop in Isothermal Flow:

An interesting by-product of the isothermal analysis is an explicit relation between the
pressure drop and duct mass flow. This is a common problem which requires numeri-
cal iteration for adiabatic flow. as outlined below. In isothermal flow. we may substi-

tute dV/V = —dp/p and V° = G%/[p/(RT)]” in Eq. (6.80) to obtain
y . ~
2p dp dx 2 dp
. + — =
G RT 7 D P 0

Since GZRT is constant for isothermal flow, this may be integrated in closed form be-
tween (x, p) = (0, py) and (L. p>):
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> _ [(m > _ Pil) _P%
G = (A) RTIFL/D + 2 In (p1/pa)] (6.127)

Thus mass flow follows directly from the known end pressures, without any use of
Mach numbers or tables.

The writer does not know of any direct analogy to Eq.{6.127) for adiabatic flow.
However, a useful adiabatic relation, involving velocities instead of pressures, is de-
rived in several textbooks [5, p. 212: 34, p. 418]:

, adll — (Vi/V)?]
Vi=7%FL/D + (k + 1) In (Vo/V))

(6.128)

where ag = (kRTy)'"? is the stagnation speed of sound., constant for adiabatic flow. We

assign the proof of this as a problem exercise. This may be combined with continuity
for constant duct area V|/V, = p./p,. plus the following combination ot adiabatic en-
ergy and the perfect-gas relation:

Vi _p21 _ p> [ 2ap — (k= Vi ] (6.129)

Vo  py To py | 2a3 — (k— 1)V3
It we are given the end pressures, neither V; nor V, will likely be known in advance.
Here, if EES is not available, we suggest only the following simple procedure. Begin
with ag = a,; and the bracketed term in Eq. 6.129 approximately equal to 1.0. Solve
Eq. 6.129 for a first estimate of V,/V5, and use this value in Eq. 6.128 to get a better
estimate of V. Use V| to improve your estimate of ag, and repeat the procedure. The
process should converge in a few iterations.

Equations 6.127 and 6.128 have one flaw: With the Mach number eliminated, the
frictional choking phenomenon is not directly evident. Therefore, assuming a subsonic
inlet flow, one should check the exit Mach number Ma, to ensure that it is not greater
than 1/k'"? for isothermal flow or greater than 1.0 for adiabatic flow. We illustrate both
adiabatic and isothermal flow with the following example.

Example 6.28:

Air enters a pipe of l-cm diameter and 1.2-m length at p; = 220 kPa and 7, = 300 K. Iff‘ =
0.025 and the exit pressure is p>, = 140 kPa, estimate the mass flow for (a) isothermal flow and
(b) adiabatic flow.

Solution

Part (a) For isothermal flow Eq. 6.127 applies without iteration:

L . pi_ (002512m) . 220 .
D + 2 In Dy 00l m + 2 In 140 — 3.904
(220,000 Pa)® — (140,000 Pa)® 5
77 =287 mZ/(s2 - K)](300 K)(3.904) = 85.700 or G =293 kg/(s - m7)

Since A = (77/4)(0.01 m)? = 7.85 E-5 m’, the isothermal mass flow estimate is

m = GA = (293)(7.85 E-5) = 0.0230 kg/s Ans. (a)
Check that the exit Mach number is not choked:
__ p> 140,000 e baf i3 ;_Q_ 293 )
P2= pr = (287)(300) 1.626 kg/m V, = oy 1.626 18O m/s
1% 180 180
or Ma, 2 — ~ 0.52

 VERT  [1.4287)(300)]1'2 347
This is well below choking. and the isothermal solution is accurate.
Part (b)

For adiabatic flow, we can iterate by hand, in the time-honored fashion, using Egs. 6.128 and
6.129 plus the definition of stagnation speed of sound. A few years ago the author would have
done just that, laboriously. However, EES makes handwork and manipulation of equations un-
necessary, although careful programming and good guesses are required. If we ignore supertlu-
ous output such as 75 and V5, 13 statements are appropriate. First, spell out the given physical
properties (in SI units):
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k=1.4
Pl = 220000
P2 = 140000

Tl = 300
Next, apply the adiabatic friction relations. Eqgs. 6.120 and 6.121 . to both points 1 and 2:
fIDl = (1 —Mal"2) /k/Mal "2+ (k+1) /2/k*ILN{((k+1) *Mal"~2/ (2+ (k-1) *Mal~2) )
TIDZ = (1 —Maz2"2) /k/MaZ "2+ (k+1) /2/k*ILIN{ (k+1) *MaZ2~2/ (2+ (k-1) *Maz2"~2) )
DeltafD= 0.025*1.2/0.01
fI.LD1 = £f1L.D2 + DeltaflD
Then apply the pressure-ratio formula 6.122a to both points 1 and 2:
Pl/Pstar = ({(k+1) /(24 (k-1)*Mal"~2))"0.5/Mal
PZ2/Pstar = ((k+1)/(2+ (k-1)*Maz2~2) ) "0.5/MaZz
These are adiabatic relations, so we need not further spell out quantities such as Ty or ag unless
we want them as additional output.
The above 10 statements are a closed algebraic system. and EES will solve them for Ma; and
Ma,. However. the problem asks for mass flow, so we complete the system:

V1l =Mal*sart (1.4*287*T1)
Rhol = P1/287/T1
Mdot = Rhol* (pi/4*0.0172)*V1
If we apply no constraints, EES reports “cannot solve™, because its default allows all variables
to lie between —<¢ and + . So we enter Variable Information and constrain Ma; and Ma, to
lie between O and 1 (subsonic flow). EES still complains that it “cannot solve™ but hints that
“better guesses are needed”. Indeed, the default guesses for EES variables are normally 1.0, too
large for the Mach numbers. Guess the Mach numbers equal to 0.8 or even 0.5, and EES still
complains, for a subtle reason: Since fAL/D = 0.025(1.2/0.01) = 3.0, Ma, can be no larger than
0.36 (see Table B6.3). Finally, then, we guess Ma,; and Ma, = 0.3 or 0.4, and EES happily re-
ports the solution:
Ma, = 0.3343 Ma, = 0.5175

T T

fL
~ =3.935 LL
Dy Dy
p*¥=67,892 Pa m=0.0233 kg/s Ans. (D)
Though the programming is complicated, the EES approach is superior to hand iteration and. of

course, we can save this program for use again with new data.

= 0.9348

6.9 Frictionless Flow with Heat Transfer (Rayliegh Flow):

Consider the steady, one-dimensional, and frictionless flow of an ideal gas through the con-
stant-area duct with heat transfer illustrated in Fig. 6.30 . This is Ravleigh flow. Application
of the linear momentum equation ( Part (1) ) to the Rayleigh flow through the finite control

volume sketched in Fig. 6.30 results in o |
L T ) 0 (frictionless flow)

PiA] + mV, = p,A, + mV, + j{

(pV)?
or p+ T = constant ( 6.119)
Use of the ideal gas equation of state in Eq. 6.119 leads to
(pV)' RT
p+ T = constant ( 6.120)
Since the flow cross-sectional area remains constant for Rayleigh flow, from the continuity
equation (Eq. E.1) we conclude that pV = constant

For a given Rayleigh flow, the constant in Eq. ©6.120 | the density—velocity product, pV, and
the ideal gas constant are all fixed. Thus, Eq. 6.120 can be used to determine values of fluid
temperature corresponding to the local pressure in a Rayleigh flow.

To construct a temperature-entropy diagram for a given Rayleigh flow, we can use
Eq. 6.85 , which was developed earlier from the second T ds relationship. Equations 6.120
and 6.85 can be solved simultaneously to obtain the curve sketched in Fig. 6.31 . Curves
like the one in Fig. 6.31 are called Rayleigh lines.
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T

Frictionless and adiabatic Sami-infinitesimal Frictionless duct with
converging-diverging duct / control volume / heat transfer
\// H‘( Secton(l). | .

Flow === | | D = constant } contol volume |

||
/\ Ll L
B FIGURE 630 Rayleigh flow.

m FIGURE 6.31 Rayleigh line.
an amount of heat 80 is added (or removed) to each incremental mass &m passing
through. With no friction or area change, the control-volume conservation relations are
quite simple:

Continuity: iV, = p2Vo = G = const (a)
X momentum: pP1— p2= G(V> — V) (b)
Energy: Q_J = m(h> + %V% — hy — %V;:)

. 30 _
or q = % = 3—5; = }2()2 i h'.(“ ((_'.'J

The heat transfer results in a change in stagnation enthalpy of the flow. We shall not spec-

ify exactly how the heat is transterred—combustion. nuclear reaction, evaporation, con-

densation. or wall heat exchange—but simply that it happened in amount g between 1

and 2. We remark., however, that wall heat exchange is not a good candidate for the the-

ory because wall convection is inevitably coupled with wall friction, which we neglected.
To complete the analysis, we use the perfect-gas and Mach-number relations

D> »l
.oi 7= p‘: . hos — hor = cp(Tos — Tor) .
Vo _ Ma, a,  Ma, (TH\V2
Vi Ma, a, Ma, \ T,
For a given heat transfer g = 8Q/8m or, equivalently, a given change /1> — fig1. Eqs.

( a, b, c,and d ) can be solved algebraically for the property ratios p»/p,, Ma>/Ma,,
etc., between inlet and outlet. Note that because the heat transfer allows the entropy to
either increase or decrease. the second law imposes no restrictions on these solutions.

Before writing down these property-ratio functions, we illustrate the effect of heat
transfer in Fig. 6.31.A which shows Ty and T versus Mach number in the duct. Heating
increases 7T, and cooling decreases it. The maximum possible Ty occurs at Ma = 1.0,
and we see that heating. whether the inlet is subsonic or supersonic. drives the duct
Mach number toward unity. This is analogous to the effect of friction in the previous
section. The temperature of a perfect gas increases from Ma = O up to Ma = 1/k"? and
then decreases. Thus there is a peculiar—or at least unexpected—riregion where heat-

_— T (max) at Ma = 1.0

Ti{max) at

T, Ty

| |
0 0.5 1 1.5 2 Ma 2.5

Fig. 6.31.A Effect of heat transfer on Mach number.
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ing (increasing 7) actually decreases the gas temperature, the difference being reflected

in a large increase of the gas kinetic energy. For &k = 1.4 this peculiar area lies between

Ma = 0.845 and Ma = 1.0 (interesting but not very useful information).

The complete list of the effects of simple Ty change on flow properties is as follows:

Heating

Subsonic

Supersonic

Subsonic

Supersonic

Ta Increases Increases Decreases Decreases
Ma Increases Decreases Decreases Increases
P Decreases Increases Increases Decreases
Ie Decreases Increases Increases Decreases
VvV Increases Decreases Decreases Increases
Po Decreases Decreases Increases Increases
5 Increases Increases Decreases Decreases
T Increases T Decreases

’fln-::reases up to Ma = 1I/k'"? and decreases thereafter.
"Decreases up to Ma = 1/£"? and increases thereafter.

Probably the most significant item on this list is the stagnation pressure pg, which always
decreases during heating whether the flow is subsonic or supersonic. Thus heating does
increase the Mach number of a flow but entails a loss in effective pressure recovery.

Example 6.29:

Air (K = 1.4) enters [section (1)] a frictionless, constant flow cross-section area duct with the
following properties (the same as in Example 6.21 ):

T, = 518.67 °R 7T, = 514.55 °R 1 = 14.3 psia
For Rayleigh flow. determine corresponding values of fluid temperature and entropy change
for various levels of downstream pressure and plot the related Rayleigh line.

Solution:

To plot the Rayleigh line asked for, use Eq.6.120

V)2 RT
-+ 7('0 i} = constant ey
r r
— =c¢,In— — R1 2
and Eq.6.85 s A <, In T nP] )

to construct a table of values of temperature and entropy change corresponding to different
levels of pressure downstream in a Rayleigh flow.
Use the value of ideal gas constant for air from Table 1.7 R = 1716 (ft - Ib)/(slug - °R)
and the value of specific heat a constant pressure for air from Example 6.21 . namely,
¢, = 6006 (ft - 1b)/(slug - °R)
Also, from Example 6.21 ., pV = 0.519 slug/(ft? - s). For the given inlet [section (1)]
conditions, we get from Eq. 1
2
+ M = 14.3 psia

N [0.519 slug/(ft* - s)]?[1716 (ft - Ib)/(slug - “R)](514.55 °R)

P Y N — C stant
(144 in.2/fC)? 14.3 psia constan
(pV)*RT .
or » + ——— = 15.10 psia = constant (3)
From Eq. 3., with the downstream pressure p = 13.5 psia, we obtain

[0.519 slug/(f°/s)]’[1716 (ft - Ib)/(slug - “R)]T
(144 in.2/12)? 13.5 psia -

or T =969 °R
From Eq. 2 with the downstream pressure p = 13.5 psia and temperature 7" = 969 “R we get

13.5 psia + 15.10 psia

13.5 psia)

969 °
— [1716 (ft - Ib)/(slug - °R)]In
OR) [ ( )/ (slug )] (14 .3 psia

s — 8 = [6006 (ft - 1b)/(slug - °R) ] In (W

s — s; = 3900 (ft - Ib)/(slug - °R)
By proceeding as outlined above., we can construct the table of values shown below
and graph the Rayleigh line of Fig. E6.29.
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r T s — 5
(psia) °R) [(ft - 1b)/(slug - "R)]
13.5 969 3.900 3000
12.5 1459 6.490
11.5 1859 8.089 2500
10.5 2168 9.168
9.0 2464 10,202 2000
8.0 2549 10,607 .
7.6 2558 10.716 1500
7.5 2558 10,739
7.0 2544 10.825 1000
6.3 2488 10872
6.0 2450 10.863 2% T 4000 6000 2000 10,000
5.5 2369 10810 (Ft-1b)
5.0 22606 10,707 S =51 GlageR)
4.5 2140 10.544
4.0 1992 10315 MW FIGURE E6.29
2.0 1175 8.335
1.0 633 5.809

At point a on the Rayleigh line of Fig. 6.31
importance of point ¢. we analyze further some of the governing equations. By differentiat-
ing the linear momentum equation for Rayleigh flow (Eq. 6.119 ) we obtain

or

Combining Eq. 6.121

For an ideal gas

or

Consolidation of Eqgs.

dh =

6.123

dp = —pV dv
d,

“aP —VdV
el

T ds =

. ds/dT = 0. To determine the physical

(6.121 )

with the second T ds equation (Eq. &.12 ) leads to
dh + V dv

( 6.122)

¢, dT. Thus, substituting into Eq. 6.122 gives

T ds
ds o Cp
dT T

6.121

tion of state). and 6.88 (continuity) leads to

ds C}_) v

dT T = T [(T/V) — (V/R)]

= c,dTl + VdVv
VvV dV
T dT
(linear momentum), 6 .86 (differentiated equa-

1

( 6.123)

Hence. at state a where ds/dT = O, Eq. 6.124 reveals that

Comparison of Eqgs.

6.125

dT 1
 ds/dT  (c,/T) + (V/D[(T/V) — (V/R)]™!
which for d7T/ds = 0O (point b) gives S

ds

and 6.29

V., =

g RT .k

1
. dT/ds = 0. From Eq. 6.124 we get

( 6.124)

( 6.125)

tells us that the Mach number at state a is eaual to 1.
Ma, =
At point & on the Rayleigh line of Fig. 6¢.31

(6.126 )

Mab -

( 6.127 )

The flow at point b is subsonic (Ma, << 1.0). Recall that £ => 1 for any gas.
To learn more about Ravleigh flow, we need to consider the energy equation in addi-
tion to the equations already used. Application of the energy equation ( Part ¢2)) to the

Rayleigh flow through the finite control volume ot Fig. 6.30

{ax)

8

O(negligibly small

for gas flow)

-~

+ g(z/— 21)] = Ouet +

()

vields

O(flow is steady
throughout)

shaft
net in

T

(<)

& Y
M FIGURE 6.32 (a) Subsonic Rayleigh flow. (#) Supersonic Rayleigh flow.
(c) Normal shock in a Rayleigh flow.

Dr. Mohsen Soliman

- 74/125 -

MEP 580 Compressible Flow



m TABLE 6.2
Summary of Rayleigh Flow Characteristics

Heating Cooling
Ma =< 1 Acceleration Deceleration
Ma = 1 Deceleration Acceleration

or in differential form for Rayvleigh flow through the semi-infinitesimal control volume of

Fig. 6.30 dh +~ VdV = 8q ( 6.128)
where &g is the heat transfer per unit mass of fluid in the semi-infinitesimal control volume.
By using dh = ¢, dT = Rk dT/(k — 1) in Eq. 6.128 . we obtain
dv _ 8q [V ar | Vi(k — l)]*'
A% cp, LT dV kRT
Thus. by combining Eqs. 6.29 (ideal gas speed of sound)., E.7 (Mach number). 6.1 and
6.86 (ideal gas equation of state). 6.88 (continuity). and 6.121 (lincar momentum) with
Eq. 6.129 (energy) we get A Sq 1 € 6.130 )
A% cp I (1 — Ma?)

With the help of Eq. 6.130 ., we see clearly that when the Rayleigh flow is subsonic
(Ma << 1), fluid heating (8g = 0) increases fluid velocity while fluid cooling (8g << 0) de-
creases fluid velocity. When Rayleigh flow is supersonic (Ma = 1), fluid heating decreases
fluid velocity and fluid cooling increases fluid velocity.

The second law of thermodynamics states that, based on experience, entropy increases
with heating and decreases with cooling. With this additional insight provided by the con-
servation of energy principle and the second law of thermodynamics, we can say more about
the Rayleigh line in Fig. 6.31 . A summary ol the qualitative aspects of Rayleigh flow is
outlined in Table 6.2 and Fig. 6.32 . Along the upper portion of the line., which includes
point &, the flow is subsonic. Heating the fluid results in flow acceleration to a maximum
Mach number of 1 at point a. Note that between points » and a along the Rayleigh line,
heating the fluid results in a temperature decrease and cooling the fluid leads to a tempera-
ture increase. This trend is not surprising if we consider the stagnation temperature and fluid

( 6.129)

velocity changes that occur between points a and £ when the fluid is heated or cooled. Along
the lower portion of the Rayleigh curve the flow is supersonic. Rayleigh flows may or may
not be choked. The amount of heating or cooling involved determines what will happen in
a specilic instance. As with Fanno flows, an abrupt deceleration from supersonic flow to sub-
sonic flow across a normal shock wave can also occur in Rayleigh flows,

To quantify Rayleigh flow behavior we need to develop appropriate forms of the gov-
crning equations. We elect to use the state of the Rayleigh flow fluid at point ¢ of Fig. 6.31
as the reference state. As shown earlier. the Mach number at point ¢ is 1. Even though the
Rayleigh Now being considered may not choke and state ¢ is not achieved by the low, this
reference state 1s useful,

[ we apply the linear momentum equation (Eq. 6.119 ) ito Rayleigh flow between any
upstream section and the section, actual or imagined., where state @ 1s attained, we get

P+ pV:i=p, + p, V2

2 N i V2 o .

= 1 + | % { 6.131)

l"’{! f”{f ""{F
By substituting the ideal gas equation of state into Eq. 6.131 and making use of
the ideal gas speed-of-sound equation (Eq. 6.29 ) and the definition of Mach number
(Eq. E.7 ). we obtain

o

2. I + k& -
L o - ( 6.132)
e 1 + AMa~
From the ideal gas equation of state we conclude that
' ? g2, _
L _ P Pa ( 6.133)
T, Pa P
Conservation of mass (Eq. E.1) with constant A gives
2 v
Pa ( 6.134)
P Va

which when combined with Eqs. 6.29 (ideal gas speed of sound) and E.7 (Mach number

definition) gives Pu Ny IJ T C 6.135)
o a V T, 6.135
Combining Eqs. 6.133 and 6.135 leads to
T P : 2
— = Ma ( 6.136 )
1, Pa

which when combined with Eq. 6.132 gives

r [(I “+ k)Ma ]3
T, 1 + AMa®
From Eqs. 6.134 . 6.135 . and 6.137 we see that
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Pa _ V

==Ma[ ( 6.138 )

2] V.

o«

1 + AMaZ

The energy equation ( Part (11) tells us that because of the heat transfer involved in
Ravleigh flows, the stagnation temperature varies. We note that

T T T T,
(D)
TO,a T ;r'a TO,a
We can use Eq. E.17 (developed earlier for steady, isentropic, ideal gas flow) to evaluate
To/T and T,/T,, because these two temperature ratios, by definition of the stagnation state,

involve isentropic processes. Equation 6.137 can be used for 7/7,. Thus, consolidating Eqgs.
6.139 . E17 . and 6.137 we obtain

(1 + k)Ma]

> k — 1 5
- 2(k + 1)Ma~ (l -+ s Ma*)
o _ S— ( 6.140)
75 . (1 + AMa™)~
. Po _ (Po\f P Pa
Finally, we observe that Pow (p )(Pa)(!’o,a ( 6.141)

We can use Eq. E.20 developed earlier for steady, isentropic, ideal gas flow to evaluate po/p
and p,/py., because these two pressure ratios, by definition. involve isentropic processes.
Equation 6.132 can be used for p/p,. Together, Eqs. E20 . 6.132 ., and 6.141 give

= e (G ) (s e[
— 1+ = — M= 6.142
Poa (1 + kMa?) [\ k + 1 2 “ ( )

Values of p/p,. T/T,. p,/p. or V/V . T,/T,,. and py/p,, are graphed in Fig. D.3 of
Appendix D as a function of Mach number for Rayleigh flow of air (kK = 1.4). The values
in Fig. D.3 were calculated from Eqs. 6.132 | 6.137 . 6.138 ., 6.140 | and 6.142 . The use-
fulness of Fig. ID.3 is illustrated in Example 6.30

o1 .5 1.0 5.0 1000
2.E .

2.0

1.C

0.C ==l 0
.1 0.5 1.0 2.0 10,0
Ma

m FIGURE D.3 Ravieigh flow of am ideal gas: with £ = 1.4, (Grapl provided by Profes-
sor Broee A. Reichert of Kansas State University. )
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The information in Table 6.2 shows us that subsonic Rayleigh flow accelerates when heated
and decelerates when cooled. Supersonic Rayleigh flow behaves just opposite to subsonic
Rayleigh flow; it decelerates when heated and accelerates when cooled. Using Fig. D.3 for
air (k = 1.4), state whether velocity, Mach number, static temperature, stagnation tempera-
ture, static pressure, and stagnation pressure increase or decrease as subsonic and supersonic
Rayleigh flow is (a) heated, (b) cooled.

Solution:
Acceleration occurs when V/V, in Fig. D.3 increases. For deceleration, V/V, decreases. From
Fig. D.3 and Table 6.2 the following chart can be constructed.

