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Part (1)*

Differential Conservation Equations of Fluid Flow

Introduction:

We start our study in this part by answering the next few questions:

A) What is “Fluid Mechanics™?

» The science of “Fluid Mechanics” is a sub-part of the large field of Applied Mechanics (which
include Solid Mechanics, Fluid Mechanics, and Quantum Mechanics).

» Fluid Mechanics is concerned with the behavior of fluids at rest (i.e., Fluid Static’s) or fluids in
motion (i.e., Fluid Dynamic’s).

» Fluids include liquids, gases, vapors or any mixture of them (i.e., multi-phase flow).

» Liquids with suspended solids or moving solid particles pneumatically (i.e., by using compressed
air) are special cases and may also be studied in Fluid Mechanics.

B) Why do we study “Fluid Mechanics™?

» We study Fluid Mechanics in order to do an analysis for an existing open/close system or to do a
design for a new system which include fluids as the working medium through it. There are very
large numbers of applications of systems having fluids in them.

» The analysis or design includes a comprehensive understanding of the behavior or performance of
any system or machine which uses fluids.

» This analysis or design includes calculating some/all of the flow properties such as velocity and
pressure and also finding the effects and interactions between fluids and their surrounding
boundaries (which may be either solid surfaces or other fluids).

C) How do we study “Fluid Mechanics™?

» We study Fluid Mechanics theoretically by analytical/computational methods, or by experimental
or dimensionless grouping methods, or by combination of these methods. Other methods such as
flow visualization are also used with the above methods.

» In the theoretical analysis method we need to have a comprehensive understanding of all of the
different conservation equations governing Fluid Mechanics.

» These conservation equations are: conservation of mass, conservation of linear and angular
momentum, and conservation of energy.

» The theoretical approach is very difficult and is only limited to some few idealized cases
especially if the effect of viscosity is involved in the analysis.

» Computational fluid mechanics is to solve the conservation equations by a computer at some
number of nodes (specific points in the flow field). This is also limited to by the need of huge
memory and computation times and the use of many idealization assumptions, modeling
techniques, and also many correction factors and constants throughout the computations.

» Experimental analysis studies do not do any idealization/assumptions and do not need a deep
understanding of all of the exact equations of the problems under investigation.

» Experimental work requires great deal of money/time, its results are limited to few measuring
points or practical cases/conditions similar to those tested in the experiments.

Dimensionless analysis is a must for experimental work to save time/efforts and experiments by
focusing on main important factors affecting the problem under consideration. Dimensional
analysis makes the results as widely applicable as possible.

* Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental of Fluid Mechanics” 4Med.,
John Wiley & Sons, Inc., 2002.
(2) Frank M. White “Fluid Mechanics”, 4™ ed. McGraw Hill, 2002.
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D) What is the difference between “Integral Analysis” and “Differential analysis” ?

(1) Integral Analysis:

» This approach is very practical and useful in solving many practical fluid problems.

» Integral analysis uses a finite large fluid control volume (such as the whole section of fluid in a
pipe or the whole fluid through the internal parts of a pump or a turbine).

» We find the integral forms of all the conservation equations governing the fluid flow through this
finite control volume (we do not write equations for the solid boundaries).

» The equations are solved by integration within and along all the surfaces of this control volume.
Some average/constant flow properties are usually assumed at the control surfaces which makes
doing the integration a simple task.

» Integral analysis does not require detailed information of the variations of the flow properties (i.e.,
pressure, velocity, and temperature) within the control volume.

» The results of integral analysis do not give any exact or detailed equations for the flow properties
within every point in the flow field. We find only the average properties or conditions on the
surfaces of the finite control volume. We find also the forces and interaction between that control
fluid volume and its surroundings.

(2) Differential Analysis:

» This approach is used if we need to get all the flow details or general relationships that apply at a
point or at a very small region (i.e., infinitesimal volume) in the flow field. Typical examples are
pressure and shear stress distributions along the wing of a plane.