Heating Cooling

Subsonic Supersonic Subsonic Supersonic
| % Increase Decrease Decrease Increase
Ma Increase Decrease Decrease Increase
T Increase for Increase Decrease for Decrease

0 =Ma = V1/k = 0.845 0 =Ma= \VIi/k = 0.845

Decrease for Increase for

V1/k=Ma = 1 VI1/k=Ma =1
T4 Increase Increase Decrease Decrease
2 Decrease Increase Increase Decrease
Po Decrease Decrease Increase Increase

From the Rayleigh flow trends summarized in the table above, we note that heating af-
fects Rayleigh flows much like friction affects Fanno flows. Heating and friction both ac-
celerate subsonic flows and decelerate supersonic flows. More importantly, both heating and
friction cause the stagnation pressure to decrease. Since stagnation pressure loss is consid-
ered undesirable in terms of fluid mechanical efficiency, heating a fluid flow must be ac-
complished with this loss in mind.

6.9.1 The Mach-Number Relations and Tables of The Rayleigh-Flow:

Similar to the behavior of Fanno-flow, we note that the maximum entropy is found at
point (a) on Figs.6.31 and 6.32 where the value of Mach Number Ma),= 1 (eq.
6.126). So the flow is sonic at point (a). If we consider point (a) as a reference point
and write down all the Mach-Number relations of the Rayleigh-flow, we get:

For convenience, we specify that the outlet section is sonic, Ma=1,Point (a) on Fig.6.31
with reference properties 7§, T, p*=, p*, V¥, and p{. The inlet is assumed to be at ar-
bitrary Mach number Ma. Equations (a, b, ¢, and d) then take the following form:

¥
o

To _ (k+1)Ma’[2 + (k— 1) Ma’] (6.143a)
TS (1 + k Ma>)
T  (k+ 1)> Ma® (6.143b)
T+ (1 + k Ma?)’
7 k+ 1
;;c "1+ k Ma® (01439
V. _p* _ (k+ 1) Msf (6.143d)
Vi p I + k Ma”
Po _ k+1 [2 + (k— 1) Maz]kﬂk—” (6.143¢)
P 1 + k& Ma” k+ 1

These formulas are all tabulated versus Mach number in TableB6.4. The tables are
very convenient if inlet properties Ma,, V,, etc., are given but are somewhat cum-
bersome if the given information centers on 7Ty, and Too. Let us illustrate with an
example.
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Table B6.4 Rayleigh-flow:Frictionless Duct Flow with Heat Transfer for k = 1.4

W% 2 To/T7§ pp= = PEIp = ViVE Popi
0.0 0.0 2.4000 0.0 0.0 1.2679
0.02 0.0019 2.3987 0.0023 0.0010 1.2675
0.04 0.0076 2.3946 0.0092 0.0038 1.2665
0.06 0.0171 2.3800 0.0205 0.0086 1.2647
0.08 0.0302 2.3787 0.0362 0.0152 1.2623
0.1 0.0468 2.3669 0.0560 0.0237 1.2591
0.12 0.0666 2.3526 0.0797 0.0339 1.2554
014 Q.0895 2.3359 0. 1069 0.0458 1.2510
016 a.1151 2.3170 0.1374 0.0593 1.2461
0.18 0.1432 2.2959 0.1708 0.0744 1.2406
0.2 0.1736 22727 0.2066 0.0909 1.2346
0.22 0.2057 2.2477 0.2445 0. 1088 1.2281
0.24 0.2395 2.2209 0.2841 0.1279 1.2213
0.26 0.2745 2.1925 0.3250 0. 1482 1.2140
0.28 0.3104 21626 0.3667 0.1696 1.2064
0.3 0.3469 21314 0. 4089 0. 1918 1.1985
0.32 0.3837 2.0091] 04512 0.2149 1.1904
0.34 0.4206 2.0657 0. 4933 0.2388 1.1822
0.36 Q4572 2.0314 0.5348 0.2633 1.1737
0.38 0.4935 1.9964 0.5755 0.2883 1.1652
0.4 0.5290 1.9608 0.6151 0.3137 1.1566
0.42 0.5638 1.9247 0.6535 0.3395 1.1480
0.4 0O.5975 1.8882 0.6903 0.3656 1.1394
046 0.6301 1.8515 0.7254 0.3918 1.1308
0.48 0.6614 1.8147 0. 7587 Q4181 1.1224
0.5 0.6914 1.7778 0.7901 O, 4444 1.1141
0.52 0. 7199 1.7409 0.8196 O.4708 1.1059
0.54 Q. 7470 1.7043 0.8469 0. 4970 1.0979
0.56 0. 7725 1.6678 0.8723 0.5230 1.0901
0.58 0.7965 1.6316 0.8955 0.5489 1.0826
0.6 0.8189 1.5957 0.9167 0.5745 1.0753
0.62 0.8398 1.5603 0.9358 0.5998 1.0682
0.64 0.8592 1.5253 0.9530 0.6248 1.0615
0.66 0.8771 1.4908 0.9682 0.6494 1.0550
0.68 0.8935 1.4569 0.9814 0.6737 1.0489
0.7 0.9085 1.4235 (.9929 0.6975 1.0431
0.72 0.9221 1.3907 1.0026 0. 7209 1.0376
0.74 0.9344 1.3585 1.0106 0.7430 1.0325
0.76 0.9455 1.3270 1.0171 0. 7665 1.0278
0.78 0.9553 1.2961 1.0220 0. 7885 1.0234
0.8 0.9639 1.2658 1.0255 0.8101 1.0193
0.82 0.9715 1.2362 1.0276 0.8313 1.0157
0.84 0.9781 1.2073 1.0285 0.8519 1.0124
0.86 09836 1.1791 1.0283 0.8721 1.0095
0.88 09883 1.1515 1.0269 0.8918 1.0070
0.9 0.9921 1.1246 1.0245 0.9110 1.0049
0.92 0.9951 1.0984 1.0212 0.9297 1.0031
0.94 0.9973 1.0728 1.0170 0.9480 1.0017
0.96 00,9988 1.0479 1.0121 0.9658 1.0008
0.98 0.9997 1.0236 1.0064 0.9831 1.0002
1.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.02 0.9997 0.9770 .9930 1.0164 1.0002
1.04 0.99589 0.9546 0.9855 1.0325 1.0008
1.06 0.9977 0.9327 0.9776 1.0480 1.0017
1.08 0.9960 0.9115 0.9691 1.0632 1.0031
1.1 0.9939 0.8909 0.9503 1.0780 1.0049
1.12 09915 08708 09512 1.0923 1.0070
1.1 09887 0.8512 0.9417 1.1063 1.0095
1.16 09856 08322 09320 1.1198 1.0124
1.18 09823 08137 09220 1.1330 1.0157
1.2 Q.9787 0. 7958 09118 1.1459 1.0194
1.22 09749 O.FTR3 [UR= 0 ) 1.1584 1.0235
1.24 0.9709 0.7613 0.8911 1.1705 1.0279
1.26 09668 0. 7447 08805 1.1823 1.0328
1.28 0.9624 0. 7287 0. B690 1.1938 1.0380
1.3 09580 0. 7130 0.8592 1.2050 1.0437
1.32 09534 06978 08481 1.2159 1.0497
1.34 09487 06830 O.8377 1.2264 1.0561
1.36 0.9440 06686 085269 1.2367 1.0629
1.38 09391 06546 08161 1.2467 1.0701
1.4 0.9343 0.6410 0.8054 1.2564 1.0777
1.42 0.9293 06278 0. 7947 1.2659 1.0856
1.4 0.9243 0.6149 0. 7840 1.2751 1.0940
1.46 0.9193 06024 0.7735 1.2840 1.1028
1.48 09143 O.5902 0. 7629 1.2927 1.1120
1.5 0.9093 0.5783 0.7525 1.3012 1.1215
1.52 09042 0.5668 0. 7422 1.3095 1.1315
1.54 08992 0.5555 07319 1.3175 1.1419
1.56 0. 8942 0.5446 0.7217 1.3253 1.1527
1.58 0.8892 0.5339 07117 1.3329 1.1640
1.6 0. 8842 0.5236 0. 7017 1.3403 1.1756
1.62 0Q.8792 0.5135 06919 1.3475 1.1877
1.6 0.8743 05036 0.6822 1.3546 1.2002
1.66 0.8694 0.4940 0.6726 1.3614 1.2131
1.68 O.8645 0. 4847 O.ac3l 1.3681 1.2264
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Table B6.4 Rayleigh-flow:Frictionless Duct Flow with Heat Transfer for k = 1.4

TolTH pip Ty pEp = VIV ol
O.8597 0. 4756 06538 1.3746 1.2402
08549 O 4668 06445 1.3809 1.2545
08502 0. 4581 0O.6a3ss 1.3870 1.2692
O.8455 O 4497 O.6265 1.3931 1.2843
QL8409 O 4415 0.6l7e 1.3989 1.2999
08363 0. 4335 O aOE39 1. 4046 1.3159
08317 0. 4257 (AT e 1.4102 1.3324
08273 O 4181 05919 1.4156 1.3494
08228 O 4107 05836 1.4209 1.3669
O.B8185 O 4035 05754 1.4261 1.3849
08141 0.3964 05673 1.4311 1.4033
Q280909 O.3895 0. 55094 1.4360 1.4222
08057 0.3828 05516 1. 4408 1.4417
O.B8015 03763 05439 1.4455 14616
Q. 7974 0. 36900 05364 1.4501 1.4821
0. 7934 0.3636 05289 1.4545 1.5031
0. 7894 O.3575 05216 1.4589 1.5246
07855 0.3516 05144 1.4632 1.5467
07816 0.3458 05074 1.4673 1.5693
O T7T7TE 0.3401 O SO0 1.4714 1.5924
Q7741 0.3345 04936 1.4753 1.6162
Q7704 0.3291 04868 1.4792 1.6404
0. 7a67 0.3238 04802 1. 4830 1.6653
07631 0.3186 O AT37 1.4867 1.6908
0. 7596 0.3136 04673 1.4903 1.7168
07561 03086 0461l 1.4938 1.7434
0. 7527 O.3038 O 4549 1.4973 1.7707
2. 0. 7493 0.2991 04438 1.5007 1.7986
2. 0. 7460 0. 2945 04428 1.5040 1.8271
2. 0. 7428 0. 2890 O 4370 1.5072 1.8562
2. 0. 7395 0.2855 4312 1.5104 1.8860
2. 0. 7364 02812 04256 1.5134 1.9165
2. 0. 7333 0. 2769 O 42000 1.5165 1.9476
2. 0. 7302 02728 4145 1.5194 1.9794
2. 07272 0.2688 O 409 1 1.5223 20119
2 .- 0.7242 0. 2648 04038 1.5252 20451
2 - 07213 O 2605 03986 1.5279 2 0789
2 .- 07184 0.2571 03935 1.5306 21136
2. 07156 0. 2534 3885 1.5333 21489
2 .- 07128 02497 03836 1.5359 21850
2. 0. 7101 0.2462 03787 1.5385 22218
2. 0. 7074 0.2427 3739 1.5410 2.2594
2. 0. 7047 0.2392 3692 1.5434 2.2978
2. 0. 7021 0. 2359 O 3646 1.5458 23370
2. 06995 0.2326 O 3601 1.5482 23770
2.6 06970 0.2294 0. 3556 1.5505 24177
2.6 06045 0.2262 03512 1.5527 2. 4593
2.6 06921 0.2231 0 3469 1.5549 25018
2.6 0. 6E96 0.2201 03427 1.5571 2.5451
2.6 06873 02171 03385 1.5592 25892
2. 06849 02142 03344 1.5613 2.6343
2. 06826 02113 O 330 1.5634 2.6802
2. 06804 0.2085 0. 3264 1.5654 27270
2. 06781 0.2058 .3225 1.5673 27748
2. 06761 02030 0.3186 1.5693 28235
2. 06738 O 2000 03149 1.5711 28731
2. 06717 01978 a.3111 1.5730 29237
2. 06696 0. 1953 0.3075 1.5748 29752
2. O.667S o 1927 0.3039 1.5766 30278
2. 06655 01903 0. 3004 1.5784 30813
2. 06635 O 1879 02969 1.5801 3.1359
2. O66ls 0. 1855 0.2034 1.5818 31914
2. 06506 01832 0.2001 1.5834 32481
2. 06577 O 1809 0.2868 1.5851 33058
2. 06558 O 1787 0.2835 1.5867 3. 36040
3. 06540 01765 0.2803 1.5882 34245
3. 06522 01743 0.2771 1.5898 3. 4854
3. 06504 01722 0. 2740 1.5913 35476
3. 06486 0. 1701 02709 1.5928 36108
3. 06469 0. 1681 0.2679 1.5942 36752
3. 06452 0. 1660 02650 1.5957 3. 7408
3. O.6435 O 1641 0.2620 1.5971 3. 8076
3. O6418 0. 1621 02592 1.5985 3. 8756
3. O.ad402 O 1602 0.2563 1.5993 30449
3. 0635806 01583 0.2535 1.6012 40154
3. 06370 0. 1565 0.2508 1.6025 40871
3. 06354 0. 1547 02481 1.6038 4. 1602
3. 06339 0. 1529 0.2454 1.6051 42345
3. 06324 . 1511 0.2428 1.6063 43101
3. 06309 O 1494 0.2402 1.6076 4. 3871
3. 06294 01477 0.2377 1.6088 4. 4655
3. 062580 . 1461 0.2352 16100 4. 5452
3. 06265 O 1444 0.2327 16111 4. 6263
3. 06251 0. 1428 0.2303 1.6123 4. 7089
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Table B6.4 Ravleigh-flow:Frictionless Duct Flow with Heat Transfer for k = 1.4

NMa To/TH pPip* T PEMp = VIVE Po’ps
3.38 0.6237 0.1412 0.2279 1.6134 4.7929
3.4 0.6224 0.1397 0.2255 1.6145 4.8783
3.42 0.6210 0.1381 0.2232 1.6156 4.9652
3.44 06197 0.1366 02209 1.6167 5.0536
3.46 06184 0.1351 0.2186 1.6178 5.1435
3.48 06171 0.1337 0.2164 1.6188 5.2350
3.5 06158 0.1322 0.2142 1.6198 53280
3.52 06145 0.1308 0.2120 1.6208 54226
3.54 06133 0.1294 0. 2000 1.6218 5.5188
3.56 0.6121 0.1280 0.2078 1.6228 5.6167
3.58 0.6109 0.1267 0.2057 1.6238 57162
3.6 0.6097 0.1254 0.2037 1.6247 58173
3.62 0.6085 0.1241 0.2017 1.6257 5.9201
3.64 0.6074 0.1228 0.1997 1.6266 6.0247
3.66 06062 0.1215 0. 1977 1.6275 6.1310
3.68 06051 0.1202 0.1958 1.6284 6.2390
3. 06040 0.1190 0.1939 1.6293 63488
3.72 06029 0.1178 01920 1.6301 6.4605
3.74 C0.6018 0.1166 0.1902 1.6310 6.5739
3.76 06008 0.1154 0.1884 1.6318 66893
3.78 0.5997 0.1143 0.1866 1.6327 6.8065
3.8 0.5987 0.1131 0.1848 1.6335 6.9256
3.82 0.5977 0.1120 0.1830 1.6343 7.0466
3.84 0.5967 0.1109 0.1813 1.6351 7.1696
3.86 0.5957 0.1098 0.1796 1.6359 7.2945
3.88 0.5947 0. 1087 0.1779 1.6366 74215
3.9 0.5937 0. 1077 0.1763 1.6374 7.5505
3.92 0.5928 0.1066 0.1746 1.6381 7.6816
3.94 0.5918 0.1056 0.1730 1.6389 7.8147
3.96 0.5909 0.1046 0.1714 1.6396 7.94909
3.98 0.5900 0.1036 0.1699 1.6403 2.0873
4.0 0.5891 0.1026 0.1683 1.6410 8.2269

Example 6.31:
A fuel-air mixture, approximated as air with k£ = 1.4, enters a duct combustion chamber at V| =

75 m/s, py = 150 kPa, and 7'y = 300 K. The heat addition by combustion is 900 klJ/kg of mix-
ture. Compute (a) the exit properties V5. p>, and 75 and (b) the total heat addition which would
have caused a sonic exit flow.

Solution
Part (a)
First compute Ty = T} + Vzlf(ch) = 300 + (75)21[2(1005)] = 303 K. Then compute the change
in stagnation temperature of the gas: g = c,(Toax — Toy)
. q A2 900,000 J/kg

- — 4+ 4 = 3()- -+ =
or Toz To] c, 303 K 1005 Jf(kg . K) 1199 K
We have enough information to compute the initial Mach number:

a, = VEKRT, = [1.4(287)(300)]"? = 347 m/s Ma, = % = % = 0.216
: 3
For this Mach number, use Eq.(6.143a) or Table B6.4to find the sonic value 7T%:
i Toi _ 303 K
2 = 7 - _— == - = — = 9

At Ma, 0.216: T 0.1992 ol 45 0.1992 1521 K

Then the stagnation temperature ratio at section 2 is Too/T3 = 1199/1521 = 0.788, which cor-
responds in Table B6.4to a Mach number Ma, = 0.573.

Now use Table B6.4at Ma; and Ma, to tabulate the desired property ratios.

Section Ma V/VE plp* T/T*
1 0.216 0.1051 2.2528 0.2368
2 0.573 0.5398 1.6442 0.8876
The exit properties are computed by using these ratios to find state 2 from state 1:
Vo/ Vo 0.5398
Vs Vi VIV (75 m/s) 0.1051 83 m/s
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polp* 1.6442

f— — = - = ] - -, "
P2 = Py Al (150 kPa) 32538 109 kPa Ans. (a)
T-/T* 0.8876
1> = = (3 ——— = 112¢ v (G
1> =T, T (300 K) 0.2368 1124 K Ans. (a)

Part (b)
The maximum allowable heat addition would drive the exit Mach number to unity:
Tor =T = 1521 K
Gmax = Cp(TH — Toy) = [1005 J/(kg - K)](1521 — 303 K) = 1.22 E6 J/kkg  Ans. (b)

6.9.2 The Choking of Rayleigh-Flow Due to Simple Heating:

Equation (6.143a) and Table B6.4 indicate that the maximum possible stagnation tem-
perature in simple heating corresponds to T, or the sonic exit Mach number. Thus,
for given inlet conditions, only a certain maximum amount of heat can be added to the
flow, for example, 1.22 MJ/kg in Example 6.31 . For a subsonic inlet there is no theo-
retical limit on heat addition: The flow chokes more and more as we add more heat,
with the inlet velocity approaching zero. For supersonic flow, even if Ma, is infinite,
there is a finite ratio T/ T = 0.4898 for k = 1.4. Thus if heat is added without limit
to a supersonic flow, a normal-shock-wave adjustment is required to accommodate the
required property changes.

In subsonic flow there is no theoretical limit to the amount of cooling allowed: The
exit flow just becomes slower and slower, and the temperature approaches zero. In su-
personic flow only a finite amount of cooling can be allowed before the exit flow ap-
proaches infinite Mach number, with Tp/T{ = 0.4898 and the exit temperature equal
to zero. There are very few practical applications for supersonic cooling.

Example 6.32:

What happens to the inlet flow in Example 0.31 if the heat addition is increased to 1400 kl/kg
and the inlet pressure and stagnation temperature are fixed? What will be the subsequent de-
crease in mass flow?
Solution
For ¢ = 1400 kJ/kg, the exit will be choked at the stagnation temperature
. G ann 1.4 E6 J/kg
ro=To + cp 303+ 1605 J/(ke - K)
This is higher than the value 73 = 1521 K in Example 6.3]1, so we know that condition 1 will
have to choke down to a lower Mach number. The proper value is found from the ratio
To/ T = 303/1696 = 0.1787. From Table B6.4 or Eq. (6.143) for this condition, we read the

= 1696 K

new, lowered entrance Mach number: Ma, ..., = 0.203. With T, and p,; known, the other inlet
properties follow from this Mach number:
o To _ 03
h="1Fo02 Ma3 — 1 + 0.2(0.203)°

i

=301 K

a, = VKRT, = [1.4(287)(301)] '* = 348 m/s

Vi = Ma; a; = (0.202)(348 m/s) = 70 m/s
o 150,000
Pr="RT, ~ (287)(301)
Finally, the new lowered mass flow per unit area is

LIW =p,V, = (1.74 kgfmj)('f'() m/s) = 122 kg/(s - m?)

This is 7 percent less than in Example 6.31, due to choking by excess heat addition.

= 1.74 kg/m’
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6.9.3 Relation Between Normal Shock Wave and The Fanno and Rayleigh Flows:

As mentioned earlier, normal shock waves can occur in supersonic flows through converg-
ing-diverging and constant-area ducts. Past experience suggests that normal shock waves in-
volve deceleration from a supersonic flow to a subsonic flow, a pressure rise, and an increase
of entropy. We found also that normal shock waves may happen in supersonic constant area duct
flow as discussed before. We showed that choking of any supersonic flow must lead to occuring of
a normal shock wave (for the Fanno-flow, Isothermal-flow, and the Rayvleigh-flow). In this section
we shall deive in details the normal shock wave equations given before in Sec.6.5.

To develop the equations that verify this observed behavior of flows across a nor-

mal shock, we apply first principles to the flow through a control volume that completely
surrounds a normal shock wave (see Fig. 6.33 ). We consider the normal shock and thus the
control volume to be infinitesimally thin and stationary.

For steady flow through the control volume of Fig. 6.33 | the conservation of mass
principle yields pV = constant ( 6.144 )

because the flow cross-sectional area remains essentially constant within the infinitesimal

Diverging constant area-duct

duct
= MNormal shock wawve
)/
o INnTinitesimally thin
Supersonic control volume
ﬂL._. > Subsonic

| Tloww

Section (x)

|
| i 5
. /Sec‘hon ()

“‘\_‘\“_\———‘

m FIGURE 6.33 Normal shock control volume.

thickness of the normal shock. Note that Eq. 6.144 is identical to the continuily equation
used for Fanno and Rayleigh flows considered earlier.

The friction force acting on the contents of the infinitesimally thin control volume sur-
rounding the normal shock is considered to be negligibly small. Also for ideal gas flow, the
effect of gravity is neglected. Thus. the linear momentum equation ( Part (2) ) describing

steady gas flow through the control volume of Fig. 6.33 is p + pV® = constant
(pV)’RT
or for an ideal gas for which p = pRT, P+ T = constant ( 6.145)

Equation 6.145 is the same as the linear momentum equation for Rayleigh flow, which was
derived earlier (Eq. 6.120).