» In differential analysis, we apply the conservation equations to an infinitesimally small control
volume or, alternately, to an infinitesimal fluid open/closed system.

» The resulting equations yield the basic differential equations of fluid motion. These equations are
non-linear, partial differential, 2" order equations. They are to be solved using appropriate known
flow boundary conditions at some points in the flow field.

» The analytical solutions of these differential equations give very detailed information about the
flow field at each point. This information is, however, not easily extracted.

» The differential equations of motion are, however, quite difficult to solve, and very little is known
about their general mathematical properties. We can solve them analytically only in some few
1deal cases and for very simple geometries.

» When analytical solution is not possible, the partial differential equations are solved on a
computer using the various techniques of Computational Fluid Dynamics (CFD).

In this chapter, we will provide an introduction to the differential equations that describe
(in detail) the motion of fluids. Differential analysis provides a fundamental basis for the study of
fluid mechanics. Unfortunately, we will also find that these equations are rather complicated, partial
differential equations that cannot be solved exactly except in a few cases, at least without making
some simplifying assumptions. There are some exact solutions for laminar flow that can be obtained,
and these have proved to be very useful. In addition by making some simplifying assumptions, many
other analytical solutions can be obtained. For example, in some cases, it may be reasonable to
assume that the effect of viscosity is small and can be neglected. This rather drastic assumption
greatly simplifies the analysis and provides the opportunity to obtain detailed solutions to a variety
of complex flow problems. Some examples of these so-called inviscid flow solutions are also
described in this chapter.
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It is known that for certain types of flows the flow field can be conceptually divided
into two regions—a very thin region near the boundaries of the system in which viscous
effects are important, and a region away from the boundaries in which the flow is essentially
inviscid. By making certain assumptions about the behavior of the fluid in the thin layer near
the boundaries, and using the assumption of inviscid flow outside this layer. a large class of
problems can be solved using differential analysis. These boundary layer problems are dis-
cussed in  Part (4) . Finally, it is to be noted that with the availability of powerful digital
computers it is feasible to attempt to solve the differential equations using the techniques of
numerical analysis. Although it 1s beyond the scope of this book to delve into this approach,
which is generally referred to as computational fluid dynamics (CFD). the reader should be
aware of this approach to complex flow problems. A few additional comments about CFD
and other aspects of differential analysis are given in the last section of this chapter.

We begin our introduction to differential analysis by reviewing and extending some of
the ideas associated with fluid kinematics that were introduced in 2nd year . With this back-
ground the remainder of the chapter will be devoted to the derivation of the basic differen-
tial equations (which will be based on the principle of conservation of mass and Newton’s
second law of motion) and to some applications.

1.1 Fluid Element Kinematics

In this section we will be concerned with the mathematical description of the motion of fluid
elements moving in a flow field. A small fluid element in the shape of a cube which i1s ini-
tially in one position will move to another position during a short time interval &f as illus-
trated in Fig. 1.1. Because of the generally complex velocity variation within the field, we
expect the element not only to translate from one position but also to have its volume changed
(linear deformation). to rotate, and to undergo a change in shape (angular deformation). Al-
though these movements and deformations occur simultaneously, we can consider each one
separately as illustrated in Fig.1.1 . Since element motion and deformation are intimately re-
lated to the velocity and variation of velocity throughout the flow field, we will briefly re-
view the manner in which velocity and acceleration fields can be described.

1.1.1 Velocity and Acceleration Fields Revisited

As discussed in detail in lastyear . the velocity field can be described by specifying the
velocity V at all points. and at all times, within the flow field of interest. Thus, in terms of
rectangular coordinates. the notation V (x. y. z. f) means that the velocity of a fluid particle
depends on where it is located within the flow field (as determined by its coordinates, x. vy,
and z) and when it occupies the particular point (as determined by the time, 7). As is pointed
oul before last year . this method of describing the fluid motion is called the Eulerian method.

Element at ¢, Element at 15+ &1
i -
| i |
| b
Vo - .
1 | |
|
|
= + |+ +
|
|
-
General Translation Linear Rotation Angular
mation deformation deformation

Hm FIGURE 1.1 Types of motion and deformation for a fluid element.
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It is also convenient to express the velocity in terms of three rectangular components so that
V =u + vj +wk (1.1)

where u. v, and w are the velocity components in the x. y, and z directions, respectively, and
i.j.and k are the corresponding unit vectors. Of course, each of these components will, in
general, be a function of x. y. z, and r. One of the goals of differential analysis is to deter-
mine how these velocity components specifically depend on x. y. z. and r for a particular
problem.

With this description of the velocity field it was also shown before last year  that the
acceleration of a fluid particle can be expressed as

aV oV oV aV
a=—+4+u—+v— + w— (1.2)
ot ox oy dz
and in component form:
du au du du
a, =—+u—+ v— W — (1.3a)
af ox oy dZ
dv dov dv dv
a,=—+u—+v— + w- (1.3b)
ot dx oy oz
ow dw aw aw
a, =—+u—+ v— + w— (1.3¢)
- ot dx dy oz
The acceleration is also concisely expressed as
DV
a=— (1.4)
Dt
where the operator
D() _a() 290) o) ()
= — 4+ u— +ov— + w— (1.5)
Dr ar ax ay dz
is termed the material derivative, or substantial derivative. In vector notation
D() _a()
= +(V-V (1.6)
Dt o ( )( )
where the gradient operator, V( ). is
W) () ).
Vi)=—1+—j+—Kk (1.7)
oX ady [0
which was introduced in 2ndyear = . As we will see in the following sections, the motion

and deformation of a fluid element depend on the velocity field. The relationship between
the motion and the forces causing the motion depends on the acceleration field.

1.1.2 Linear Motion and Deformation

The simplest type of motion that a fluid element can undergo is translation. as illustrated in
Fig. 1.2. In a small time interval &r a particle located at point O will move to point O as is
illustrated in the figure. If all points in the element have the same velocity (which is only
true if there are no velocity gradients), then the element will simply translate from one po-
sition to another. However, because of the presence of velocity gradients. the element will
generally be deformed and rotated as it moves. For example. consider the effect of a single
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u i

0 -

i a1 m FIGURE 1.2 Translation of o fluid clement.

velocity gradient, du/dx, on a small cube having sides 6x, v, and 82, As is shown in Fig. 1.3a.
if the x component of velocity of @ and B is i, then at nearby points A and C the x compo
nent of the velocity can be expressed as w0 + (0u/ox) éx. This difference in velocity causes
a “stretching™ of the volume element by an amount (du/ax)(5x)(51) during the short time in-
terval &7 in which line QA stretches to OA" and BC o BC' (Fig. 1.30). The corresponding
change in the original volume, 8 ¥ = ax v 52, would be

] - .”T = - -
Change in 86 ¥ = (tj— h.'.') (8v 8z)(81)
il

and the rate at which the volume &% is changing per wnit volume due to the gradient
du/ox 1s

| d(a¥ au/ax) ot i
d(5¥) = lim {( f ) ] = “ (1.8)
=51l

a¥ i it iy

It velocity gradients a/av and ow/az are also present, then using a similar analysis it follows
that. in the general case.

| d(8¥)  ou  av  ow
=— 4+ —+

=V ¥ 1.9
a¥  dt ax ay iz (1)

This rate of change of the volume per unit volume is called the velumetric dilatation rate.
Thus, we see that the volume of a fluid may change as the element moves from one loca-
tion to another in the flow field. However, for an incompressible fluid the volumetric dilata-
tion rate is zero, since the element volume cannot change without a change in fluid density
(the element mass must be conserved). Variations in the velocity in the direction of the ve-
locity, as represented by the derivatives du/ox, av/ov, and dw/az, simply cause a linear de-
formation of the element in the sense that the shape of the element does not change. Cross

i

i i Py Wt m &x ] s i
|
|
|
&y ay :
|
r'-.fr.i
Y i+ T & I
o il J
o} Ax A i ax A A
{ﬂm]ﬁ Hm FIGURE 1.3
olx Linear deformation of a