For the control volume containing the normal shock, no shaft work is involved and the
heat transfer is assumed negligible. Thus, the energy equation ( Part (2) ) can be applied to
steady gas flow through the control volume of Fig. 6.33 to obtain

-

h + - = /i, = constant
or. for an ideal gas, since i — hy = cp(T — Ty) and p = pRT
(pvy’r* . _
'+ ————- = T, = constant ( 6.146 )
2¢,(p~/R~)

Equation 6.146 is identical to the energy equation for Fanno flow analyzed earlier (Eq.6.84).

The T ds relationship previously used for ideal gas flow (Eq. 6.16 ) is valid for the
flow through the normal shock (Fig. 6.33 ) because it (Eq. 6.16 ) is an ideal gas property re-
lationship.

From the analyses in the previous paragraphs, it is apparent that the steady flow of an
ideal gas across a normal shock is governed by some of the same equations used for de-
scribing Fanno and Rayleigh flows (energy equation for Fanno flows and momentum equa-
tion for Rayleigh flow). Thus, for a given density-velocity product (pV), gas (R.k), and con-
ditions at the inlet of the normal shock (7., p,, and s,), the conditions downstream of the
shock (state y) will be on both a Fanno line and a Rayleigh line that pass through the inlet
state (state x), as is illustrated in Fig. 6.34 = To conform with common practice we designate
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B FIGURE 6.34 The relationship
between anormal shock and Fanno

and Rayleigh lines.

the states upstream and downstream of the normal shock with x and y instead of numerals 1
and 2. The Fanno and Rayleigh lines describe more of the flow field than just in the vicin-
ity of the normal shock when Fanno and Rayleigh flows are actually involved (solid lines in
Figs. 6.35a and 6.35b ). Otherwise, these lines (dashed lines in Figs. 6.35a , 6.35b , and
6.35¢ ) are useful mainly as a way to better visualize how the governing equations combine
to yield a solution to the normal shock flow problem.

The second law of thermodynamics requires that entropy must increase across a nor-
mal shock wave. This law and sketches of the Fanno line and Rayleigh line intersections,
like those of Figs. 6.34 and 6.35 . persuade us to conclude that flow across a normal
shock can only proceed from supersonic to subsonic flow. Similarly, in open-channel flows
the flow across a hydraulic jump proceeds from supercritical to subcritical conditions.

Since the states upstream and downstream of a normal shock wave are represented by
the supersonic and subsonic intersections of actual and/or imagined Fanno and Rayleigh
lines, we should be able to use equations developed earlier for Fanno and Rayleigh flows to
quantify normal shock flow. For example, for the Rayleigh line of Fig. 6.35b

Py Py \ [ Pa
—-(—)( * ( 6.147)
Px Pa Px
But from Eq. 6.132 for Rayleigh flow we get
Py 1 + k
ol A L LA - ( 6.148 )
and Pa I + kMaj
7. 1 + &
Px e ( 6.149)
Pa 1 + kMaz
Thus, by combining Eqs. 6.147 6.148 ., and 6.149 we get
Py 1 + kMaZ
- —_— ( 6.150 )
P 1 + kMa;
r Pao, ~ FPo, r
R Ty =
constant
‘\\ p:\k
N
r constant
s
.
(cx) (&)
& &
T
m FIGURE 6.35
() The normal shock in a Fanno flow.
(&) The normal shock in a Ravleigh fflow.
() The normal shock in a frictionless and
adiabatic (isentropic) flow.
()
5
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Equation ©.150 can also be derived starting with

P (2)(20)
Px P* )\ Px

and using the Fanno flow equation (Eq. 6.116 )

p 1 (k + 1)/2 12
N {1 + [(k — l)/2]Ma2}

pE Ma
As might be expected, Eq. 6.150 can be obtained directly from the linear momentum
equation Py + p V= Py + p}.Vi
since pV?/p = V?/RT = kV?/RTk = k Ma*.

For the Fanno flow of Fig.6.35a. Ty = T}-)(T*) ( 6.151)
T, 1+ T,
From Eq. 6.110 for Fanno flow we get
L _ (K + 1)/2 6.152)
T 1 + [(k — 1)/2]Ma] Ce
T, (k + 1)/2
= . 6.153
and 7% 1+ [(k — 1)/2]MaZ ( )
A consolidation of Eqs. 6.151 ., 6.152 . and 6.153 gives
7, 1+ [(k— 1)/2]Ma; ( )
T. 1+ [(k— 1)/2]Ma] 6154

We seeck next to develop an equation that will allow us to determine the Mach number
downstream of the normal shock, Ma,., when the Mach number upstream of the normal shock,
Ma,. is known. From the ideal gas equation of state. we can form

JCJ\, T\‘ p\‘
- —( )( ) ( 6.155)
1[).?( T:\: p.r
Using the continuity equation PV vV
2y T\' v\-
with Eq. 6,155 we obtain 7. = T\')(V\') { 6.156 )

When combined with the Mach number definition (Eq. E.7 ) and the ideal
sound equation (Eq. 6.29 ). Eq. 6.156 beccomes

Py 7.‘\. 172 7N a,
il NMa ( 6.157)
Thus, Egqs. 6.157 and 6.154 lead to
Py { 1+ [(k — I)/ZJM:!‘\!}'/-: Ma,

zas specd-« -

= = 6. 158
7. I + [(k — 1)/2]Ma2 Ma, ( )
which can be merged with Eq. 6.150 to vield
. Ma7 + [2/(k — 1)]
Mas; = 5 6.159
YT [2k/(k — 1)]MaZ — | ( )

Thus, we can use Eq. 6.159 1o calculate values of Mach number downstream of a normal

shock from a known Mach number upstream of the shock. As suggested by Fig, 6.35 . 1o
have a normal shock we must have Ma, = 1. From Eq. 6.159 we find that Ma, = 1.
I we combine Eqs. 6,159 and 6.150 . we get
b 2k 5 Ak — 1
— = — Mo — — { 6.160 )
JzR A+ 1 * ko 1

which allows us to calculate the pressure ratio across a normaal shock I'rom a known upstream
Mach number. Similarly. taking Eqgs. 6.159 and &.154 together we obtain
T, - {1 + [(A — 1)/2]MaZH{[2k/(k — 1)]MaZ — 1}

7, {(k + 1)/[2(k 1)] }Ma2 ( 6.161)

From the continuity equation (Eq. E.1). we have for ITow across a normal shock
Py V., o
= ( 6.162)
2. VvV,
and Ifrom the ideal gas eqguation of siate
s Py 7. -
— ( )(— ( 6.163)
P P T,

Thus, by combining Eqs. 6.162 . 6.163 . 6,160 . and 6.161. we get

2y Vv, (kK + 1)M:

= 6. 164
e \ (k — DMaZ + 2 ( )

¥
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m TABLE .3

Summary of Normal Shock Wawve Characteristics

Wariable Change Across Normal Shock Wave
Mach number Decrease
Static pressure Increase
Stagnation pressure Decrease
Static temperature Increase
Stagnation temperature Constant
Density Increase
Welocity Decrease

The stagnation pressure ratio across the shock can be determined by combining

5 (HER) e

with Eqs. E-20 _ E.10 _ and 6.160 to get

k+ 1 EAk— 1) 1 N — E)
Py + ———— Ma;
= = { 6.166 )

- - 14Kk — 1)
Po.x ( Maz — F 1 )
K+ 1 : E + 1

Fig. D.4 in Appendix D graphs wvalues of downstream Mach numbers, Ma,. pressure
ratio. p./p.. temperature ratio, 7,/T,. density ratio, p/p, or velocity ratio. V'V, and stag-
nation pressure ratio, pg Srg,. as a flunction of up:-:lré-aln Mach number. Ma,. for the steady
flow across a normal shock wave of an ideal gas having a specific heat ratio & = 1.4. These
values were calculated from Egs. 6150 . 6160 . 6.l16l . &lad | and 6.166.

Important trends associated with the steady flow of an ideal gas across a normal shock
wave can be determined by studying Fig. D4, These trends are summarized in Table 6.3 -

Examples 633 and 634 illustrate how Fig. D)4 can be used o solve fluid flow prob-
lems involving normal shock waves.

Example 6.33:
Designers involved with fluid mechanics work hard at minimizing loss of available energy
in their designs. Adiabatic, frictionless flows involve no loss in available energy. Entropy
remains constant for these idealized flows. Adiabatic flows with friction involve available
energy loss and entropy increase. Generally, larger entropy increases imply larger losses. For
normal shocks, show that the stagnation pressure drop (and thus loss) is larger for higher
Mach numbers.

Solution:

We assume that air (kK = 1.4) behaves as a typical gas and use Fig. D.4 to respond to the
above-stated requirements. Since . Poy Pox — Poy

Po.x Po.x
we can construct the following table with values of pg,/po, from Fig. D.4.

When the Mach number of the flow entering the shock is low, say Ma, = 1.2, the flow
across the shock is nearly isentropic and the loss in stagnation pressure is small. However,
at larger Mach numbers, the entropy change across the normal shock rises dramatically and
the stagnation pressure drop across the shock is appreciable. If a shock occurs at Ma, = 2.5,
only about 50% of the upstream stagnation pressure is recovered.

In devices where supersonic flows occur, for example, high-performance aircraft en-
gine inlet ducts and high-speed wind tunnels, designers attempt to prevent shock formation,
or if shocks must occur, they design the flow path so that shocks are positioned where they
are weak (small Mach number).

hﬂlax pl’l,yp’p i, x Pio'x — Poy M . P J‘/ P
o

1.0 1.0 0 1.0 1.0
1.2 0.99 0.01

1.5 0.93 0.07 1.2 1.5
2.0 0.72 0.28 1.5 2.5
2.5 0.50 0.50 2.0 4.5
3.0 0.33 0.67 3.0 10
3. 0.21 0.79 4.0 18
4.0 0.14 0.26

5.0 0.06 0.94 5.0 29
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Of interest also is the static pressure rise that occurs across a normal shock. These static
pressure ratios, p,/p,.. obtained from Fig. D.4 are shown in the table above for a few Mach
numbers. For a developing boundary layer. any pressure rise in the low direction is considered
as an adverse pressure gradient that can possibly cause [low separation-

Thus, shock—boundary layer interactions are of great concern Lo designers ol high-speed (low
devices.

Example 6.34:
A total pressure probe is inserted into a supersonic air flow. A shock wave forms just up-
stream of the impact hole and head as illustrated in Fig. E6.34 . The probe measures a to-
tal pressure of 60 psia. The stagnation temperature at the probe head is 1000 “R. The static
pressure upstream of the shock is measured with a wall tap to be 12 psia. From these data
determine the Mach number and velocity of the flow.

. i

Wall =tatic pressura [ﬂl:l"'f

ShcK

wave
- Stagnation
upersanic il
fow =™ e

— B FIGURE E6.34
X ¥ "'.\
\ Total
) pressure probe
Solution:

We assume that the flow along the stagnation pathline is isentropic except across the shock.
Also, the shock is treated as a normal shock. Thus, in terms of the data we have
oy o, Hox
= (o)
s Po.x P
where 7, 15 the stagnation pressure measured by the probe, and p, is the static pressure mea-
sured by the wall tap. The stagnation pressure upstream of the shock, py .. is not measured.
Combining Egs. |, 6.166 , and E.20 we obtain
* —
Poy [[(k + 1)/2]MaZ)} -0
. 2 1Ak — 1)
e {[26AKk + 1) Ma — [(k — DAk + 1))

which is called the Ravieigh Piret-tube formula. Values of py /p, from Eq. 2 are considered

important enough to be included in Fig. D24 for £ = 1.4, Thus, for £ = 1.4 and
Poy 6l psia
P 12 psia o
we use Fig. D4 1o ascertain that Ma, = 1.9 {AnNs)

To determine the flow velocity we need to know the static temperature upstream of the
shock, since Egs. 6.29 and E.7  can be used to yield
V., = Mac, = Ma, VRT . i3
The stagnation temperature downstream of the shock was measured and found to be
Ty, = 1000 °R
Since the stagnation temperature remains constant across a normal shock (see Eq. 6.146 )
To. = T,, = 1000 °R

For the isentropic flow upstream of the shock, Eq. E.17 or Fig. D.] can be used. For
Ma, = 1.9, T

L3

le_:_
ur T, = (0.59) 1000 “R) = 390 "R
With Eq. 3 we obtain

V, = 1.87 V[ 1716(ft - Ib)/(slug - °R)](590 °R)(1.4)[ 1(slug - ft)/(Ib - s?)] = 2200 ft/s (Ans)

Application of the incompressible flow Pitot tube results would give highly inaccurate results
because of the large pressure and density changes involved.

= (.59

Dr. Mohsen Soliman - 86/125 - MEP 580 Compressible Flow



3.0 4.0 5.0
. 40,0
l”ﬁJ\'
, Y ——
o 30,0
Py
2.
I
7
.
f* It
- 20.0 —X
e
X
1/
—*
vV
0.4 ¥
l”ﬂ,n'
fL
10.0
0.2
[l v
L I Tk
I‘ K VI\ _——
T
e
Fi
X
0.0 0.0
1.0 2.0 3.0 4.0 5.0
Ma,_

B FIGURHE D4 Normal shock flow of an ideal gas with & = 1.4 (Graph provided by

Profescor Bruce A. Reichert of Kansas State Univerzity.)

Example 6.35:

Determine, for the converging-diverging duct of Example 6.14 | the ratio of back pressure to
inlet stagnation pressure, py/po . (see Fig. 6.15 ), that will result in a standing normal shock

at the exit (x = +0.5 m) of the duct. What value of the ratio of back pressure to inlet stag-
nation pressure would be required to position the shock at x = +0.3 m? Show related
temperature-entropy diagrams for these tlows.

Solution:

For supersonic, isentropic flow through the nozzle to just upstream of the standing normal
shock at the duct exit, we have from the table of Example 6.14 at x = +0.5m

Ma, = 2.8
Px
and = 0.04
pO,.x p
From Fig. D.4 for Ma, = 2.8 we obtain Y — 90
Px
- }\.1 )\.' ¥ 2
Thus, Py _ (Jf)< P ) — (9.0)(0.04) = 0.36 = P (Ans)
JDO,.r JUA' pO,x ;U(),x

Dr. Mohsen Soliman - 87/125 - MEP 580 Compressible Flow



When the ratio of duct back pressure to inlet stagnation pressure, py/pPo.. 1s set equal to
0.36, the air will accelerate through the converging-diverging duct to a Mach number of 2.8
at the duct exit. The air will subsequently decelerate to a subsonic flow across a normal shock
at the duct exit. The stagnation pressure ratio across the normal shock, pg,/po.. is 0.38 (Fig.

D.4 for M, = 2.8). A considerable amount of available energy is lost across the shock.
For a normal shock at x = +0.3 m. we note from the table of Example 6.14 that
Ma, = 2.14 and P
— = 0.10 (1)
Po,x
From Fig. D.4 for Ma, = 2.14 we obtain p,/p, = 5.2. Ma, = 0.56 and
‘{:0’“" = 0.66 (2)
From Fig. D.1 for Ma, = 0.56 we get ;AO’I
— = 1.24 3
e 3)
For x = +0.3 m, the ratio of duct exit area to local area (Ay/A,) is, using the area equation
from Example 6.14, A, 0.1 + (0.5)?
= 1.842 (4)

Ay, 0.1 + (0.3

o-G )(A°)=<1.24>(1.842>=z.28

Note that for the isentropic flow upstream of the shock, A* = 0.10 m? (the actual throat area),
while f01 the isentropic flow downstream of the shock, A* = A,/2.28 = 0.35 m2/2.28 =
0.15 m?. With A,/A* = 2.28 we use Fig. D.1 and find Ma, = 0.26 and

Using Eqs. 3 and 4 we get

2
P2 _ g5 (5)
Combining Eqs. 2 and 5 we obtain Poy
5
P2 _ — (0.95)(0.66) = 0.63 (Ans)
pO,;\ PO\ Po.x

When the back pressure, p,, is set equal to 0.63 times the inlet stagnation pressure, pg.. the
normal shock will be positioned at x = +0.3 m. Note that p,/pg, = 0.63 is less than the
value of this ratio for subsonic isentropic flow through the converging-diverging duct, p»/pg
= 0.98 (from Example 6.14 ) and is larger than py/po.,. = 0.36. for duct flow with a normal
shock at the exit (see Fig. 6.15 ). Also the stagnation pressure ratio with the shock at x =
+0.3 m, Po,}/Po,_x = 0.66, is much greater than the stagnation pressure ratio, 0.38. when the

shock occurs at the exit (x = +0.5 m) of the duct. The corresponding 7T — s diagrams are
shown in Figs. E6.35a and E6.35b.

340 340 :

Po, , = 38 kPa (abs) Po .= Po,, = 67 kPa (abs)
Po .= 101 kPa (abs) P,= 101 kPa (abs} p, = 64 kPa (abs)
300 / 0. v A 36 kPa [abs) 300 /
- Ty .=T;
0. x T,=284K 0.x™ "0y~
= _ \ T =271K 288K
260 ) o 260 "~ i
L
[a] .= 32 kiPa (abs)
Ji : )

220 220 | X 6{?,:
4 L i x <,
B ~ r

180 180 g

! .= 10 kPa {abs)
i
, 714 T.=150K
140 'J' F,:: 4 kPa I:EtIS:I 140
’
4‘1 =112 K Shock within mozzle {x = 0.3 m)
100} 100
Shock at nozzle exit plane (v = 0.5 m)
(a) (&)
0 a0 160 240 320 400 480 a 80 160 240 320 400 480
5_;I,rj 5—8.. :
(kg-K) T (kgK)

B FIGURE E 6.35
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6.9.4 Analogy Between Compressible and Open-Channel Flows

During a first course in fluid mechanics, students rarely study both open-channel
flows and compressible flows, This is unfortunate because these two Kinds of flows
are strikingly similar in several ways. Furthermore, the analogy between open-channel and
compressible flows is useful because important two-dimensional compressible flow phe-
nomena can be simply and inexpensively demonstrated with a shallow, open-channel flow
field in a ripple tank or water table.

The propagation of weak pressure pulses (sound waves) in a compressible flow can be
considered to be comparable to the movement of small amplitude waves on the surface of

an open-channel flow. In each case—two-dimensional compressible flow and open-channel
Now—1the influence of flow velocity on wave paltern is similar. When the (low velocity is
less than the wave speed, wave fronts can move upstream of the wave source and the flow
is subsonic (compressible flow) or subcritical (open-channel flow). When the flow velocity is
cqual 1o the wave speed, wave [ronts cannol move upsiream ol the wave source and the low
is sonic (compressible flow) or critical (open-channel flow), When the flow velocity is greater
than the wave speed., the flow is supersonic (compressible flow) or supercritical (open-chan-
nel flow). Normal shocks can occur in supersonic compressible flows. Hydraulic jumps can
occur in supercritical open-channel flows, Comparison ol the characteristics ol normal shocks
and hydraulic jumps suggests a strong resemblance and thus analogy between the two
phenomena.

For compressible flows a meaningful dimensionless variable is the Mach number, where

Vv

Ma = - { E7)

In open-channel flows, an important dimensionless variable is the Froude number, where

v

Fr = —= ( 6.167)
Vgy

The velocity of the channel flow is V.. the acceleration ol gravity i1s g, and the depth of the
flow is yv. Since the speed of a small amplitude wave on the surface ol an open-channel low,
"‘r.lr" I= f'“‘:. — \,/:I,"\' { h.]hg }

we conclude that Fr Ve
p o=

. ( 6.169)
-
From Eqs. E.7 and 6,169 we see the similarity between Mach number (compressible {low)
and Froude number (open-channel flow).
For compressible flow, the continuity equation is

pPAV = constant ( 6.170)
where Vis the Mow velocity, p is the Tuid density, and A is the flow cross-section area. For
an open-channel flow, conservation of mass leads to

vbV, . = constant ( 6.171)

where V. is the flow velocity, and y and & are the depth and width of the open-channel Tow.
Comparing Eqs. 6.170 and 6.171 we note that if flow velocities are considered similar and
low area. A, and channel width, &, are considered similar. then compressible flow density,

2. 1s analogous to open-channel flow depth, v.

It should be pointed out that the similarity between Mach number and Froude number
is generally not exact. If compressible flow and open-channel flow velocities are considered
to be similar, then it follows that for Mach number and Froude number similarity the wave
speeds ¢ and c¢,. must also be similar.

From the development of the equation for the speed of sound in an ideal gas (see Egs.

6.27 and 6.28 ) we have for the compressible flow

c = \/(constant) kpt~! ( 6.172)

From Eqgs. 6.172 and 6.168 ., we see that if y is to be similar to p as suggested by com-
paring Eq. 6.170 and 6.171 . then k should be equal to 2. Typically & = 1.4 or 1.67, not 2.
This limitation to exactness is, however, usually not serious enough to compromise the ben-
efits of the analogy between compressible and open-channel flows.
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6.10 Two-Dimensional Supersonic Flow:
Up to this point we have considered only one-dimensional compressible-flow theories.

This illustrated many important etffects, but a one-dimensional world completely loses
sight of the wave motions which are so characteristic of supersonic flow. The only
“wave motion’ we could muster in a one-dimensional theory was the normal-shock
wave, which amounted only to a flow discontinuity in the duct.

6.10.1 The Mach Waves:

When we add a second dimension to the flow, wave motions immediately become ap-
parent if the flow is supersonic. Figure 6.36 shows a celebrated graphical construction
which appears in every fluid-mechanics textbook and was first presented by Ernst Mach
in 1887. The figure shows the pattern of pressure disturbances (sound waves) sent out
by a small particle moving at speed U through a still fluid whose sound velocity is a.

Limiting
Mach
wave
aor

U<a

Twvpical pressure
disturbance caused
| U3¢ = by particle passage ~| L ar -

Zone of
silence

LS

Fig. 6.36 Wave patterns set up by a
particle moving at speed U into
still fluid of sound wvelocity a: Supersonic
(a) subsonic, (&) sonic, and Mach wave
(c) supersonic motion.

(c)

U=a

Zone of
action

As the particle moves. it continually crashes against fluid particles and sends out
spherical sound waves emanating from every point along its path. A few of these spher-
ical disturbance fronts are shown in Fig. 6.36 . The behavior of these fronts is quite difl-
ferent according to whether the particle speed is subsonic or supersonic.

In Fig. 6.36a . the particle moves subsonically, U << a. Ma = U/a << 1. The spherical dis-
turbances move out in all directions and do not catch up with one another. They move well
out in front of the particle also, because they travel a distance a &f during the time interval
or in which the particle has moved only {/ &7. Therefore a subsonic body motion makes its
presence felt everywhere in the flow field: You can ““hear™ or “feel” the pressure rise of an
oncoming body before it reaches you. This is apparently why that pigeon in the road. with-
out turning around to look at yvou, takes to the air and avoids being hit by your car.