{er) {5) fluid element.
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derivatives, such as du/ov and owv/ox, will cause the element to rotate and generally to un-
dergo an angular deformation, which changes the shape of the element,

1.1.3 Angular Motion and Deformation

For simplicity we will consider motion in the x—v plane, but the results can be readily ex-
tended to the more general case. The velocity variation that causes rotation and angular de-
formation is illustrated in Fig. 1.4ea. In a short time interval &7 the line segments OA and OF
will rotate through the angles S« and &3 to the new positions QA and OQR’, as is shown in
Fig. 1.4h, The angular velocity of line A, w,,. 14

ﬁ!l’

ey = lim—
’ sr—sli OF

For small angles

(av/fax)dxar aw

Lian S = Sy = = — & (1.10)
aX ax
so that
i { (v /ix) ﬁ!} v
Wha = M| ———— | = —
oA r— af X

Note that if ov/ax is positive, w,,, will be counterclockwise. Similarly, the angular velocity
of the line OB is

.

.o
oy = lIIm
o - ol
and
i jov) ov of i
tan 83 = 83 = ( ;J = = Z 51 (1.11)
oy AN

5o that

g = Illn

Hf—x

[(r‘ru/ﬁy) ﬁ.r} o

of av

In this instance if du/av 1s positive, w,,,; will be clockwise. The rorarion, ., of the element
about the 7 axis is defined as the average of the angular velocities wg,, and g, of the two

i
[r:-'?ﬁ f.‘i.\'] &i
i
i+ ey
B CTav B R
T
8/
y
ay sv| |
v i / A ,
u v S5 / Y b I (g_fla;_‘]ﬁ, mFIGUREL.4
(¥ éa A - o &x A ' Angular motion and

deformation of a

(1) (B} fluid element.
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mutually perpendicular lines @A and OR." Thus, if counterclockwise rotation is considered

to be positive, it follows that
1 { aw i
w, == —=— (1.12)
T2\ ax av

Rotation of the field element about the other two coordinate axes can be obtained in a
strmilar manner with the result that for rotation about the x axis

| W i
w, =—(i—‘—) (1.13)

20 av az

and for rotation about the v axis

L rar aw
w, =;('f—‘_‘— '—“) (1.14)
AN X

The three components, @, e, and @. can be combined to give the rotation vector, w, in the

form

oy = HJJ.E == u.l,'.j == IIJ:E (1.15)

An examination of this result reveals that « is equal to one-half the curl of the velocity vec-
tor. That is,

w=lewlV=1VxV (1.16)
since by definition of the vector operator ¥V x V
i J k
| | il 0l il
SVxV=—J— — —
2 2 |ax v Az
H '8 w

-

1/ aw R 1/ au EITEA |/ aw au
— - i+ - it 3\ o k
2\ av Az 2\ az ax 2\ i
The vorticiry, £, 1s defined as a vector that is twice the rotation vector; that is,

Lf=2w=V =YV (1.17)

The use of the vorticity to describe the rotational characteristics of the fluid simply elimi-
nates the (;} factor associated with the rotation vector.

We observe from Eq. 1.12 that the fluid element will rotate about the z axis as an un-
deformed block (i.e., way = —waog) only when du/ov = —owv/ax. Otherwise the rotation will
be associated with an angular deformation. We also note from Eq. 6.12 that when
di/fiv = dwv/ix the rotation around the 7 axis is zero. More generally it ¥V x 'V = 0, then the
rotation (and the vorticity) are zero, and flow fields for which this condition applies are termed
irrotational. We will find in Section 1.4 that the condition of irrotationality often greatly sim-
plifies the analysis of complex flow fields. However, it is probably not immediately obvious
why some flow fields would be irrotational, and we will need to examine this concept more

fully in Section 1.4.