At sonic speed., U = a, Fig. 6.36b . the pressure disturbances move at exactly the
speed of the particle and thus pile up on the left at the position of the particle into a
sort of “*front locus.” which is now called a Mach wave. after Ernst Mach. No distur-
bance reaches beyvond the particle. If vou are stationed to the left of the particle. you
cannot “hear’ the oncoming motion. If the particle blew its horn, you couldn’t hear
that either: A sonic car can sneak up on a pigeon.

In supersonic motion, &y = «, the lack of advance warning is even more pronounced.
The disturbance spheres cannot catch up with the fast-moving particle which created
them. Thev all trail behind the particle and are tangent to a conical locus called the

Mach cone. From the geometry of Fig. 6.36c¢ the ang_;le of the Mach cone is seen to be
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Fig. 6.37 Supersonic wave pattern emanating from a projectile moving at Ma =~ 2.0,

The heavy lines are oblique-shock waves and the light lines Mach waves (Courtesy

of U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground.)

= sin~ ! @ o1 = sin ' L= sin ! !
= o a0 o Ma (6.1173)

The higher the particle Mach number. the more slender the Mach cone: for example.
peis 307 at Ma = 2.0 and 11.5° at Ma = 5.0. For the limiting case of sonic flow, Va =
1. po = 907; the Mach cone becomes a plane front moving with the particle. in agree-
ment with Fig.6.36b .

L]

You cannot ““hear”™ the disturbance caused by the supersonic particle in Fig. 6.36¢
until you are in the zone of acrion inside the Mach cone. WNo warning can reach your
ears if you are in the zone of siflence outside the cone. Thus an observer on the ground
beneath a supersonic airplane does not hear the sonic bHoon of the passing cone until
the plane i1s well past.

The Mach wawve need not be a cone: Similar waves are formed by a small distuar-
bance of any shape moving supersonically with respect to the ambient fluid. For ex-
ample. the “particle”™ in Fig. 6.36¢c could be the leading edge of a sharp flat plate. which
would form a Mach wedge of exactly the same angle g. Mach waves are formed by
small roughnesses or boundary-layer irregularities in a supersonic wind tunnel or at
the surface of a supersonic body. Look again at Fig. 6.18: Mach waves are clearly wvis-
ible along the body surface downstream of the recompression shock, especially at the
rear corner. Their angle is about 307, indicating a Mach number of about 2.0 along this
surface. A more complicated system of Mach waves emanates from the supersonic pro-
Jectile in Fig. 6.37 . The Mach angles change, indicating a wvariable supersonic Mach
number along the body surface. There are also several stronger oblique-shock waves

formed along the surface.
EXAMPLE 6.36

An observer on the ground does not hear the sonic boom caused by an airplane moving at 5-km
altitude until it is 9 km past her. What is the approximate Mach number of the plane” Assume
a small disturbance and neglect the variation of sound speed with altitude.

Solution

A finite disturbance like an airplane will create a finite-strength oblique-shock wave whose an-
gle will be somewhat larger than the Mach-wave angle w and will curve downward due to the
variation in atmospheric sound speed. If we neglect these effects, the altitude and distance are a

measure of w. as seen in Fig. E6.36. Thus
/ ‘)

Ma = 7

Bow wawve

> km BOOM!
i R
Lt

E 6.36

! 9O km !

5 km
= 2 =0.555 - = 29.05°
tan g = g— 0 6 o1 N 9.0
Hence, from Eq. (6.173), Ma = csc u = 2.06 Ans.
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6.10.2 The Obligue shock Waves:

Figures 0.18 and 6.37 and our earlier discussion all indicate that a shock wave can form
at an oblique angle to the oncoming supersonic stream. Such a wave will deflect the
stream through an angle 6, unlike the normal-shock wave, for which the downstream
flow is in the same direction. In essence. an oblique shock is caused by the necessity
for a supersonic stream to turn through such an angle. Examples could be a finite wedge
at the leading edge of a body and a ramp in the wall of a supersonic wind tunnel.
The flow geometry of an oblique shock is shown in Fig. 6.38 . As for the normal
shock of Fig.6.16, state | denotes the upstream conditions and state 2 is downstream.
The shock angle has an arbitrary value 8, and the downstream flow V, turns at an an-
gle 8 which is a function of 8 and state 1 conditions. The upstream flow is always su-

personic, but the downstream Mach number Ma, = V>/a> may be subsonic, sonic, or
supersonic, depending upon the conditions.

It is convenient to analyze the flow by breaking it up into normal and tangential
components with respect to the wave. as shown in Fig. 6.38 . For a thin control volume

Oblique shock wave

Dellection
angle

e ~
DR
P -~

-~
Vi <a;

Fig. 6.38 Geometry of flow
through an oblique-shock wave.

just encompassing the wave, we can then derive the following integral relations, can-

celing out A; = A, on each side of the wave:

Continuity: P11V = po Vo {(6.174a)
Normal momentum: P11 — P2 = po V,z,z — P V,zh, (6.174b)
Tangential momentum: 0 =pV,1u(Vo — V1) (6.174¢)
Energy: hy + V2, +3V2, = hy, +3V2, + V2, = hg (6.174d)

We see from Eq.(6.174¢) that there is no change in tangential velocity across an oblique
shock Vi, =V, = V, = const (6.175)
Thus tangential velocity has as its only effect the addition of a constant kinetic energy
+V7to each side of the energy equation(6.174d). We conclude that Egs. (6.174) are iden-
tical to the normal-shock relations (6.66) , with V| and V5 replaced by the normal com-
ponents V,,; and V,,. All the various relations from Sec. 6.5 can be used to compute
properties of an oblique-shock wave. The trick is to use the “normal” Mach numbers
in place of Ma,; and Ma,:

Ma,,; = Vi _ Ma, sin 3 and Ma,,, = Viz _ Ma, sin (8 — 6)  (6.176)

a az
Then. for a perfect gas with constant specific heats, the property ratios across the oblique
shock are the analogs of Eqgs. (6.72) to (6.75) with Ma; replaced by Ma,,;:

Pz 1 5 MaZ sin? 8 — (k — (6.177a)
3 A [2k May sin” B (k 1)]
P2 _ tan 8 _ (k + 1) May sin” B _ Vi (6.177b)
Pl tan (8 — &) (k — 1) Maj sin” B8 + 2 V>
7> _ 5 5 2k Ma7 sin® B — (k — 1) (6.177¢)
—_— = [2 — / 18 - 5 = = -
T, [2 + (k 1) Ma7 sin® 3] & + 1)° Ma: sin> B
Tox = To (6.177d)
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Po> (k + 1) Maj sin® B |W&—1) k+ 1 /K= 1)
Por [2 + (k — 1) Maj sin® 8 2k Maj sin® 8 — (kK — 1) (6.177e)
MaZ, — (k — 1) Mag,, + 2 (6.1770)

2k Ma>, — (k — 1)

rel

All these are tabulated in the normal-shock TableB6.2. If you wondered why that table
listed the Mach numbers as Ma,,, and Ma,,. it should be clear now that the table is
also valid for the oblique-shock wave.

Thinking all this over, we realize by hindsight that an oblique-shock wave is the flow
pattern one would observe by running along a normal-shock wave (Fig.6.16) at a con-
stant tangential speed V,. Thus the normal and oblique shocks are related by a galilean,
or inertial. velocity transformation and therefore satisfy the same basic equations.

It we continue with this run-along-the-shock analogy., we find that the deflection
angle @ increases with speed V, up to a maximum and then decreases. From the geom-
etry of Fig. 6.38 the deflection angle is given by
— tan—! Y (6.178)

Vn2 2l
If we differentiate @ with respect to V, and set the result equal to zero, we find that the
maximum deflection occurs when V,/V,, = (V,,g/V,,,)"Q. We can substitute this back
into Eq. (6.178) to compute ;
Omax = tan~ ' #'7 — tan™ ! 17 r= % (6.179)
n2

For example, if Ma,,; = 3.0, from Table B6.2 we find that V,,,/V,, = 3.8571, the square
root of which is 1.9640. Then Eq.(6.179) predicts a maximum deflection of tan™ ' 1.9640 —
tan~ ' (1/1.9640) = 36.03°. The deflection is quite limited even for infinite Ma,,,;: From
TableB6.2 for this case V,,/V,» = 6.0, and we compute rom Eq.(6.179)that 6,,,, = 45.58°.

This limited-deflection idea and other facts become more evident if we plot some
of the solutions of Eqs.(6.177). For given values of V| and a,. assuming as usual that
k = 1.4, we can plot all possible solutions for V5, downstream of the shock. Figure 6.39
does this in velocity-component coordinates V, and V. with x parallel to V. Such a
plot is called a hodograph. The heavy dark line which looks like a fat airfoil is the lo-
cus, or shock polar, of all physically possible solutions for the given Ma,. The two
dashed-line fishtails are solutions which increase V5:; they are physically impossible
because they violate the second law.

Examining the shock polar in Fig. 6.39 , we see that a given deflection line of small
angle 6 crosses the polar at two possible solutions: the strong shock, which greatly de-
celerates the flow, and the weak shock, which causes a much milder deceleration. The
flow downstream of the strong shock is always subsonic, while that of the weak shock
is usually supersonic but occasionally subsonic if the deflection is large. Both types of
shock occur in practice. The weak shock is more prevalent, but the strong shock will
occur if there i1s a blockage or high-pressure condition downstream.

Since the shock polar is only of finite size, there is a maximum deflection 6,,,..
shown in Fig. 6.39 , which just grazes the upper edge of the polar curve. This verifies
the kinematic discussion which led to Eq.(6.179). What happens if a supersonic flow
is forced to deflect through an angle greater than 6,,,,,? The answer is illustrated in Fig.
0.40 for flow past a wedge-shaped body.

1 V.f

f = tan—

vy
r
ke Rarefaction
Weak - <hock
wave " O L HeeT
aneole ~ -~ impossible
© p < by second law
- Weak
= shock p
~ ’
Strong ~ /
. . Thock N ’
Fig. 6.39 The oblique-shock polar 2] shock / v
hodograph, showing double solu- N Mach "
tions (strong and weak) for small N wave
deflection angle and no solutions at Vi M ov,=v)
- . Normal 2 1
all for large deflection. shock
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Weak shock family
above sonic line

Ma > 1

- S —— Sonic line
Strong shock family ~
below sonic line N
Mﬂ = ] 9 e inax
— — - _ __
Ma, > 1 Ma, > 1

Ma < 1

—

o Sonic line

e
(a) <
N N]

Fig.6.40 Supersonic flow past a wedge: (a) small wedge angle, attached
oblique shock forms; (b)large wedge angle. attached shock not possible,
broad curved detached shock forms.

In Fig. 6.40a the wedge half-angle @ is less than 6,,,,. and thus an oblique shock
forms at the nose of wave angle B just sufficient to cause the oncoming supersonic
stream to deflect through the wedge angle 6. Except for the usually small effect of
boundary-layer growth (see, e.g.. Ref. 19, sec. 7-5.2), the Mach number Ma- is con-
stant along the wedge surface and is given by the solution of Eqs.(6.177). The pres-
sure, density, and temperature along the surface are also nearly constant, as predicted
by Eqs.(6.177). When the flow reaches the corner of the wedge. it expands to higher
Mach number and forms a wake (not shown) similar to that in Fig. 6.18 .

In Fig. 6.40b the wedge half-angle is greater than 6,,.,. and an attached oblique
shock is impossible. The flow cannot deflect at once through the entire angle €,,,.. vet
somehow the flow must get around the wedge. A detached curve shock wave forms in
front of the body, discontinuously deflecting the flow through angles smaller than 6,,,,,.

50°
k=14
| Mal = cao
10 ;
40° — f}
6 || -
| 4 ! 1
2 300 — .
g =) Jll : '- Fig. 6.41 Oblique-shock deflection
'% B | versus wave angle for various up-
E 200 — 20 stream Mach numbers, k = 1.4:
L8| | dash-dot curve, locus of_ﬁ,m_,(.divides
B 16% ' strong (right) from weak (left)
1o B AR shocks: dashed curve, locus of sonic
14 v points, divides subsonic Maj, (right)
(A , ,
— v\ from supersonic Ma, (left).
12X
| A I
0° 30° 60° 90°

Wave angle

The flow then curves, expands, and deflects subsonically around the wedge., becoming
sonic and then supersonic as it passes the corner region. The flow just inside each point
on the curved shock exactly satisfies the oblique-shock relations (6.177) for that partic-
ular value of 8 and the given Ma;. Every condition along the curved shock is a point
on the shock polar of Fig. 6.39 . Points near the front of the wedge are in the strong-
shock family, and points aft of the sonic line are in the weak-shock family. The analy-
sis of detached shock waves is extremely complex, and experimentation is usually
needed, e.g., the shadowgraph optical technique of Fig. 6.18 .
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The complete family of oblique-shock solutions can be plotted or computed from
Eqs.(6.177). For a given k., the wave angle 8 varies with Ma,; and @, from Eq.(6.177b).
By using a trigonometric identity for tan (8 — 6) this can be rewritten 1n the more con-
venient form an O — 2 cot?B (Ma7 sin® 8 — 1) (6.180)

Maj (kK + cos 28) + 2
All possible solutions of Eq.(6.180) for k = 1.4 are shown in Fig. 6.41. For deflections
@ << O,,,.x there are two solutions: a weak shock (small 8) and a strong shock (large 3),
as expected. All points along the dash-dot line for 6., satisty Eq.(6.179). A dashed
line has been added to show where Ma- 1s exactly sonic. We see that there is a narrow
region near maximum dellection where the weak-shock downstream [flow is subsonic.

For zero deflections (8 = 0) the weak-shock family satisfies the wave-angle relation

e — it ]
B = g = sin Ma, (6.181)
Thus weak shocks of vanishing deflection are equivalent to Mach waves. Meanwhile
the strong shocks all converge at zero deflection to the normal-shock condition 8 = 907,

Two additional oblique-shock charts are given in App. B, where Fig. B.1 gives the
downstream Mach number Ma-> and Fig. B.2 the pressure ratio p->/p,. each plotted as
a function of Ma, and #. Additional graphs. tables., and computer programs are given
in Refs. 24 and 25.
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1.0
0 | | L0 2.0
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Fig. B.1 Mach number downstream Fig. B.2 Pressure ratio downstream
of an oblique shock for k = 1.4. of an oblique shock for &k = 1.4

6.10.3 Very Weak Shock Waves:

For any finite @ the wave angle B for a weak shock is greater than the Mach angle p.
For small 6 Eq. (6.180) can be expanded in a power series in tan 6 with the following
linearized result for the wave angle:

k+ 1
4 cos
For Ma, between 1.4 and 20.0 and deflections less than 6 this relation predicts 8 to
within 1° for a weak shock. For larger deflections it can be used as a useful initial
guess for iterative solution of Eq.(6.180).

Other property changes across the oblique shock can also be expanded in a power
series for small deflection angles. Of particular interest is the pressure change from Eq.
(6.177a), for which the linearized reskllt for a weak shock is

P2 — P k May

P T (Ma-> 1172 tan 8 + --- + O(tan® &) + --- (6.183)
1 ay] —

sin B8 = sin u + tan 8 + --- + C(tan® 8) + --- (6.182)

Dr. Mohsen Soliman -95/125 - MEP 580 Compressible Flow



= 1.4
Ma, — 10
s
2.0 —
&
o — 7y
=P a
3
1.0 —
= -
—
—
-
— — —_— \\
— Eq (s 183
== Mo, = 2
o = I I
O s= 1O= 15=

Flow deflection &

Fig. 6.42 Pressure jump across a weak oblique-shock wave from Eq.
(6.177a)for k = 1.4. For very small deflections Eq.(6.183)applies.

The differential form of this relation is used in the next section to develop a theory for
supersonic expansion turns. Figure 6.42 shows the exact weak-shock pressure jump
computed from Eq.(6.177a). At very small deflections the curves are linear with slopes
given by Eq.(6.183).

Finally, it is educational to examine the entropy change across a very weak shock.
Using the same power-series expansion technique, we can obtain the following result

for small flow deflections: . o
— k= — 1)Me 5 .
S2 5L l;(Mﬂz i lr;_;,:g tan® @ + --- + O(tan™ 6) + --- (6.184)
aj

c

r
The entropy change is cubic in the deflection angle 6. Thus weak shock waves are very
nearly isentropic, a fact which is also used in the next section.

EXAMPLE 6.37

Air at Ma = 2.0 and p = 10 1bf/in? absolute is forced to turn through 10° by a ramp at the body
surface. A weak oblique shock forms as in Fig. E6.37. For k = 1.4 compute from exact oblique-
shock theory (a) the wave angle 8. (&) Ma,., and (¢) p>. Also use the linearized theory to esti-
mate (d) 8 and (e) p->.

Solution

With Ma; = 2.0 and # = 10° known. we can estimate
B = 40° = 2° from Fig. 6.41. For more (hand
calculated) accuracy., we have to solve Eq. 6€.1830 by Ma, = 2.0

—

iteration. Or we can program Eq. 6.180 in EES with p,=10 IbE/in2
six statements (in SI units, with angles in degrees):

Ma = 2.0

k=1.4

Theta = 10

Mum = 2* (Ma"2*STN(Beta) "2 — 1) /TAN(Beta)
Denom = Ma~2* (kK + COoS (2*Beta) ) + 2

Theta = ARCTAN ( Num/ Denom )

Specify that Beta = 0 and EES promptly reports an accurate result:

B=39.32° Ans. (a)
The normal Mach number upstream is thus
Ma,,; = Ma, sin 3 = 2.0 sin 39.32° = 1.267

With Ma,,; we can use the normal-shock relations (TableB6.2) or Fig.6.17or Egs. (6.73) to (6.75)

E 6.37

to compute Ma,, = 0.8031 % = 1.707
1
Thus the downstream Mach number and pressure are
.803 .
May = — M2 _ 0.8031 = 1.64 Ans. (b)

sin (8 — 6)  sin (39.32° — 10°)

p> = (10 Ibf/in® absolute)(1.707) = 17.07 1bf/in” absolute Ans. (c)
Notice that the computed pressure ratio agrees with Figs. 6.42 and B.2.
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For the linearized theory the Mach angle is p = sin” ' (1/2.0) = 30°. Equation (6.182) then
estimates that 2.4 tan 10°

sin 8 = sin 30° + 1 cos 30° 0.622
or B = 38.5° Ans. (d)
ion (6.183)estimates that
Equation { Yestimates that P2y, 1.4(2)% tan 10° .
or p> = 1.57(10 Ibf/in? absolute) = 15.7 Ibf/in® absolute Ans. (e)

These are reasonable estimates in spite of the fact that 10° is really not a “small’” flow deflection.

6.10.4 Prandtl-Merer Expansion Waves:

The oblique-shock solution of Sec.6.10.2 is for a finite compressive deflection 8 which
obstructs a supersonic flow and thus decreases its Mach number and velocity. The pre-
sent section treats gradual changes in flow angle which are primarily expansive: i.e..
they widen the flow area and increase the Mach number and velocity. The property
changes accumulate in infinitesimal increments, and the linearized relations (6.182) and
(6.183) are used. The local flow deflections are infinitesimal, so that the flow is nearly

isentropic according to Eq.(6.184).
Figure 6.43 shows four examples, one of which (Fig. 6.43¢c ) fails the test for grad-
ual changes. The gradual compression of Fig. 6.43a is essentially isentropic, with a
Oblique

shock

- Slip Mach .
- line waves 7

Mach
waves
Ma > 1
Fig.6.43 Ma
Some examples of supersonic decreases
Ma > 1

expansion and compression: (@)
gradual isentropic compression on
a concave surface, Mach waves co-

Ma

increases
alesce farther out to form oblique (b) N
shock; (b) gradual isentropic ex- (a)
pansion on convex surface, Mach
waves diverge; (c¢) sudden compres- Oblique Mach
sion, nonisentropic shock forms; shock i

Ma, < Ma;

(d) sudden expansion, centered -

isentropic fan of Mach waves
forms.

Ma, > 1

Ma

increases

(d)
(c)

smooth increase in pressure along the surface, but the Mach angle decreases along the
surface and the waves tend to coalesce farther out into an oblique-shock wave. The
gradual expansion of Fig. 6.43b causes a smooth isentropic increase of Mach number
and velocity along the surface, with diverging Mach waves formed.

The sudden compression of Fig. 6.43¢ cannot be accomplished by Mach waves: An
oblique shock forms, and the flow is nonisentropic. This could be what you would see
if you looked at Fig. 6.43a from far away. Finally, the sudden expansion of Fig. 6.43d
1s 1sentropic and forms a fan of centered Mach waves emanating from the corner. Note
that the flow on any streamline passing through the fan changes smoothly to higher
Mach number and velocity. In the limit as we near the corner the flow expands almost
discontinuously at the surface. The cases in Fig. 6.43 a, b, and d can all be handled by
the Prandtl-Meyer supersonic-wave theory of this section, first formulated by Ludwig
Prandtl and his student Theodor Meyer in 1907 to 1908.

Note that none of this discussion makes sense if the upstream Mach number is sub-
sonic, since Mach wave and shock wave patterns cannot exist in subsonic flow.
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6.10.5 The Prandtl-Merer Perfect-Gas Function:

Consider a small, nearly infinitesimal flow deflection 4@ such as occurs between the
first two Mach waves in Fig. 6.43a . From Egs. (6.182) and (©.183)we have. in the limit.

P 1
B = g = sin ! NMa (6.185a)
cdp k Ma”
= > = d (6.185b)
I Ma® — 1)7= 90
Since the flow is nearly isentropic. we have the frictionless differential momentum
equation for a perfect gas > dV
dp = —pV dV = —kp Ma~ ~ (6.186)
Combining Eqs. (6.185a) and(6.186) to eliminate dp. we obtain a relation between turn-
ing angle and velocity change dv
d@ = —(Ma”® — 1)'? ~ (6.187)

This can be integrated into a functional relation for finite turning angles it we can re-
late V to Ma. We do this from the definition of Mach number
V = Ma «

dV d Ma da
or ~N = Ma -+ - (6.188)
Finally., we can eliminate da/a because the flow is isentropic and hence g is constant
for a perfect gas a = agll + Lk — 1) Ma2] /2
! da  _—3(k — 1) Ma d Ma (6.189)
of @ T 1+ Lk — 1) Ma?2

Eliminating &V/V and da/a from Eqs.(6.1. 8710 (6.189) we obtain a relation solely be-

tween turning angle and Mach number

(Ma” — 1H'”? d Ma
de = — - - (6.190)
>
) 1 + Ak — 1) MaZ® Ma

Before integrating this expression. we note that the primary application is to ex-
pansions, i.e., increasing Ma and decreasing 6. Therefore, for convenience, we define
the Prandtl-Meyer angle «w(Ma) which increases when # decreases and is zero at the

sonic point dew = —de w =0 at NMa =1 (6.191)
Thus we integrate Eq.(6.190) from the sonic point to any value of Ma
€ AN EEY l\r’iﬂz — 1 172 - =
f dew — [ ¢ : 2 _ 4 Ma (6.192)
Yo 1 1 + 3(k — 1) Ma~- Ma
The integrals are evaluated in closed form. with the result, in radians,
4/ Ma® — 1yV2 _ > >
w(Ma) = K" tan™ ' | .A' ) — tan” ' (Ma® — 1H)'"” (6.193)
. kK + 1
where K = P a—
This 1s the Prandrti-Mever supersonic expansion functiornn, which 1s plotted in Fig. 644
and tabulated in Table B.5 for &k = 1.4, K = 6. The angle w changes rapidly at first and
then levels off at high Mach number to a limiting value as Ma — <o:
T = -
Wmax = 5 (K'? — 1) = 130.45° if k=14 (6.194)

Thus a supersonic flow Can—expand only through a finite turning angle before it reaches
infinite Mach number, maximum velocity. and zero temperature.

Gradual expansion or compression between finite Mach numbers Ma; and Mas, nei-
ther of which is unity, is computed by relating the turning angle Aw to the difference
in Prandtl-Meyer angles for the two conditions

Awij_s> = w(Mas) — w(May) (6.195)
The change Aw may be either positive (expansion) or negative (compression) as long
as the end conditions lie in the supersonic range. Let us illustrate with an example.

EXAMPLE 6.38
Air (k= 1.4) flows at Ma,; = 3.0 and p; = 200 kPa. Compute the final downstream Mach num-
ber and pressure for (a) an expansion turn of 20° and () a gradual compression turmm of 20°.
Solution
Part (a) 213.5 2
The isentropic stagnation pressure is po = pill + 0.2(3.0)7]"7 = 7347 kPa
and this will be the same at the downstream point. For Ma; = 3.0 we find from Table B.5 or
Eq.(6.193)that w; = 49.757°. The flow expands to a new condition such that

Wy = wy + Aw = 49.757° + 20° = 69.757°
Linear interpolation in Table B.5 is quite accurate, yielding Ma, = 4.32. Inversion of Eq.(6.193)
to find Ma when @ is given, is impossible without iteration. Once again, our friend EES easily
handles Eq.(6.193) with four statements (angles specified in degrees):
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k 1.4
C ((k+1)/(k —1))~0.5
Omega = 69 .757
Omega = C*ARCTAN( (Ma~2—-1)~0.5/C) — ARCTAN( (Ma~2-1)~0.5)
Specify that Ma > 1. and EES readily reports an accurate result:®
Ma, = 4.32 Ans. (a)

The isentropic pressure at this new condition is

P2 = 7 x 0.2;()31.32)213-5 = 27:;71 = 31.9 kPa Ans. (a)
SThe author saves these little programs for further use, giving them names such as Prandtl-Meyer:
Part (b)
The flow compresses to a lower Prandtl-Meyer angle
wo = 49.757° — 20° = 29.757°
Again from Eq.(6.193) Table B.5, or EES we compute that
Again from Eq.(6.193) Table B.5, or EES we compute that
Ma, = 2.125 Ans. (D)

P2 =iy 0’2({’2"'125)2]3_5 = G35, =773 kPa Ans. (b)
Similarly, density and temperature changes are computed by noticing that 4 and pg are constant
for isentropic flow.

1 <O=
- - — = TS T

120 —— ey = 130457

1OO= ——

s0= — Fig, 6.44 The Prandtl-Meyer su-
personic expansion from Eq.{6.193)

SO= — -
for k = 1.4.

a0= —

20 —

o= 1.4
o= I | I I
(o] 1 =+ = 1= 1 peie ]

Miach number

Table B.5 Prandtl-Meyer Supersonic Expansion Function for & = 1.4
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6.10.6 Applications to Supersonic Airfoils:

The oblique-shock and Prandtl-Meyer expansion theories can be used to patch together
a number of interesting and practical supersonic flow fields. This marriage. called shock
expansion theory, is limited by two conditions: (1) Except in rare instances the flow
must be supersonic throughout, and (2) the wave pattern must not suffer interference
from waves formed in other parts of the flow field.

A very successful application of shock expansion theory is to supersonic airfoils.
Figure 6.45 shows two examples, a flat plate and a diamond-shaped foil. In contrast to
subsonic-flow designs ( Part (3) ), these airfoils must have sharp leading edges. which
form attached oblique shocks or expansion fans. Rounded supersonic leading edges
would cause detached bow shocks, as in Fig. 6.37 or 6.40b, greatly increasing the drag
and lowering the lift.

In applying shock expansion theory, one examines each surface turning angle to see
whether it is an expansion (“opening up’’) or compression (obstruction) to the surface
flow. Figure 6.45a shows a flat-plate foil at an angle of attack. There is a leading-edge
shock on the lower edge with flow deflection 6 = a, while the upper edge has an ex-
pansion fan with increasing Prandtl-Meyer angle Aw = «. We compute p3; with ex-
pansion theory and p> with oblique-shock theory. The force on the plate is thus F =
(p2 — p3)Ch, where C is the chord length and b the span width (assuming no wingtip
effects). This force is normal to the plate, and thus the lift force normal to the stream

is L = F cos a, and the drag parallel to the stream is D = F' sin a. The dimensionless
coellicients Cp and Cp have the same delinitions as in low-speed [low, Eq. (7.66), ex-
cept that the perfect-gas-law identity $pV* = 3kp Ma~ is very useful here Part (5)

CpL = ] - Cp = ] . (6.196)
skp. Maz bC skp.. Maz bC
The typical supersonic lift
coefficient is much smaller than the subsonic value C; = 2, but the lift can be very
large because of the large value of $pV~ al supersonic speeds.

At the trailing edge in Fig. 6.45a . a shock and fan appear in reversed positions and
bend the two flows back so that they are parallel in the wake and have the same pres-
sure. They do not have quite the same velocity because of the unequal shock strengths
on the upper and lower surfaces: hence a vortex sheet trails behind the wing. This is
very interesting, but in the theory you ignore the trailing-edge pattern entirely, since it
does not affect the surface pressures: The supersonic surface flow cannot “hear’ the
wake disturbances.

The diamond foil in Fig. 6.45b adds two more wave patterns to the flow. At this
particular a less than the diamond half-angle, there are leading-edge shocks on both
surfaces, the upper shock being much weaker. Then there are expansion fans on each
shoulder of the diamond: The Prandtl-Meyer angle change Aw equals the sum of the
leading-edge and trailing-edge diamond half-angles. Finally, the trailing-edge pattern
is similar to that of the flat plate ( 6.45a) and can be ignored in the calculation. Both
lower-surface pressures p> and p, are greater than their upper counterparts, and the lift
is nearly that of the flat plate. There is an additional drag due to thickness, because py4
and ps on the trailing surfaces are lower than their counterparts p> and ps;. The dia-
mond drag is greater than the flat-plate drag, but this must be endured in practice to

achieve a wing structure strong enough to hold these forces.

The theory sketched in Fig. 6.45 is in good agreement with measured supersonic
lift and drag as long as the Reynolds number is not too small (thick boundary layers)
and the Mach number not too large (hypersonic flow). It turns out that for large Re,
and moderate supersonic Ma._, the boundary layers are thin and separation seldom oc-
curs, so that the shock expansion theory. although frictionless, is quite successful. Let
us look now at an example.
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Fig.6.45 Supersonic airfoils: (a) flat plate, higher pressure on lower surface, drag due to small

downstream component of net pressure force: (b) diamond foil. higher pressures on both lower
surfaces, additional drag due to body thickness.

EXAMPLE 6.39

A flat-plate airfoil with C = 2 m is immersed at @ = 8° in a stream with Ma_. =25 and p.. =
100 kPa. Compute (a) C; and (b) Cp, and compare with low-speed airfoils. Compute (¢) lift and
() drag in newtons per unit span width.

Solution

Instead of using a lot of space outlining the detailed oblique-shock and Prandtl-Meyer expan-
sion computations, we list all pertinent results in Fig. E6.39 on the upper and lower surfaces.
Using the theories of Secs. 6.9 and 6.10, you should verify every single one of the calculations
in Fig. E6.39 to make sure that all details of shock expansion theory are well understood.

Aw =8"=a

@5 =47.124°
i Ma ; = 2.867
8 \ Pos = Po.. = 1709 kPa
—_—— T Pog .
Ma_=2.5 7y 0
p.. =100 kPa P4y = 56.85 kPa
Po.. = 1709 kPa
o & =o= 8" D
@ =39.124° - - o0 not
B =30.01 compute
E 6.39 Po.

p, = 1657 kPa

The important final results are p, and p;, from which the total force per unit width on the

plate is F = (p> — p3)bC = (165.7 — 56.85)kPa)(1l m}2 m) = 218 kN

The lift and drag per meter width are thus
L = F cos 8 = 216 kN Ans. (c)
D = F sin 8° = 30 kN Ans. (d)

These are very large forces for only 2 m? of wing area.

From Eq. (6.196) the lift coefficient is ]
216 kN
CL = = 0.246 Ans. (a)

L=
F(1.4)(100 kPa)(2.5)%(2 m?)

The comparable low-speed coefficient from Part (3) is C; = 2 sin 8° = 0.874, which is 3.5

times larger.

From Eq. 6.196 the drag coefficient is

3
Cp = O kN = 0.035 Ans. (b)

1(1.4)(100 kPa)(2.5)*(2 m?)
From Fig. 6.47 for the NACA 0009 airfoil Cp at &« = 8° is about 0.009, or about 4 times smaller.
Notice that this supersonic theory predicts a finite drag in spite of assuming frictionless flow

with infinite wing aspect ratio. This is called wave drag, and we see that the d” Alembert para-
dox of zero body drag does not occur in supersonic flow.
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6.10.7 The Thin Airfoil Theory:

In spite of the simplicity of the flat-plate geometry. the calculations in Example 6 39
were laborious. In 1925 Ackeret [21] developed simple yet effective expressions for
the lift, drag. and center of pressure of supersonic airfoils, assuming small thickness
and angle of attack.

The theory is based on the linecarized expression (6.183), where tan 6 = surface de-
flection relative to the free stream and condition 1 is the free stream, Ma, = Ma... For
the flat-plate airfoil. the total force F' is based on

P2 —Ps _ P27 P _ P37 P

P P N P
(Mfgchfﬁ)uz [ — (—a)] (6.197)
Substitution into Eq. (6.196) gives the linearized lift coefficient for a supersonic flat-
plate airfoil C, ~ (P2 — p3)bC deox - (6.198)

lkp. MaZ bC  (Maz — 1)
Computations for diamond and other finite-thickness airfoils show no first-order effect
of thickness on lift. Therefore Eq. ( 6.198) is valid for any sharp-edged supersonic thin

airfoil at a small angle ol attack.

The flat-plate drag coefficient is Ao’
>

Cph = C, tan o = Cpox == (MaZ — 1)'72 (6.199)

However. the thicker airfoils have additional thickness drag. Let the chord line of the
airfoil be the x-axis. and let the upper-surface shape be denoted by v,(x) and the lower
profile by y,(x). Then the complete Ackeret drag theory (see. e.g.. Ref. 8. sec. 14.6. for
details) shows that the additional drag depends on the mean square of the slopes of the
upper and lower surfaces. defined by
?:ifc (ﬂ)z dx (6.200)
- C Jo dx ’
The final expression for drag [8. p. 442] is
4
(l\flagc — 1=
These are all in reasonable agreement with more exact computations, and their extreme
simplicity makes them attractive alternatives to the laborious but accurate shock ex-
pansion theory. Consider the following example.

1 —_— -
Cp = I:Cl’-z + = (¥v.> + }-“52)] (6.20D

EXAMPLE 6.40
Repeat parts (a) and (£) of Example 6.39, using the linearized Ackeret theory.

Solution
From Eqs. (6.198) and (6.199) we have, for Ma_.. = 2.5 and e« = 8° = 0.1396 rad.

4(0.1396) 4(0.1396)*

=G0 =G o7

These are less than 3 percent lower than the more exact computations of Example 6.39.

= 0.034 Ans.

A Turther result of the Ackeret linearized theory is an expression for the position

Xcp of the center of pressure (CP) of the force distribution on the wing:

Xeop Su - S‘p
2P _ g5 4 Pu 2
=0 S (6.202)

o
where S, is the cross-sectional area between the upper surface and the chord and S is
the arca between the chord and the lower surface. For a symmetric airfoil (S; = §,,) we
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obtain xcp = 0.5C at the half-chord point, in contrast with the low-speed airfoil result
of Part (3), where xcp is at the quarter-chord.

The difference in difficulty between the simple Ackeret theory and shock expansion
theory is even greater for a thick airfoil, as the following example shows.
EXAMPLE 6.41
By analogy with Example 6.39 analyze a diamond. or double-wedge. airfoil of 2% half-angle and
C =2mata = 8 and Ma, = 2.5. Compute C; and Cp by (a) shock expansion theory and (/)
Ackeret theory. Pinpoint the difference from Example 6.39 .
Solution
Part (a)
Again we omit the details of shock expansion theory and simply list the properties computed on
each of the four airfoil surfaces in Fig. E6.41. Assume p.. = 100 kPa. There are both a force F
normal to the chord line and a force P parallel to the chord. For the normal force the pressure
difference on the front half is p> — p3; = 186.4 — 65.9 = 120.5 kPa. and on the rear half it is
Ps — ps = 146.9 — 48.1 = 98.1 kPa. The average pressure difference is 3(120.5 + 98.1) = 109.3
kPa. so that the normal force is

F = (109.3 kPa)(2 m?) = 218.6 kN
For the chordwise force P the pressure difference on the top half is p; — ps = 65.9 — 48.8 =
17.1 kPa, and on the bottom half it is p> — py = 186.4 — 146.9 = 39.5 kPa. The average dif-
ference is +(17.1 + 39.5) = 28.3 kPa, which when multiplied by the frontal area (maximum
thickness times 1-m width) gives
P = (28.3 kPa)(0.07 m)(1 m) = 2.0 kN

Chord length = 2 m
] Ay = 67
/\
Ma_ =2.5 ?;?239_1240
r_ = 100 kPa Ma - — 2 067
Py = 1709 kPa e — 10~ T T e L.
(Bm ~ 20 1040 8 — 31.8: Ps =488 kPa
Mao, = 2,086
@, =28.721° Mo — A4°
P> = 1668 kPa ., = 32.721° I
6. 41 P = 1864 kPa Ma, =2.238

P, = 1469 kPa

Both F and P have components in the lift and drag directions. The lift force normal to the free
stream is L = F cos 8° — P sin 8 = 216.2 kN
and D = F sin 8° + P cos 8% = 32.4 kN
For computing the coefficients, the denominator of Eq. (6.196) is the same as in Example 6.39:
é—kpx Ma2 hC = 1(1.4)(100 kPa)(2.5)*(2 m?) = 875 kN. Thus. finally, shock expansion theory
predicts _ 2162KkN _ . 324 kN _ . o
Cr Q75 KN 0.247 Cp 875 KN 0.0370 Ans. (a)
Part (b)
Meanwhile, by Ackeret theory, Cp is the same as in Example 6.40:
4(0.1396
CL= Gy (ﬁ - 1)) = 0.244 Ans. (b)
This is 1 percent less than the shock e}q;ﬁhsion result above. For the drag we need the mean-
square slopes from Eq. (6.200) ;25 _ }_?2_ — tan2 2° = 0.00122
Then Eq. (6.201) predicts the linearized result
Cp= M‘fl)m [(0.1396)% + + (0.00122 + 0.00122)] = 0.0362 Ans. (b)
This is 2 percent lower ‘than shock expansion theory predicts. We could judge Ackeret theory to
be “satisfactory.” Ackeret theory predicts p, = 167 kPa (—11 percent), p3; = 60 kPa (—9 per-
cent), py = 140 kPa (—5 percent), and ps = 33 kPa (—6 percent).

6.10.8 Three-Dimensional Supersonic Flow:

We have gone about as far as we can go in an introductory treatment of compressible
flow. Of course, there is much more, and you are invited to study further in the refer-
ences at the end of the chapter.

Three-dimensional supersonic flows are highly complex, especially if they con-
cern blunt bodies, which therefore contain embedded regions of subsonic and tran-
sonic flow, e.g., Fig. 6.18. Some flows, however, yield to accurate theoretical treat-
ment such as flow past a cone at zero incidence, as shown in Fig. 6.46 . The exact
theory of cone flow is discussed in advanced texts [for example, 8, chap. 17]. and
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Fig. 6.46Shadowgraph of flow past an 8° half-angle cone at Ma,, = 2.0. The turbulent boundary
layer is clearly visible. The Mach lines curve slightly, and the Mach number varies from 1.98 just
inside the shock to 1.90 at the surface. (Courtesy of U.S. Army Ballistic Research Center, Aberdeen
Proving Ground.)

extensive tables of such solutions have been published [22, 23]. There are similar-
ities between cone flow and the wedge flows illustrated in Fig. 6.40: an attached
oblique shock, a thin turbulent boundary layer, and an expansion fan at the rear cor-
ner. However, the conical shock deflects the flow through an angle less than the
cone half-angle, unlike the wedge shock. As in the wedge flow, there is a maximum
cone angle above which the shock must detach, as in Fig. 6.40b . For &k = 1.4 and
Ma.. = <o, the maximum cone half-angle for an attached shock is about 577, com-
pared with the maximum wedge angle of 45.6° (see Ref. 23).

For more complicated body shapes one usually resorts to experimentation in a
supersonic wind tunnel. Figure 6.48 shows a wind-tunnel study of supersonic flow
past a model of an interceptor aircraft. The many junctions and wingtips and shape
changes make theoretical analysis very difficult. Here the surface-flow patterns.
which indicate boundary-layer development and regions of flow separation, have
been visualized by the smearing of oil drops placed on the model surface before the
test.

Fig. 6.48 Wind-tunnel test of the Cobra P-530 supersonic interceptor.
The surface flow patterns are visualized by the smearing of oil
droplets. (Courtesy of Northrop Corp.)
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As we shall see in the next chapter, there is an interesting analogy between gas-
dynamic shock waves and the surface water waves which form in an open-channel
flow. Chapter 11 of Ref. 14 explains how a water channel can be used 1n an inex-
pensive simulation of supersonic-flow experiments.

Reusable Hypersonic L.aunch Vicles:

Having achieved reliable supersonic flight with both military and commercial air-
craft, the next step is probably to develop a hypersonic vehicle that can achieve or-
bit, vet be retrieved. Presently the United States employs the Space Shuttle, where
only the manned vehicle is retrieved. the very expensive giant rocket boosters be-
ing lost. In 1996, NASA selected Lockheed-Martin to develop the X-33, the first
smaller-scale step toward a retrievable single-stage-to-orbit (SSTO) vehicle, to be
called the VentureStar [36].

The X-33, shown in an artist’s rendering in Fig. 6.49 | will be 20 m long. about
half the size of the VentureStar, and it will be suborbital. It will take off vertically.
rise to a height of 73 km, and coast back to earth at a steep (stressful) angle. Such
a flight will test many new plans for the VentureStar [37], such as metallic tiles, ti-
tanium components, graphite composite fuel tanks, high-voltage control actuators.
and Rocketdyne’s novel “acrospike™ rocket nozzles. If successful, the VentureStar

39 m long and weigh 9.7 MN, of which 88 percent (965 tons!) will be propellant &= Will be

Fig. 6.49 The X-33 is a half-size
suborbital test version of the Ven-
tureStar, which is planned as an or-
bital, low-cost retrievable space ve-
hicle. It takes off vertically but then
uses its lifting shape to glide back
to earth and land horizontally [36,
371(Courtesy of Lockheed Martin
Corp.)

and only 2.7 percent (260 kN) will be payload. The dream is that the X-33 and Ven-
tureStar and their progeny will lead to an era of routine, low-cost space travel ap-
propriate to the new millennium.

Surmmaiy:
This chapter is a brief introduction to a very broad subject, compressible flow, some-
times called gas dynamics. The primary parameter is the Mach number Ma = V/a,

which is large and causes the fluid density to vary significantly. This means that the
continuity and momentum equations must be coupled to the energy relation and the
equation of state to solve for the four unknowns (p. p. 7. V).

The chapter reviews the thermodynamic properties of an ideal gas and derives a
formula for the speed of sound of a fluid. The analysis is then simplified to one-
dimensional steady adiabatic flow without shaft work, for which the stagnation en-
thalpy of the gas is constant. A further simplification to isentropic flow enables for-
mulas to be derived for high-speed gas flow in a variable-area duct. This reveals the

of back pressure on the performance of converging-diverging nozzles.

To illustrate nonisentropic flow conditions, there is a brief study of constant-area
duct flow with friction and with heat transfer, both of which lead to choking of the exit
flow.

The chapter ends with a discussion of two-dimensional supersonic flow, where
oblique-shock waves and Prandtl-Meyer (isentropic) expansion waves appear. With
a proper combination of shocks and expansions one can analyze supersonic air-
foils.
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Fluid Mechanics Oral-Exam

Cairo University 2" Term

Faculty of Engineering
Mech. Power Eng. Dept.

Oral Exam Questions of Gas Dynamics

1- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) In Gas Dynamics, we define Mach number in a C-D nozzle as a constant thermodynamic
property which is equal to (a/V) where a is the vector of the gas velocity.

b) In Gas Dynamics, we have to assume that Mach number is > 0.3 all the time and assume also
that the speed of sound through all gases is equal to 342 m/s all the time.

c) If air velocity in C-D nozzle is less than 0.3 speed of sound we must assume the flow is
isentropic and incompressible and must assume also that the air is a thermal perfect gas.

d) The speed of sound in a subsonic air flow in C-D nozzle remains constant if the flow is
accelerated to a supersonic flow because we assume air is a thermal perfect gas.

e) In Fanno-Line flow in a converging nozzle, the flow is isentropic and the exit properties must be
sonic properties for any value of back pressure and any length of the nozzle.

2- Define the physical meaning and the mathematical equation for calculating the speed of sound, a,
in any gas. What are the assumptions we make to get that equation? Can we calculate the speed of
sound for a gas if it is moving at M=1 or it is moving at M>1?

3- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) We can not define the speed of sound for any incompressible flow because the density is must
assumed to be constant and because the Mach Number is less than 0.3.

b) We can define the speed of sound, a, for air only and we have to assume the speed of sound a
scalar quantity because it moves in the x-direction only.

c¢) For an incompressible flow, the speed of sound is defined as propagation of huge pressure
pulse through isothermal fluid where friction and heat transfer are neglected.

d) All fluids at the same temperature must have the same speed of sound because the speed of
sound is a function of the temperature only.

e) In Rayliegh-Line flow in a converging nozzle, the flow is isentropic and the exit properties must
be sonic properties for any back pressure and any length of the nozzle.

4- Given that dA/A = (1-M?*)(dp/pV?) = - (1-M?*)(dV/V), Show that the converging-diverging
nozzle is the only possible shape though which a gas may be accelerated smoothly from subsonic
flow to supersonic flow without violating any of the gas dynamics relations. (use any needed
equations and sketches).

5- Define the physical meaning of the speed sound. If we found that a’=(ap/op), show that the speed
of sound in a thermally perfect gas is a = VyRT (if we assume that sound waves are propagating
isntropically). Prove that the speed of sound in a thermally perfect gas is a = VRT (if we assume
sound waves are propagating isothermally not isntropically). Which value is more accurate: (a =
VYRT) or (a=VRT) ? why ?

6- What is the “Mach Cone”? Define the physical meaning and the mathematical equation for
calculating the half angle, a, of that cone. Can we see the Mach cone in a liquid or in an
incompressible fluid ?
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7- Define the physical meaning and the mathematical equations for the total isentropic stagnation
properties (P,, T,, h,, etc) and the critical isentropic properties (P*, T*, h* ,etc). Show both types of
properties on T-S chart if the flow is subsonic and if it is supersonic.

8- Discuss, using the mass conservation, both the physical meaning and the mathematical relations

which describe the chocking (34iaY)) in a variable area channel. Where may chocking take place?
and How? What are the conditions that must exist to have a chocking? What are the possible flow
conditions downstream of the chocked area?

9- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) All stagnation isentropic conditions (P,, T,, h,, etc) of any subsonic flow must change if the flow
becomes sonic or supersonic through an isentropic process.

b) All stagnation isentropic conditions (P,, T,, h,, etc) of any subsonic flow must change if the flow
becomes sonic or supersonic through a non-isentropic process.

¢) All critical isentropic conditions (P*, T*, h*, etc) of any subsonic flow must change if the flow
becomes sonic or supersonic through an isentropic process.

d) All critical isentropic conditions (P*, T*, h*, etc) of any subsonic flow must change if the flow
becomes sonic or supersonic through a non-isentropic process.

e) In Rayliegh-Line flow in a converging nozzle, the flow is isentropic and the exit properties must
be sonic properties for any back pressure and any length of the nozzle.

10- What is the temperature, density, p, pressure, p, and speed of sound, a, on the nose of a
supersonic fighter flying at a Mach number of M=2 through air at 273K and 0.7 bar.

11- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) All perfect gases of the same value of y will have the same stagnation conditions (P,, T, h,,
...etc) and also the same critical conditions (P*, T* h*, ... etc).

b) Two perfect gases with different values of y can not have the same stagnation conditions (P,
T,, h,, ...etc) and also the same critical conditions (P*, T*, h*, .. .etc).

¢) In calculating reference stagnation properties (P,, To, h,, etc) we get an adiabatic decrease in
both of gas temperature and density but we get an increase in the gas pressure.

d) Inside the Mach Cone created by the subsonic flow of an airplane, the speed of sound must be
constant because we assume air is a thermal perfect gas.

e) In Fanno-Line flow in a converging nozzle, the flow is isentropic and the exit properties must be
sonic properties for any back pressure and any length of the nozzle.

12- Air from a large tank flows at M=0.5 through a conduit of a cross-sectional area of 65cm?. The
conditions in the tank are 340 kPa, abs. and 10 °C. Calculate the properties, P, T, p, a, and the mass
flow rate through that cross-section of the conduit.

13- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) During an isentropic subsonic expansion in a diffuser, the stagnation conditions (P,, T, & p,) and
also the critical conditions (P*, T*, p*) must remain constant.

b) During a non-isentropic subsonic expansion in a diffuser, the stagnation conditions (P,, T, & po)
and also the critical conditions (P*, T*, p*) must remain constant.
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¢) During an isentropic subsonic compression in a nozzle, the stagnation conditions (P,, T, & po)
and also the critical conditions (P*, T*, p*) must remain constant.

d) During a non-isentropic subsonic compression in a nozzle, the stagnation conditions (P,, T, & p,
) and also the critical conditions (P*, T*, p*) must remain constant.

e) In Fanno-Line flow in a converging nozzle, the flow is isentropic and the exit properties must be
sonic properties for any back pressure and any length of the nozzle.

14- Air in a large reservoir at 8.5 bar abs. and 26 °C is allowed to escape through a channel at a rate
of 2.25 kg/s. Find the Mach number, velocity and area at a point in the channel where the pressure
is 5.8 bar abs.

15- Find what is wrong in each of the following statements and then re-write the full correct
statement (you can also add a T-S diagram to show the correct meaning) :

a) During an isentropic compression in a converging nozzle, the flow must be subsonic along the
nozzle but the exit conditions must be sonic conditions.

b) During a non-isentropic expansion in a converging-diverging nozzle, the flow must be subsonic
along all the nozzle length including the nozzle throat area.

¢) The only method to increase the flow rate through the nozzle throat after its chocking is to
decrease the nozzle throat area.

d) For a fixed nozzle throat area, the critical conditions (P*, T*, p*) will be fixed values which can
not be changed.

e) In Fanno-Line flow in a converging nozzle, the flow is isentropic and the exit properties must be
sonic properties for any back pressure and any length of the nozzle.

16- At a certain point in a channel, Helium is flowing at M=2 and 2 bar abs. At a point further
downstream, the pressure is 1 bar abs. Assuming isentropic flow through the channel, determine the
Mach number at the second point (take y=1.67).

17- Discuss in details all the operation conditions for a converging nozzle for all the possible
values of back pressure in the range from P, down to a back pressure less than the design one. Show
the chocking case and the under expansion case on the T-S diagram and show the variation of the
mass flow rate for all possible operation conditions.

18- At one point on a streamline in airflow the velocity, absolute pressure, and temperature are 30
m/s, 35 kPa, and 150 °C resp. The process along the streamline is assumed isentropic; calculate the
pressure and temperature at a second point where the velocity is 150 m/s.

19- Given that dA/A = (1—M2)(dp/pV2) = - (1-M?(dV/V), show, using any needed equations and
sketches, what is the relation between the value of the Mach number and both of the nozzle or the
diffuser shape for the subsonic and supersonic flow regimes.

Show that the converging-diverging nozzle is the only possible shape though which a gas may be
accelerated smoothly from subsonic flow to supersonic flow without violating any of the gas
dynamics relations.

20- A bullet was shot at a speed of 280 m/s in a stagnant air at 273 K and 0.98 bar abs. Calculate
the total pressure at the bullet tip if air is considered incompressible and if it is considered
compressible. Do same if the bullet speed was 700m/s. Comment on results!

21- Discuss in details how can chocking (31isY)) take place in a converging nozzle. What are all
the flow properties at the exit plane of the nozzle? How can we increase the mass flow rate more
than the maximum at the chocking conditions? (plot T-S for all cases).
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22- Pitot tube in a wind tunnel gives a static reading of 0.6 bar vacuum and a stagnation pressure of
0.1 bar gauge. If the stagnation temperature is 363 K, what will be the air velocity upstream of the
Pitot tube.

23- For the flow in a variable area duct, discuss and plot the relation between A/A” and the Mach
number M for any perfect gas and for y=1.4. What is the origin of this relation? Show the physical
meaning of A” and where it is located in a variable area duct. How can we get, physically, two
possible values for M for the same value of A/A"?

24- Atmospheric air at 101.3 kPa abs. and 15 °C is accelerated isentropically. What are its velocity,
pressure, temperature, and density when the velocity reaches the speed of sound.

25- For the flow in a variable area duct, discuss and plot the relation between A’/A and the Mach
number M for any perfect gas and for y=1.4. What is the relation between A'/A and chocking of the
flow. Show the physical meaning of A" and where it is located in the duct ? How can we get,
physically, two possible values for M for the same value of A'/A?

26- Air flows into a frictionless passage. The speed of the air increases in the direction of the flow.
At station (1) the static temperature is 450K, static pressure is 2 bar abs., and the velocity is 200m/s.
At station (2) the velocity is equal to the speed of sound. Calculate the static temperature, static
pressure, velocity, and the density at station (2).

27- Plot and Discuss the mathematical meaning and physical meaning for these relations:

YL, 0.27(A/ A*)™
1.728(A/ A%)

M =~1-0.88{In(A/ A o, for.subsonic. flow...y =1.4..and ——1.0 < A/ A*<1.34

M =1+1.2(A7A%=1)"% oo for.supersonic. flow..y=1.4..and ——1.0< A/ A*<2.9

................................ for.subsonic. flow...y =1.4...and ——>1.34 < A/ A* < oo

M = [216(A/A*) —254(A/ A%)*? ]]/5 ........ for.supersonic. flow...y=1.4...and ——>2.9 < A/ A* < oo

62 °C. At section (2), M»>=0.8. Sketch the channel shape, plot the T-S diagram and find A,, P, and
all static properties at section (2).

29- Discuss in details the operation of a converging nozzle for all possible values of back pressure
from P, = P, to P, < P . Plot the T-S diagram and also all possible pressure distributions along the
nozzle. Show how do the flow rate and exit pressure depend on Py?

30- It is required to expand air from P,=200 kPa and T,=500K through a throat to an exit Mach
number of 2.5. If the desired mass flow rate is 3 kg/s, Find the throat area A*, the exit conditions
Ay, Py, T, and V,. Assume an isentropic flow.

31-Discuss in details the physical meaning of the Normal Shock Wave. Show where and
How it may take place? What are the flow conditions that must exist for the N.S.W. to take
place? What are the flow conditions upstream and downstream the N.S.W.? Plot the T-S
diagram for the process of the N.S.W.
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32- What is the temperature, density, p, pressure, p, and speed of sound, a, on the nose of a
supersonic fighter flying at a Mach number of M=2 through air at 273K and 0.7 bar.

33- Discuss in details the operation of a converging-diverging nozzle for all possible values
of back pressure from P, = P, to P, < P4, where P, is the design pressure for supersonic exit.
Plot the T-S diagram and also all possible pressure distributions along the nozzle. Show
how do the flow rate and exit pressure depend on P,? Show all possible locations of the
Normal shock Wave as the back pressure is reduced.

34- Air at 10 bar abs., and 300K issues from a reservoir through a converging nozzle of 10
mm exit diameter. Assuming isentropic flow, calculate the mass flow rate and exit Mach

number if the back pressure is 2 bar abs.

(35) The Rayliegh Line flow has the following properties ( select one statement only ):

a- adiabatic frictionless flow in a constant area duct with subsonic inlet conditions.

b- frictionless air flow in constant area duct with max. stagnation temperature at M=y~
c- isentropic flow in a constant area duct with heating at constant stagnation temperature.
d- Isothermal air flow in a duct with maximum stagnation temperature at M=1.

e- Non of the above but the following: ( state five properties for Rayliegh Line flow ).

(36) Nitrogen (with y = 1.35) flows subsonically in an adiabatic 2.54 cm diameter duct.
The inlet conditions are: M; =0.1, P;=2 bar and T ;=350 K. The average friction factor
may be assumed to be f = 0.024. (a) What type of flow is this? Find the length of the
duct that is necessary to accelerate the flow to M, =0.5, (b) Find the conditions P, , T, ,
V, and P, at section (2). Plot the T-S diagram for this flow. (use the following equations):

Pl Ly S FAL (7% (7L,
D 7M2 27 2+(}/—1)M2 ..................... , D 5 -
T &yl bl ym 1
T* a*Z 2+(7/—1)M2 ............................................ ’P* Y 2+(7_1)M2

.
o _v*_1[2+@-nmr]” P p, _1|2+(@y-DhM> oD
p* V M 7+1 .............................. ,PU* po* M ;/+1

(37) The Fanno-Line flow has the following properties ( select one statement only ):
f- adiabatic frictionless flow in a constant area duct with subsonic inlet conditions.
g- frictionless air flow in constant area duct with max. stagnation temperature at sz'o'5
h- isentropic flow in a constant area duct with heating at constant stagnation temperature.
i- Isothermal air flow in a duct with maximum stagnation temperature at M=1.
J- Non of the above but the following: ( state five properties for Rayliegh Line flow ).

(38) An industrial gas (with y=1.4 and R=350 J/kg.K) flows with a negligible friction through
a 0.1 m2 consant area duct. At the inlet section: V1= 53.7m/s, T1= 300 K, P1= 1.5 bar (abs.).
The gas is heated along the duct so that the exit pressure is found to be P2 = 1.1175 bar (abs.)
What type of flow is this? (a) Find stagnation conditions Tq; , Po; & the Mach number M, at
the inlet section. (b) Without using any tables find the exit conditions: V, , p,, T, , M, , and
Toz 5 Pos. (c)Find total amount of heat transferred to the gas in Kw,(Plot T-S diagram).
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(39) The Fanno-Line flow has the following properties ( select one statement only ):
k- adiabatic frictionless flow in a constant area duct with subsonic inlet conditions.

I- frictionless air flow in constant area duct with max. stagnation temperature at M=y

-0.5

m- isentropic flow in constant area duct with heating at constant stagnation temperature.
n- Isothermal air flow in a duct with maximum stagnation temperature at M=1.
o- Non of the above but the following: ( state five properties for Rayliegh Line flow ).

(40) Natural gas of molecular weight 18 and y =1.35 is to be pumped through a pipe of 80
cm internal diameter connecting two compressor stations 70 km apart. At the upstream
station, the pressure is 7 bar and at the downstream station, the pressure is 0.7 bar. Assuming
that there is sufficient heat transfer through the pipe wall to keep the local static gas
temperature at 40 oC everywhere along the flow, find: (a) the inlet and exit Mach number for
the maximum mass flow rate in the pipe. (b) the maximum mass flow rate in the pipe in
kg/sec. (c) the coefficient of friction associated with this pipe length. Plot the T-S diagram.

L —M? P
Fly 74‘24 FINOM )., —L =
D m P'
ﬂ:—lz V2 _ﬂ ............................... G2 =

1 V '
e ,—1:£=M1.7°‘5
M.y Vioop
2 2
. E R
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Word Problems

W .1 Notice from Table 6.1 that (a) water and mercury and (h)
aluminum and steel have nearly the same speeds of sound.
yet the second of the two materials is much denser. Can you
account for this oddity” Can molecular theory explain it?

W .2 When an object approaches you at Ma = 0.8, you can hear
it, zecording to Fig.6.36a. But would there be a Doppler
shift? For example, would a musical tone seem to you to
have a higher or a lower pitch”

W .3 The subject of this chapter is commonly called gas dynam-
ics. But can liquids not perform in this manner? Using wa-
ter as an example, make a rule-of-thumb estimate of the
pressure level needed to drive a water flow at velocities
comparable to the sound speed.

W .4 Suppose a gas is driven at compressible subsonic speeds by
a large pressure drop, py to py. Describe its behavior on an
appropriately labeled Mollier chart for {a) frictionless flow

in a converging nozzle and (b) flow with friction in a long
duct.

W .5 Descnbe physically what the “speed of sound”™ represents.
What kind of pressure changes occur in air sound waves dur-
ing ordinary conversation?

W .6 Give a physical description of the phenomenon of choking
in a converging-nozzle gas flow. Could choking happen even
if wall friction were not negligible?

W .7 Shock waves are treated as discontinuities here, but they ac-
tually have a very small finite thickness. After giving it some
thought, sketch your idea of the distribution of gas velocity,
pressure, temperature, and entropy through the inside of a
shock wave.

W .8 Descnbe how an observer, minning along a normal-shock
wave ai finite speed V, will see what appears to be an
oblique-shock wave. Is there any limit to the running speed”
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Fundamentals of Engineering Exam Problems

One-dimensional compressible-flow problems have became quite
popular on the FE Evam, espectally in the afternoon sessions. In
the following problens, assune one-dimensional flow of ideal air,
R=287 Jikg-K) and k= 14.

FE .1 For steady isentropic flow, if the absolute temperature in-

FE 4

FE

FE.

creases 30 percent, by what ratio does the static pressure
increase’

() A2, (B) 122, {c) 2.25.(d) 2.76, (e) 4.13

For steady isentropic flow. if the density doubles. by what
ratio does the static pressure increase?

() 122, (B) 132, {c) 144, (d) 2.64, (¢) 5.66

A large tank, at 300 K and 200 kPa, supplies isentropic
airflow to a nozzle. At section |, the pressure is only 120
kPa. What is the Mach number at this section?

() 0.63, (B) 0.78, (c) 0.89, (d) 1.00, (e) 1.83

In Prob. FE .3 what is the temperature at section 17

() 300 K. (B) 208 K, (c) 417 K, () 432 K, () 500 K

.7 If the exit Mach number in Fig. FE .6 is 2.2, what is the

exit area?
(@) 0.10 m?, (h) 0.12 m?, (¢) 0.15 m” , (d) 0.18 m?,
(¢) 0.22 m?

.8 If there are no shock waves and the pressure at one duct

section in Fig. FE .6 is 55.5 kPa, what is the velocity at
that section?

(a) 166 m/s, (b) 232 m/s, (¢) 554 m/s, (d) 706 m/s,

(e) 774 m/s

Comprehensive Problems

C .1 The converging-diverging nozzle sketched in Fig. C9.1 is
E designed to have a Mach number of 2.00 at the exit plane

(assuming the flow remains nearly isentropic). The flow
travels from tank a to tank b, where tank a is much larger
than tank b. (a) Find the area at the exit A, and the back
pressure p, which will allow the system to operate at de-
sign conditions. (b) As time goes on, the back pressure will

FE

FE .6

FE &

5

In Prob. FE .3, if the area at section 1 is 0.15 m”, what is
the mass flow?

(@) 38.1 kgfs, (b) 53.6 kgfs, (c) 57.8 kgfs, (d) 67.8 kgfs,
le) T7.2 kgls

For steady isentropic flow, what is the maximum possible
mass flow through the duct in Fig. FE. .67

() 9.5 kafs, (0) 15.1 kgfs. (c) 26.2 kafs, (d) 30.3 kgs,
(e) 5324 kgfs

Throat area = 0,05 m?

Exit

FE .9 If, in Fig. FE .6, there is a normal shock wave at a sec-

tion where the area is 0.07 m?, what is the air density just
upstream of that shock?

(a) 0.48 kg/m®, (b) 0.78 kg/m”, (¢) 1.35 kg/m’,

(d) 1.61 kg/m’, (¢) 2.61 kg/m’

FE .10 InProb. FE .9, what is the Mach number just downstream

of the shock wave?
(@) 042, (b) 0.55, (¢) 0.63, (d) 1.00, (¢) 1.76

to the condition of part (b), i.e., with a shock wave at the
exit plane.

C .2 Two large air tanks, one at 400 K and 300 kPa and the other

at 300 K and 100 kPa, are connected by a straight tube 6 m
long and 5 cm in diameter. The average friction factor is
0.0225. Assuming adiabatic flow, estimate the mass flow
through the tube.

grow, since the second tank slowly fills up with more air.  *C .3 Figure C9.3 shows the exit of a converging-diverging noz-
Since tank a is huge, the flow in the nozzle will remain the zle, where an oblique-shock pattern is formed. In the exit
same, however, until a normal shock wave appears at the plane, which has an area of 15 cm2, the air pressure is 16
exit plane. At what back pressure will this occur? (c) If tank kPa and the temperature is 250 K. Just outside the exit shock,
b is held at constant temperature, T = 20°C, estimate how which makes an angle of 50° with the exit plane, the tem-
long it will take for the flow to go from design conditions perature is 430 K. Estimate (a) the mass flow, (b) the throat
area, (c) the turning angle of the exit flow, and, in the tank
(£ T=500K N supplying the air, (d) the pressure and (e) the temperature.
p = 1.00 MPa Volume = 100,000 L
Air (k= 14) T=20.0°C
Volume = huge
— = " At’ V;_,, Mae
Tank b
\_ Tuka ) Throat area = 0.07 m?
C .1
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Problems on Part (6)

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equations Solver (EES), while problems labeled with a
computer icon may require the use of a computer. The standard
end-of-chapter problems .1 to .157 (categorized in the problem
list below) are given after word problems W .1 to W .8, funda-
mentals of engineering exam problems FE .1 to FE .10, compre-
hensive problems C .1t0 C .3

Problem distribution

P2

P4

P35

Section Topic Problems
1 Introduction - 9
2 The speed of sound 10- 18
3 Adiabatic and isentropic flow 19- 33
4 Isentropic flow with area changes M- 53
5 The normal-shock wave M- 62
6 Converging and diverging nozzles 63— 83
7 Duct flow with friction 86— 107
& Frictionless duct flow with heat transfer 108 115
9 Mach waves 116~ 121
9 The oblique-shock wave 122- 139
10 Prandtl-Meyer expansion waves 140- 147
10 Supersonic airfoils 148- 157

P .1  Anideal gas flows adiabatically through a duct. At section

1, py = 140 kPa, T, = 260°C, and V| = 75 m/s. Farther
downstream, p, = 30 kPa and T, = 207°C. Calculate V;
in m/s and 5, — s; in J(kg - K) if the gas is (a) air, k =
1.4, and (b) argon, k = 1.67.

Solve Prob. .1 if the gas is steam. Use two approaches:
(@) an ideal gas from Table A4 and (b) real gas data from
the steam tables [15].

If 8 kg of oxygen in a closed tank at 200°C and 300 kPa
is heated until the pressure rises to 400 kPa, calculate (a)
the new temperature, () the total heat transfer, and (c) the
change in entropy.

Compressibility effects become important when the Mach
number exceeds approximately 0.3. How fast can a two-
dimensional cylinder travel in sea-level standard air be-
fore compressibility becomes important somewhere in its
vicinity?

Steam enters a nozzle at 377°C, 1.6 MPa, and a steady
speed of 200 m/s and accelerates isentropically until it ex-
its at saturation conditions. Estimate the exit velocity and
temperature.

Is it possible for the steam in Prob. .5 to continue ac-
celerating until it exits with a moisture content of 12
percent? If so, estimate the new exit velocity and tem-
perature.

P.7

Carbon dioxide (k = 1.28) enters a constant-area duct at
400°F, 100 Ibffin’ absolute, and 500 ft/s. Farther down-
stream the properties are V, = 1000 ft/s and T, = 900°F.
Compute (a) ps, (b) the heat added between sections, (c)
the entropy change between sections, and (d) the mass flow
per unit area. Hint: This problem requires the continuity
equation.

Atmospheric air at 20°C enters and fills an insulated tank
which is initially evacuated. Using a control-volume analy-
sis from Eq. (3.63), compute the tank air temperature when
it is full.

Liquid hydrogen and oxygen are burned in a combustion
chamber and fed through a rocket nozzle which exhausts
at Veg =1600 m/s to an ambient pressure of 54 kPa. The
nozzle exit diameter is 45 cm, and the jet exit density is
0.15 kg/m’. If the exhaust gas has a molecular weight of
18, estimate (a) the exit gas temperature, (h) the mass flow,
and (c) the thrust developed by the rocket.

A certain aircraft flies at the same Mach number regard-
less of its altitude. Compared to its speed at 12,000-m stan-
dard altitude, it flies 127 km/h faster at sea level. Deter-
mine its Mach number.

At 300°C and 1 atm, estimate the speed of sound of ()
nitrogen, (b) hydrogen, (c) helium, (d) steam, and (e)
H8UF, (k = 1.06).

Assume that water follows Eq. (1.19) with n = 7 and B =
3000. Compute the bulk modulus (in kPa) and the speed
of sound (in m/s) at (a) 1 atm and (b) 1100 atm (the deep-
est part of the ocean). (¢) Compute the speed of sound at
20°C and 9000 atm and compare with the measured value
of 2650 m/s (A. H. Smith and A. W. Lawson, J. Chem.
Phys., vol. 22, 1954, p. 351).

From Prob. 1.33, mercury data fit Eq. (1.19) withn =6
and B = 41,000. Estimate (a) the bulk modulus and (b) the
speed of sound of mercury at 2500 atm and compare with
Table .1.

Assume steady adiabatic flow of a perfect gas. Show that
the energy equation ( 21), when plotted as speed of sound
versus velocity, forms an ellipse. Sketch this ellipse; label
the intercepts and the regions of subsonic, sonic, and su-
personic flow; and determine the ratio of the major and
minor axes.

A weak pressure wave (sound wave) with a pressure
change Ap = 40 Pa propagates through air at 20°C and |
atm. Estimate (a) the density change, (b) the temperature
change, and (c) the velocity change across the wave.

A weak pressure pulse Ap propagates through still air. Dis-
cuss the type of reflected pulse which occurs and the
boundary conditions which must be satisfied when the
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P18

wave strikes normal to, and is reflected from, (a) a solid
wall and (b) a free liquid surface.

A submarine at a depth of 800 m sends a sonar signal and
receives the reflected wave back from a similar submerged
object in 15 s. Using Prob. .12 as a guide, estimate the
distance to the other object.

The properties of a dense gas (high pressure and low tem-
perature) are often approximated by van der Waals’ equa-
tion of state [17, 18]

pRT
L=bp

P= ap’

where constants ¢, and b, can be found from the critical
temperature and pressure

2IRT?
a = £ =9.0 X 107 Ibf - ft*/slug®
64p,
for air, and
b = RTe _ 065 ft'/slug
8pe

for air. Find an analytic expression for the speed of sound
of a van der Waals gas. Assuming k = 1.4, compute the
speed of sound of air in ft/s at —100°F and 20 atm for (a)
a perfect gas and (b) a van der Waals gas. What percent-
age higher density does the van der Waals relation predict?

The Concorde aircraft flies at Ma # 2.3 at 11-km standard
altitude. Estimate the temperature in °C at the front stag-
nation point, At what Mach number would it have a front
stagnation-point temperature of 450°C?

A gas flows at V =200 m/s, p = 125 kPa, and T = 200°C.
For (a) air and (b) helium, compute the maximum pres-
sure and the maximum velocity attainable by expansion or
compression.

Air expands isentropically through a duct from p, = 125
kPa and T) = 100°C to p, =80 kPa and V; =325 m/s.
Compute (a) Ty, (b) May, (¢) Ty, (d) po. (¢) V), and ( f) Ma,.
Given the pitot stagnation temperature and pressure and
the static-pressure measurements in Fig. P .22, estimate

Air

j/a/mmc
\ /@/v 120 kPa

80kPa

p .22

P23

P .24

-
[35)
L

P27

the air velocity V, assuming (a) incompressible flow and
(b) compressible flow.

A large rocket engine delivers hydrogen at 1500°C and 3
MPa, k = 1.41, R = 4124 J/(kg-K), to a nozzle which ex-
its with gas pressure equal to the ambient pressure of 34
kPa. Assuming isentropic flow, if the rocket thrust is 2 MN,
what is (a) the exit velocity and (b) the mass flow of hy-
drogen?

For low-speed (nearly incompressible) gas flow, the stag-
nation pressure can be computed from Bemoulli's equa-
tion

!
po=p+5pV

(@) For higher subsonic speeds, show that the isentropic
relation (9.28a) can be expanded in a power series as fol-
lows:

I [ 4 \
o —_ V . g .
Po p-|-2p |\]+4M1+ 7 Ma™ + }

(b) Suppose that a pitot-static tube in air measures the pres-
sure difference py — p and uses the Bernoulli relation, with
stagnation density, to estimate the gas velocity. At what
Mach number will the error be 4 percent?

If it is known that the air velocity in the duct is 750 fi/s,
use the mercury-manometer measurement in Fig. P .25

to estimate the static pressure in the duct in Ibf/in® ab-
solute.

\ J™~Mercury

P .25

Show that for isentropic flow of a perfect gas if a pitot-
static probe measures py, p, and Ty, the gas velocity can
be calculated from

(P (k=1
: kPo }

What would be a source of error if a shock wave were
formed in front of the probe?

In many problems the sonic (*) properties are more use-
ful reference values than the stagnation properties. For
isentropic flow of a perfect gas, derive relations for p/p*,

'l"'2 = ZC‘PTQ
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P .28

29

L S

TIT*, and plp* as functions of the Mach number. Let us
help by giving the density-ratio formula:

k+ 1
2+ (k= 1) Ma?

1f(k=1)

P
P

A large vacuum tank, held at 60 kPa absolute, sucks sea-
level standard air through a converging nozzle whose
throat diameter is 3 cm. Estimate (a) the mass-flow rate
through the nozzle and (b) the Mach number at the throat.
Steam from a large tank, where T = 400°C and p = 1 MPa,
expands isentropically through a nozzle until, at a section
of 2-cm diameter, the pressure is 500 kPa. Using the steam
tables [15], estimate (a) the temperature, (b) the velocity,
and (c) the mass flow at this section. Is the flow subsonic?
Air flows in a duct of diameter 5 cm. At one section, Ty, =
300°C, p = 120 kPa, and 1 = 04 kg/s. Estimate, at this
section, (a) V, (b) Ma, and (c) po.

Air flows adiabatically through a duct. At one section V, =
400 ft/s, T} = 200°F, and p, = 35 Ibffin® absolute, while
farther downstream V, = 1100 ft/s and p, = 18 bffin® ab-
solute. Compute (a) May, (b) Upay, and (¢) poalpoy.-

The large compressed-air tank in Fig. P .32 exhausts from
a nozzle at an exit velocity of 235 m/s. The mercury
manometer reads i1 = 30 cm. Assuming isentropic flow,
compute the pressure (a) in the tank and (b) in the atmos-
phere. (c) What is the exit Mach number?

[ 30°C \

\ !

Air

-
=

Mercury

235 m/s

‘-I:E"l-|

P 32

-
(%]
=

-
[}
s

-
s
4

P .39
P .33 Air flows isentropically from a reservoir, where p = 300 H

P .34
i

P 35

kPa and T = 500 K, to section 1 in a duct, where A, = 0.2
m” and V) = 550 m/s. Compute (a) Ma,, (b) T\, (¢) p, (d)
m, and (e) A*. Is the flow choked?

Steam in a tank at 450°F and 100 Ibf/in® absolute exhausts
through a converging nozzle of 0.1-in® throat area to a 1-
atm environment. Compute the initial mass flow (a) for an
ideal gas and (b) from the steam tables [15].

Helium, at T, = 400 K, enters a nozzle isentropically. At
section 1, where A; = 0.1 mz, a pitot-static arrangement
(see Fig. P .25) measures stagnation pressure of 150 kPa
and static pressure of 123 kPa. Estimate () Ma,, (b) mass
flow sit, (¢) T, and (d) A*,

PY.40

An air tank of volume 1.5 m” is initially at 800 kPa and
20°C. Att = 0, it begins exhausting through a converging
nozzle to sea-level conditions. The throat area is 0.75 cm’,
Estimate (a) the initial mass flow in kg/s, (b) the time re-
quired to blow down to 500 kPa, and (c) the time at which
the nozzle ceases being choked.

Make an exact control-volume analysis of the blowdown
process in Fig. P .37, assuming an insulated tank with neg-
ligible kinetic and potential energy within. Assume criti-
cal flow at the exit, and show that both py and T, decrease
during blowdown. Set up first-order differential equations
for po(f) and T(1), and reduce and solve as far as you can.

Insulated tank
PG{U Ap Ve 1,
_ | —
Iy(n) e
Volume V
o 8/ Measurements
of fank
pressure and
e —
femperature

P37\ /

Prob. .37 makes an ideal senior project or combined lab-
oratory and computer problem, as described in Ref. 30,
sec. 8.6. In Bober and Kenyon’s lab experiment, the tank
had a volume of 0.0352 ft* and was initially filled with air
at 50 b/in” gage and 72°F. Atmospheric pressure was 14.5
Ib/in? absolute, and the nozzle exit diameter was 0.05 in.
After 2 s of blowdown, the measured tank pressure was 20
Ib/in” gage and the tank temperature was —5°F. Compare
these values with the theoretical analysis of Prob. 9.37.
Consider isentropic flow in a channel of varying area, from
section 1 to section 2. We know that Ma, = 2.0 and desire
that the velocity ratio V5/V, be 1.2. Estimate () Ma, and
(b) AsfA. (c) Sketch what this channel looks like. For ex-
ample, does it converge or diverge? Is there a throat?
Air, with stagnation conditions of 800 kPa and 100°C, ex-
pands isentropically to a section of a duct where A| = 20
em’ and p1 = 47kPa. Compute (a) Ma,, () the throat area,
and (c) m. At section 2 between the throat and section 1,
the area is 9 em’. (d) Estimate the Mach number at sec-
tion 2.

Air, with a stagnation pressure of 100 kPa, flows through
the nozzle in Fig. P 41, which is 2 m long and has an area
variation approximated by
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P 41 x

A=20-20x+ 10x°

with A in cm” and x in m. Tt is desired to plot the com-
plete family of isentropic pressures p(x) in this nozzle, for
the range of inlet pressures 1 < p(0) < 100 kPa. Indicate
those inlet pressures which are not physically possible and
discuss briefly. If your computer has an online graphics
routine, plot at least 15 pressure profiles; otherwise just

P 45

P 46

P 47

P 48

hit the highlights and explain.

P A

G

P A3

P4

A bicycle tire is filled with air at an absolute pressure of
169.12 kPa, and the temperature inside is 30.0°C. Suppose
the valve breaks, and air starts to exhaust out of the tire
into the atmosphere (p, = 100 kPa absolute and T, =
200°C). The valve exit is 2.00 mm in diameter and is the
smallest cross-sectional area of the entire system. Fric-
tional bosses can be ignored here, ie. one-dimensional
isemropic flow is a reasonable assumption. (@) Find the
Mach number, velocity, and temperature at the exit plane
of the valve (initiadly). () Find the initial mass-flow rate
out of the tire. (¢) Estimate the velocity at the exit plane
using the incompressible Bemoulli equation. How well
does this estimate agree with the “exact” answer of part
(a)? Explain.

Air flows isentropically through a duct with Ty, = 300°C.
At two sections with identical areas of 25 cm’, the pres-
sures are p; = 120 kPa and p;, = 60 kPa. Determine (a)
the mass flow, (b) the throat area, and (c) Ma,.

In Prob. we knew nothing about compressible flow
at the time, so we merely assumed exit conditions p and
T, and computed V> as an application of the continuity
equation. Suppose that the throat diameter is 3 in. For the
given stagnation conditions in the rocket chamber in Fig.
P and assuming k = 1.4 and a molecular weight of 26,

compute the actual exit velocity, pressure, and temperature
according to one-dimensional theory. If p,, = 14.7 Ibf/in®
absolute, compute the thrust from the analysis of Prob.
3.68. This thrust is entirely independent of the stagnation
temperature (check this by changing T, to 2000°R if you
like). Why?

At a point upstream of the throat of a converging-diverg-
ing nozzle the properties are V, = 200 m/s, T, = 300 K,
and p; = 125 kPa. If the exit flow is supersonic, compute,
from isentropic theory, (a) m and (b) A;. The throat area
is 35 cm”.

If the author did not falter, the results of Prob. .43 are (a)
0.671 kgfs, (b) 23.3 cm?, and (¢) 1.32. Do not tell your
friends who are still working on Prob. -43. Consider a
control volume which encloses the nozzle between these
two 25-cm® sections. If the pressure outside the duct is
| atm, determine the total force acting on this section of
nozzle.

In wind-tunnel testing near Mach 1, a small area decrease
caused by model blockage can be important. Suppose the
test section area is 1 m”, with unblocked test conditions
Ma = 1.10and T = 20°C. What model area will first cause
the test section to choke? If the model cross section is
0.004 m? (0.4 percent blockage), what percentage change
in test-section velocity results?

A force F = 1100 N pushes a piston of diameter 12 cm
through an insulated cvlinder containine air at 20°C. as in

Fig. P .48, The exit diameter is 3 mm, and p, = | atm.
Estimate (a) V.. (b) V., and (c) .

Teeulated
F—- :l'l lL:’—- at — "-r ‘I'I-I-r
 — XrC 7
Dt.:-?- i
P48 D= 12em Py = atm
‘ =12

30

in

A9 Airexpands through a nozzle and exits supersonically. The

throat area is 10 cm”, and the throat pressure is 100 kPa.
Find the pressure on either side of the throat where the
duct area is 24 cm”.

Arzon expands isentropically in a converging nozzle whose
entrance conditions are 0y = 10 cm, p; = 150 kPa, Ty =
100°C, and mit = | kg's. The flow discharges smoothly to
an ambient pressure of 101 kPa () What is the exit di-
ameter of the nozzle? (5) How much further can the am-
biemt pressure be reduced before it affects the inlet mass
flow?

1 Air, at stagnation conditions of 500 K and 200 kPa, flows

through a nozzle. At section 1, where the area is 12 cm’,
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the density is 0.32 kg/m’. Assuming isentropic flow, (a)
find the mass flow. (b) Is the flow choked? If so, estimate
A%, Also estimate (c) p, and (d) Ma,.

A converging-diverzing nozzle exits smoothly to sea-level
standard atmosphere. It is supplied by a 40-m” tank ini-
tiadly at 800 kPa and 100°C. Assuming isentropic flow in
the nozzle, estimate (a) the throat area and (b) the tank
pressure afier 100 s of operation. The exit area is 10 e’
Air flows steadily from a reservoir at 20°C through a noz-
zle of exit area 20 em” and strikes a vertical plate as in
Fig. P .53, The flow is subsonic throughout. A force of
135 N is required to hold the plate stationary. Compuile (a)
V.. () Ma,, and () py if p, = 101 kPa

Ape=Mcm?
| Pate

P .53 !

For flow of air through a normal sheck the upstream con-
ditions are V, = 600 mfs, Ty, = 500 K, and py, = T00
kPa. Compute the downstream conditions Mag, Vs, Ts, p2.
and pyp.
Air, supplied by a reservoir at 430 kPa, flows through a con-
verging-diverging nozzle whose throat area is 12em’. A nor-
mal shock stands where A, = 20 cmy”. () Compute the pres-
sure just downstream of this shock. Still farther downstream,
at A = 30 con”, estimate (b) ps, (c) A%, and (d) Mas.
Aur from a reservorr at 20°C and 500 kPa flows through a
duct and forms a nomal shock downsiream of a throat of
area 10 cm”. By an odd coincidence it is found that the
stagnation pressure downstream of this shock exactly
equals the throat pressure. What is the area where the shock
wave stands?
Air flows from a tank through a nezzle into the standard
aimosphere, as 1n Fig. P .57. A normal shock stands in the
exit of the nozzle, as shown. Estimate (a) the pressure in
the tank and (b) the mass flow.

14 cm?
Airat I0em® |
100°C | |

|

Shock

I
| Seaclevel aie

Taw
=3

P .58

P .5

P o

P .63

P o4

P .65

P .66

Argon | Table A.4) approaches a normal shock with ¥y =
T00 myfs, py = 125 kPa, and T) = 350 K. Estimate (a) V>
and (b) py. (c) What pressure p> would result if the same
velocity change Vy to Vy were accomplished isemropi-
cally?

Air, at stagnation conditions of 430 K and 230 kPa, flows
through a nozzle. At section 1. where the area is 15 cm®,
there is a normal shock wave. If the mass flow is 0.4 kg's,
estimate (a) the Mach number and () the stagnation pres-
sure just downstream of the shock.

When a pitot mbe such as in Fig. 6.30 is placed in a su-
personic flow, a pomal shock will stand in front of the
probe. Suppose the probe reads py = 190 kP2 and p = 150
kPa If the stagnation temperature is 400 K, estimate the
(supersonic) Mach number and velocity upstream of the
shock

Repeat Prob. .56 except this time let the odd coincidence
be that the staric pressure downstream of the shock exactly
equals the throat pressure. What is the area where the shock
stands?

An atomic explosion propagates into still air st 14.7 Ibffin”
absolute and 520°R. The pressure just inside the shock is
5000 1bffin” absobute. Assuming k = 1.4, what are the speed
C of the shock and the velocity V just inside the shock?
Sea-level standard air is sucked into a vacuum tank through
a nozzle, as in Fig. P 63, A normal shock stands where

the nozzle area is 2 cor’, as shown. Estimate (a) the pres-
sure in the tank and (b) the mass flow.

Sea-Jevel ait—s- : Yo

P .63

Air in a large tank at 100°C and 150 kPa exhansts to the
atmosphere through a converging nozzle with a S-cm*
throat area. Compute the exit mass flow if the atmosphenc
pressure is (a) 100 kPa, (b) 60 kPa, and (c) 30 kPa.

Air flows through a converging-diverging nozzle between
two large reservoirs, as shown in Fig. P .65. A mercury
manometer between the throat and the downstream reser-
voir reads h = 15 cm. Estimate the downstream reservoir
pressure. Is there a normal shock in the flow? If so, does
it stand in the exit plane or farther upstream?

InProb. .65 what would be the mercury-manometer read-
ing h if the nozzle were operating exactly al supersonic de-
sign conditions?
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P .07

P .68

P .69

P72

A, =10em?
| —
—_— :Af =30 cm?
— ‘

100°C
300 kPa -

Al

In Prob. .65 estimate the complete range of manometer
readings i for which the flow through the nozzle is en-
tirely isentropic, except possibly in the exit plane.

Air in a tank at 120 kPa and 300 K exhausts to the at-
mosphere through a 5-cm’-throat converging nozzle at a
rate of 0.12 kg/s. What is the atmospheric pressure? What
is the maximum mass flow possible at low atmospheric
pressure?

With reference to Prob. 3.68, show that the thrust of a
rocket engine exhausting into a vacuum is given by

P .05

PoAdl + k Ma)

[ k=1 ,\F&D
k.] +T Mﬂi}

where A, = exit area
Ma, = exit Mach number
P = stagnation pressure in combustion chamber

Note that stagnation temperature does not enter into the thrust.
Alr, at stagnation temperature 100°C, expands isentropi-
cally through a nozzle of 6-cm” throat area and 18-cm’
exit area. The mass flow is at its maximum value of 0.5
kg/s. Estimate the exit pressure for (a) subsonic and (b)
supersonic exit flow.

For the nozzle of Prob. .70, allowing for nonisentropic
flow, what s the range of exit tank pressures p;, for which
(a) the diverging nozzle flow is fully supersonic, (b) the
exit flow is subsonic, (¢) the mass flow is independent of
Pp» (d) the exit plane pressure p,, is independent of p;, and
(ﬁ) Pe < p b?

Suppose the nozzle flow of Prob. .70 is not isentropic but
instead has a normal shock at the position where area is
15 cm®. Compute the resulting mass flow, exit pressure,
and exit Mach number.

Air flows isentropically in a converging-diverging nozzle
with a throat area of 3 cm’. At section 1, the pressure is
101 kPa, the temperature is 300 K, and the velocity is 868
m/s. (a) Is the nozzle choked? Determine (b) A, and (c)
the mass flow. Suppose, without changing stagnation con-
ditions or A, the (flexible) throat is reduced to 2 em?, As-

“p 75

suming shock-free flow, will there be any change in the
gas properties at section 17 If so, compute new py, V,, and
T and explain.

The perfect-gas assumption leads smoothly to Mach-num-
ber relations which are very convenient (and tabulated).
This is not so for a real gas such as steam. To illustrate,
let steam at Ty = 500°C and py = 2 MPa expand isen-
tropically through a converging nozzle whose exit area is
10 em”, Using the steam tables, find (a) the exit pressure
and (b) the mass flow when the flow is sonic, or choked.
What complicates the analysis?

A double-tank system in Fig. P .75 has two identical con-
verging nozzles of 1-in® throat area. Tank 1 is very large,
and tank 2 is small enough to be in steady-flow equilib-
rium with the jet from tank 1. Nozzle flow is isentropic,
but entropy changes between 1 and 3 due to jet dissipa-
tion in tank 2. Compute the mass flow. (If you give up,
Ref. 14, pp. 288-290, has a good discussion.)

« 0O 0] 0
\_ -
' ~
100 Ibf/in? abs
B 10 Ibf/in? abs
P .75 -

P .76 A large reservoir at 20°C and 800 kPa is used to fill a small

insulated tank through a converging-diverging nozzle with
I-cm” throat area and 1.66-cm” exit area, The small tank

has a volume of 1 m” and is initially at 20°C and 100 kPa.
Estimate the elapsed time when (a) shock waves begin to
appear inside the nozzle and (b) the mass flow begins to
drop below its maximum value.

A perfect gas (not air) expands isentropically through a su-
personic nozzle with an exit area 5 times its throat area.
The exit Mach number is 3.8. What is the specific-heat ra-
tio of the gas? What might this gas be? If po = 300 kPa,
what is the exit pressure of the gas?

The orientation of a hole can make a difference. Consider
holes A and B in Fig. P .78, which are identical but re-
versed. For the given air properties on either side, compute
the mass flow through each hole and explain why they are
different.

0.2 em? P = 150 kPa, Tl =20°C

o o
NN

0.3 cm? iy
p,=100kPa

I
A

)
m,,,_

P .78
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P79 Air with py = 300 kPa and T, = 500 K flows through a
converging-diverging nozzle with throat area of 1 cm? and
exit area of 3 em” into a receiver tank. The mass flow is
195.2 kg/h. For what range of receiver pressure is this mass
flow possible?

P .80 A sea-level automobile tire is initially at 32 Ibffin* gage
pressure and 75°F. When it is punctured with a hole which
resembles a converging nozzle, its pressure drops to 13
Ibff/in* gage in 12 min. Estimate the size of the hole, in
thousandths of an inch. The tire volume is 2.5 ft"
Helium, in a large tank at 100°C and 400 kPa, discharges
to a receiver through a converging-diverging nozzle de-
signed to exit at Ma = 2.5 with exit area 1.2 cm®, Com-
pute (a) the receiver pressure and () the mass flow at de-
sign conditions. (c) Also estimate the range of receiver
pressures for which mass flow will be a maximum.

Air at 500 K flows through a converging-diverging nozzle

with throat area of 1 cm” and exit area of 2.7 cm®, When

the mass flow is 182.2 kg/h, a pitot-static probe placed in
the exit plane reads p, = 250.6 kPa and p = 240.1 kPa.

Estimate the exit velocity. Is there a normal shock wave

in the duct? If so, compute the Mach number just down-

stream of this shock.

When operating at design conditions (smooth exit to sea-

level pressure), a rocket engine has a thrust of 1 million

Ibf. The chamber pressure and temperature are 600 Ibffin’

absolute and 4000°R, respectively. The exhaust gases ap-

proximate k = 1.38 with a molecular weight of 26. Esti-
mate () the exit Mach number and (b) the throat diame-
ter.

I .84 Air flows through a duct as in Fig. P .84, where A, = 24
cm?, A =18 cem’, and Ay =32 cm’. A normal shock
stands at section 2. Compute (a) the mass flow, (b) the
Mach number, and (c) the stagnation pressure at section 3.

P .82

P83

(1)
®
—_— ‘ Alr — ‘

Normal

Ma =25 shock

p,=40kPa

Ty =30°C

|

P .85 A large tank delivers air through a nozzle of I-cm” throat

(@) the throat pressure and (b) the stagnation pressure in
the upstream supply tank.

' 86  Airenters a 3-cm-diameter pipe 15 m long at V; =73 m/s,
P = 350kPa, and T} = 60°C. The friction factor is 0.018.
Compute Vs, p., Ts, and pg; at the end of the pipe. How
much additional pipe length would cause the exit flow to
be sonic?

' 87 Airentersaduct of /D =40atV, =170 m/sand T} =
300 K. The flow at the exit is choked. What is the aver-
age friction factor in the duct for adiabatic flow?

P .88 Air enters a 5- by 5-cm square duct at V, = 900 m/s and
Ty = 300 K. The friction factor is 0.02. For what length
duct will the flow exactly decelerate to Ma = 1.07 If the
duct length is 2 m, will there be a normal shock in the
duct? If so, at what Mach number will it occur?

P 89  Air flows adiabatically in a 5-cm-diameter tube with f =
0.025. At section 1, V, =75 m/s, T, = 350 K, and p, =
300 kPa. How much further down the tube will (a) the
pressure be 156 kPa, (b) the temperature be 343 K, and
(c) the flow reach the choking point?

P 90 Air, supplied at py =700 kPa and T, =330 K, flows
through a converging nozzle into a pipe of 2.5-cm diame-
ter which exits to a near vacuum. If f =(.,022, what will
be the mass flow through the pipe if its length is (a) 0 m,
(h) 1 m, and (¢) 10 m?

P 91 Air flows steadily from a tank through the pipe in Fig.
P9.91. There is a converging nozzle on the end. If the mass
flow is 3 kg/s and the nozzle is choked, estimate (a) the
Mach number at section 1 and (b) the pressure inside the
tank.

Alr at
100°C \ L=9m,D=6cm
|
/
—
ﬂ]g F=0025
-/

P91

D,=5cm

;\/ .
@ Nozzle

P,= 100 kPa

P 92 Modify Prob. .91 as follows. Let the pressure in the tank

be 700 kPa, and let the nozzle be choked. Determine (a)
Ma, and (b) the mass flow.

P 93 Air flows adiabatically in a 3-cm-diameter duct. The av-

erage friction factor is 0.015. If, at the entrance, V = 950
m/s and T =250 K, how far down the tube will (a) the
Mach number be 1.8 or (b) the flow be choked?

arca and 2.7-cm” exit area. When the receiver pressure s I* .94 Compressible pipe flow with friction, Sec. .7, assumes

125 kPa, a normal shock stands in the exit plane. Estimate

constant stagnation enthalpy and mass flow but variable
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momentum. Such a flow is often called Fanno flow, and a
line representing all possible property changes on a tem-
perature-entropy chart is called a Fanno line. Assuming a
perfect gas with k = 1.4 and the data of Prob. .86, draw
a Fanno curve of the flow for a range of velocities from
very low (Ma <€ 1) to very high (Ma 2 1). Comment on
the meaning of the maximum-entropy point on this curve.
Helium (Table A.4) enters a 3-cm-diameter pipe at p, =
550 kPa, V| = 312 m/s, and T, = 40°C. The friction fac-
tor is 0.025. If the flow is choked, determine (a) the length
of the duct and (b) the exit pressure.
Derive and verify the adiabatic-pipe-flow velocity relation
of Eq. ( .74), which is usually written in the form

fLok+l v, @1 1)

D TE "N TR W
By making a few algebraic substitutions, show that Eq.
( .74), or the relation in Prob. .96, may be written in the
density form

P 95
1

P 96

P97

% fL pr)
2_ 2 W Jb oo, B
P P2+p \k‘l‘] D-I_'l]lpz}

Why is this formula awkward if one is trying to solve for
the mass flow when the pressures are given at sections |

and 27

Compressible laminar flow, f = 64/Re, may occur in cap-
illary tubes. Consider air, at stagnation conditions of 100°C
and 200 kPa, entering a tube 3 cm long and 0.1 mm in di-
ameter. If the receiver pressure is near vacuum, estimate
(@) the average Reynolds number, (b) the Mach number at
the entrance, and (c) the mass flow in kg/h.

A compressor forces air through a smooth pipe 20 m long
and 4 cm in diameter, as in Fig. P .99. The air leaves at
101 kPa and 200°C. The compressor data for pressure rise

versus mass flow are shown in the figure. Using the Moody
chart to estimate f, compute the resulting mass flow.

D=4cm
L=20m P,=101kPa
— 71
T, =200°C
250 kPa
Parabola
Ap
| lr?.?
P .99 0.4 kg/s

P .100 Modify Prob. .99 as follows. Find the length of 4-cm-di-
ameter pipe for which the pump pressure rise will be ex-
actly 200 kPa.

P 101 How do the compressible-pipe-flow formulas behave for
small pressure drops? Let air at 20°C enter a tube of di-
ameter 1 cm and length 3 m. If f = 0.028 with p, = 102
kPa and p, = 100 kPa, estimate the mass flow in kg/h for
(a) isothermal flow, (b) adiabatic flow, and (c) incom-
pressible flow (Chap. 6) at the entrance density.

P 102 Air at 550 kPa and 100°C enters a smooth 1-m-long pipe
and then passes through a second smooth pipe to a 30-kPa
reservoir, as in Fig. P .102. Using the Moody chart to com-
pute f, estimate the mass flow through this system. Is the
flow choked?

L=1m
i;ﬂ D=5em ‘ L=12m
A ‘ D=3cm
\—
100°C — == P,=30kPa

Converging
nozzle

P .102

P 103 Natural gas, with k = 1.3 and a molecular weight of 16, is
to be pumped through 100 km of 81-cm-diameter pipeline.
The downstream pressure 1s 150 kPa. If the gas enters at

60°C, the mass flow is 20 kg/s, and f = (.024, estimate
the reauired entrance pressure for (a) isothermal flow and

(b) adiabatic flow.

P 104 A tank of oxygen (Table A.4) at 20°C is to supply an as-

H tronaut through an umbilical tube 12 m long and 2 cm in
diameter. The exit pressure in the tube is 40 kPa. If the de-
sired mass flow is 90 kg/h and f = 0.025, what should be
the pressure in the tank?

P 105 Air enters a 5-cm-diameter pipe at py =200 kPaand T, =

: 350 K. The downstream receiver pressure is 74 kPa. The

friction factor is 0.02. If the exit is choked, what is (a) the
length of the pipe and (k) the mass flow? (c) If p, T}, and
Preceiver Stay the same, what pipe length will cause the mass
flow to increase by 50 percent over (b)? Hint: In part (c)
the exit pressure does not equal the receiver pressure.

P .106 Air at 300 K flows through a duct 50 m long with f =
0.019. What is the minimum duct diameter which can carry
the flow without choking if the entrance velocity is (a) 50
m/s, (b) 150 m/s, and () 420 m/s?

P .107 A fuel-air mixture, assumed equivalent to air, enters a duct
combustion chamber at V; = 104 m/s and T|, = 300 K.
What amount of heat addition in kl/kg will cause the exit
flow to be choked? What will be the exit Mach number
and temperature if 504 kJ/kg is added during combustion?
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P 108 What happens to the inlet flow of Prob. .107 if the com- P .115 Air flows subsonically in a duct with negligible friction.

bustion yields 1500 kJ/kg heat addition and pg, and T,
remain the same? How much is the mass flow reduced?
P 109 A jet engine at 7T000-m altitude takes in 45 kg/s of air and

When heat is added in the amount of 948 kl/kg, the pres-
sure drops from p; =200 to p, = 106 kPa. Estimate
{(a) May, (b) T, and (c) V|, assuming Ty, = 305 K.

adds 550 kl/kg in the combustion chamber. The chamber F 116 An observer at sea level does not hear an aircraft flying at

cross section is 0.5 1112, and the air enters the chamber at
80 kPa and 5°C. After combustion the air expands through

12.,000-ft standard altitude until it is 5 (statute) mi past her.
Estimate the aircraft speed in ft/s.

an isentropic converging nozzle to exit at atmospheric pres- P 117 An observer at sea level does not hear an aircraft flying at

sure. Estimate (a) the nozzle throat diameter, (b) the noz-
zle exit velocity, and (c) the thrust produced by the engine.

6000-m standard altitude until 15 s after it has passed over-
head. Estimate the aircraft speed in m/s.

P .110 Compressible pipe flow with heat addition, Sec. .8, as- P .118 A particle moving at uniform velocity in sea-level stan-

sumes constant momentum (p + pV”) and constant mass
flow but variable stagnation enthalpy. Such a flow is of-
ten called Rayleigh flow, and a line representing all pos-
sible property changes on a temperature-entropy chart is
called a Rayleigh line. Assuming air passing through the
flow state py = 548 kPa, T), = 588 K, V| = 266 m/s, and
A =1 m’ draw a Rayleigh curve of the flow for a range
of velocities from very low (Ma < 1) to very high (Ma >
1). Comment on the meaning of the maximum-entropy
point on this curve.

P .111 Add to your Rayleigh line of Prob. .110 a Fanno line (see

dard air creates the two disturbance spheres shown in Fig.
P .118. Compute the particle velocity and Mach number.

X
Nod

P .118 Particle /

Prob. .94) for stagnation enthalpy equal to the value as- P .119 The particle in Fig. P .119 is moving supersonically in

sociated with state 1 in Prob. .110. The two curves will
intersect at state 1, which is subsonic, and at a certain state
2, which is supersonic. Interpret these two states vis-a-vis
Table B6.2

P .112 Airenters a duct subsonically at section | at 1.2 kg/s. When
650 kW of heat is added, the flow chokes at the exit at
p2 =95 kPa and T, = 700 K. Assuming frictionless heat
addition, estimate (a) the velocity and (b) the stagnation
pressure at section 1.

P 113 Air enters a constant-area duct at p; = 90 kPa, V, = 520
m/s, and Ty = 558°C. It is then cooled with negligible fric-
tion until it exits at p, = 160 kPa. Estimate (a) V5, (b) T,
and (c) the total amount of cooling in kl/kg.

P .114 We have simplified things here by separating friction (Sec.

.7) from heat addition (Sec. .8). Actually, they often oc-
cur together, and their effects must be evaluated simulta-
neously. Show that, for flow with friction and heat trans-
fer in a constant-diameter pipe, the continuity, momentum,
and energy equations may be combined into the following
differential equation for Mach-number changes:

dMa® _ 1+kMa’ dg
M~ 1=-Ma® ¢
kMa® [2 4 (k= 1) Ma’] fdx
2(1 - Ma?) D

where dQ is the heat added. A complete derivation, in-
cluding many additional combined effects such as area
change and mass addition, is given in chap. 8 of Ref. 8.

sea-level standard air. From the two given disturbance
spheres, compute the particle Mach number, velocity, and
Mach angle.

Particle . / _><m

|
/
U/

- 8 m =

P .119 -

P 120 The particle in Fig. P 120 is moving in sea-level standard

air. From the two disturbance spheres shown, estimate (a)
the position of the particle at this instant and (b) the tem-
perature in "C at the front stagnation point of the particle.

om

im

P 120

P 121 A thermistor probe, in the shape of a needle parallel to the

flow, reads a static temperature of —25°C when inserted
into a supersonic airstream. A conical disturbance cone of
half-angle 17% is created. Estimate (a) the Mach number,
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(b) the velocity, and (c) the stagnation temperature of the
stream.

P .122 Supersonic air takes a 5 compression turn, as in Fig.
P .122. Compute the downstream pressure and Mach num-
ber and the wave angle, and compare with small-distur-
bance theory.

May. p
Mﬂl :3 /
B
p,=100KPa

P .122

P .123 Modify Prob. .122 as follows. Let the 5° total turn be in

H the form of five separate compression turns of 17 each.
Compute the final Mach number and pressure, and com-
pare the pressure with an isentropic expansion to the same
final Mach number.

P .124 Determine the validity of the following alternate relation
for the pressure ratio across an oblique shock wave:

P2 _ cot sin 2B —cos 2B + k
p; cotfsin2p —cos 2B —k

If necessary, your proof (or disproof) may be somewhat
tentative and heuristic.

P .125 Show that, as the upstream Mach number approaches in-
finity, the Mach number downstream of an attached
oblique-shock wave will have the value

| k_l

Ma, = \."' 2k sin” (B — 6)

P .126 Consider airflow at Ma, = 2.2. Calculate, to two decimal
places, (a) the deflection angle for which the downstream
flow is sonic and (b) the maximum deflection angle.

P .127 Do the Mach waves upstream of an oblique-shock wave
intersect with the shock? Assuming supersonic down-
stream flow, do the downstream Mach waves intersect the
shock? Show that for small deflections the shock-wave an-
gle 3 lies halfway between p, and p, + 6 for any Mach
number.

P .128 Air flows past a two-dimensional wedge-nosed body as in
Fig. P .128. Determine the wedge half-angle & for which
the horizontal component of the total pressure force on the
nose is 35 kN/m of depth into the paper.

Ma=3.0
p=100kPa

12 cm

P .128

P .129 Air flows at supersonic speed toward a compression ramp,
as in Fig. P .129. A scratch on the wall at point a creates
a wave of 307 angle, while the oblique shock created has
a 50° angle. What is (a) the ramp angle 6 and (b) the wave
angle ¢ caused by a scratch at b?

i

/

30°

Ma > 1 e

P 129

P 130 Modify Prob. .129 as follows. If the wave angle ¢ is 42°,

H determine (a) the shock-wave angle and (b) the deflection
angle.

P .131 In Fig. P 128, assume that the approach stream tempera-
ture is 20°C. For what wedge half-angle  will the stream
temperature along the wedge surface be 200°C?

P 132 Air flowsat Ma=3and p = 10 Ibffin? absolute toward a
wedge of 16” angle at zero incidence in Fig. P .132.1f the
pointed edge is forward, what will be the pressure at point
A?If the blunt edge is forward, what will be the pressure
at point B?

Ma=3

7= 101bf/inZ abs

P .132

P 133 Air flows supersonically toward the double-wedge system
in Fig. P .133. The (x, y) coordinates of the tips are given.
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{1m, I m)

Shocks

Ma, ——

P 133

The shock wave of the forward wedge strikes the tip of
the aft wedge. Both wedges have 15° deflection angles.
What is the free-stream Mach number?

P-.134 When an oblique shock strikes a solid wall, it reflects as

@ a shock of sufficient strength to cause the exit flow Maj;
to be parallel to the wall, as in Fig. P .134. For airflow
with Ma, = 2.5 and p, = 100 kPa, compute Mas, ps, and
the angle ¢.

Ma;,

P 134

P .135 A bend in the bottom of a supersonic duct flow induces
a shock wave which reflects from the upper wall, as in
Fig. P .135. Compute the Mach number and pressure in

region 3.
— -\1
m 2
Air:
p,=100kPa
Ma, =30
S
P .13

P .136 Figure P .136 s a special application of Prob. .135. With

H careful design, one can orient the bend on the lower wall
50 that the reflected wave is exactly canceled by the return
bend, as shown. This is a method of reducing the Mach
number in a channel (a supersonic diffuser). If the bend
angle is ¢ = 10°, find (a) the downstream width / and (b)
the downstream Mach number. Assume a weak shock
wave,

lm

P9.136

P .137 Generalize Prob.

.136 into a computer study as follows.

Assuming weak shocks, find and plot all combinations of

¢ and h in Fig. P .136 for which the canceled or “swal-

lowed" reflected shock is possible.

P .138 The supersonic nozzle of Fig. P .138 is overexpanded
(case G of Fig.6.20) with AJA; = 3.0 and a stagnation
pressure of 350 kPa. If the jet edge makes a 4° angle with
the nozzle centerline, what is the back pressure p, in kPa?

P .138

P 139 Airflow at Ma = 2.2 takes a compression turn of 12° and

H then another turn of angle  in Fig. P .139. What is the
maximum value of f for the second shock to be attached?
Will the two shocks intersect for any 6 less than 6,,,?

P 140 The solution to Prob. 122 is Ma, =2.750, and p, =
145.5 kPa. Compare these results with an isentropic com-
pression turn of 5°, using Prandtl-Meyer theory.

P .141 Supersonic airflow takes a 57 expansion turn, as in Fig.
P .141. Compute the downstream Mach number and pres-
sure, and compare with small-disturbance theory.
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Ma, =3

P = 100 kPa

N

May,. p,

g

P .141

P 142 A supersonic airflow at Ma, = 3.2 and p, = 50 kPa un-
dergoes a compression shock followed by an isentropic ex-
pansion turn. The flow deflection is 30° for each turn.
Compute Ma, and p; if (a) the shock is followed by the
expansion and (b) the expansion is followed by the shock.

P 143 Airflow at Ma, = 3.2 passes through a 25° oblique-shock
deflection. What isentropic expansion turn is required to
bring the flow back to (a) Ma, and (b) p,?

P .144 Consider a smooth isentropic compression turn of 20°, as
shown in Fig. P .144. The Mach waves thus generated will
form a converging fan. Sketch this fan as accurately as pos-
sible, using at least five equally spaced waves, and demon-
strate how the fan indicates the probable formation of an
oblique-shock wave.

Mach waves

Finish

Circular-arc turn

P 14 Start

P .145 Air at Ma; = 2.0 and p; = 100 kPa undergoes an isen-

ﬁ tropic expansion to a downstream pressure of 50 kPa. What
is the desired turn angle in degrees?

P .146 Helium, at 20°C and V| = 2010 m/s, undergoes a Prandtl-
Meyer expansion until the temperature is —50°C. Estimate
the turn angle in degrees.

P .147 A converging-diverging nozzle with a 4:1 exit-area ratio

E and pg = 500 kPa operates in an underexpanded condition
(case I of Fig.6.20b ) as in Fig. P .147. The receiver pres-
sure is p, = 10 kPa, which is less than the exit pressure,
so that expansion waves form outside the exit. For the
given conditions, what will the Mach number Ma, and the
angle ¢ of the edge of the jet be? Assume k = 1.4 as usual.

P .148 Repeat Example g 39 for an angle of attack of 6°. Is the
lift coefficient linear with angle a in this range of 0° = a
= 8715 the drag coefficient parabolic with ein this range?

PY.149 Repeat Example 9.21 for an angle of attack of 2°. Is the
lift coefficient linear with angle a in this range of 0° = a

P .147

= 87 Why does the drag coefficient not have the simple
parabolic form Cp Ko in this range’

P 150 A flat-plate airfoil with C' = 1.2 m is to have a lift of 30
kN/m when flying at 5000-m standard altitude with U,
641 m/s. Using Ackeret theory, estimate (a) the angle of
attack and (b) the drag force in N/m.

P .151 Air flows at Ma = 2.5 past a half-wedge airfoil whose an-
gles are 4°, as in Fig. P .151. Compute the lift and drag

coefficient at o equal to (@) 0° and (b) 6°.
40

¥ 5
\ i PERCE
\

P 152 A supersonic airfoil has a parabolic symmetric shape for
upper and lower surfaces

Ma, =25

—

=2 £ - %
such that the maximum thickness is f at x = 3C. Compute
the drag coefficient at zero incidence by Ackeret theory,
and compare with a symmetric double wedge of the same
thickness.

P 153 A supersonic transport has a mass of 65 Mg and cruises at
11-km standard altitude at a Mach number of 2.25. If the
angle of attack is 2° and its wings can be approximated by
flat plates, estimate (a) the required wing area in m? and
(b) the thrust required in N.

P 154 A symmetric supersonic airfoil has its upper and lower sur-
faces defined by a sine-wave shape:

to,om
y =5 sin

2

where 1 is the maximum thickness, which occurs at x =
(/2. Use Ackeret theory to derive an expression for the
drag coefficient at zero angle of attack. Compare your re-
sult with Ackeret theory for a symmetric double-wedge air-
foil of the same thickness.

PY.155 For the sine-wave airfoil shape of Prob. 9.154, with Ma,, =
25, k=14,1/C=0., and a = 0°, plot (without com-
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puting the overall forces) the pressure distribution p(x)/p..
along the upper surface for (a) Ackeret theory and (b) an
oblique shock plus a continuous Prandtl-Meyer expansion.

P.156 A thin circular-arc airfoil is shown in Fig. P .156. The

leading edge is parallel to the free stream. Using linearized

Maz>1

—

LE Circular-arc foil

P 156 L TE

(small-turning-angle) supersonic-flow theory, derive afor- P ,157 Prove from Ackeret theory that for a given supersonic air-
mula for the lift and drag coefficient for this orientation, foil shape with sharp leading and trailing edges and a given
and compare with Ackeret-theory results for an angle of thickness, the minimum-thickness drag occurs for a sym-
attack & = tan”™" (h/L). metric double-wedge shape.
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