'With this definition w, can nlso be interpreted o be the angulir velocity of the bisector of the angle between the lines €4 and 8.
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Example 1.1:
For a certain two-dimensional flow field the velocity is given by the equation

V= 4.\)'? + 2(x% = _\':)j

[s this flow irrotational?

SD LUTION

For an irrotational flow the rotation vector, w, having the components given by Eqgs. 1,12,
1.13, and 1 14 must be zero, For the prescribed velocity field

=4y w=20"-y) w=0

| / aw i

w, = | == ]=0
2\ ay iz
| { i W

i, = —|— — — =10
2Nz X

| {aw i |
w.=—|———]=—(4r — 4x) =
b 200X av 2

Thus, the flow 1s irrotational. (Ans)

and theretore

It is to be noted that Tor a two-dimensional Now field (where the flow is in the x-v

plane) w, and w, will always be zero, since by definition of two-dimensional flow u and »
are nol |I.II1L‘[IH"."'» l'.'.|| e .llld W I.‘-n sero. In lhl.‘-n II1.‘1.l.lllL‘{: th‘ L‘l'.llulllll'.lll |['.IF |r|1':l.ll1u|1.ﬂ|ly .‘-llllp]y

becomes w. = 0 or dv/ix = du/iv. (Lines OA and OB of Fig. 1.4 rotate with the same speed
but in opposite directions so that there is no rotation of the fluid element.)
L.

In addition to the rotation associated with the derivatives au/ov and aw/ax, 1t 1s observed
from Fig. 1.4/ that these derivatives can cause the fluid element to undergo an angular de-
Jormation. which results in a change in shape of the element. The change in the original right
angle formed by the lines OA and OF 1s termed the shearing strain, 8¥, and from Fig. 1.45

oY = s + afs

where 6y is considered to be positive if the original right angle is decreasing. The rate of
change of av is called the rate of shearing strain or the rate of angular deformation and is
commonly denoted with the symbol §. The angles dar and 6 are related to the velocity gra-
dients through Eqgs. 110 and 1.11 so that

Sy [ (ow/ax) 81 + (au/av) a1

v = lim-— = lim
L4 Mllm ol Mllm ol

and, therefore,

i it
Y=+ — (1.18)
X H_'\‘
As we will learn in Section L5, the rate of angular deformation is related to a correspond-
ing shearing stress which causes the fluid element to change in shape. From Eq. 1.18 we
Dr. Mohsen Soliman -10-



note that it Jwu/dv = —awv/dx, the rate of angular deformation is zero, and this condition
corresponds to the case in which the element is simply rotating as an undeformed block
(Eq. 1.12). In the remainder of this chapter we will see how the various kinematical rela-
tionships developed in this section play an important role in the development and subsequent
analysis of the differential equations that govern fluid motion.

1.2 Conservation of Mass

As is discussed in 2ndyear | conservation of mass requires that the mass, M, of a system
remain constant as the system moves through the flow field. In equation form this principle
is expressed as

DM

Lh L]

D

We found it convenient to use the control volume approach for fluid flow problems. with the
control volume |'¢|'3'I'¢-"3¢|'I|.ilti('-'|'l of the conservation of mass written as

=0

il
= pd¥ +
ol

o BV v

"JV'“{L"‘; = () (1.19)

vR

where the equation (commonly called the continuity equation) can be applied to a finite con-
trol volume (cv), which is bounded by a control surface (cs). The first integral on the lett side
of Eq. 1.19 represents the rate at which the mass within the control volume is changing. and
the second integral represents the net rate at which mass is flowing out through the control
surface (rate of mass outflow — rate of mass inflow). To obtain the differential form of the
continuity equation, Eq. 1.19 is applied to an infinitesimal control volume.

1.2.1 Differential Form of Continuity Equation

We will take as our control volume the small, stationary cubical element shown in Fig. 1.5a.
At the center of the element the fluid density is p and the velocity has components w, v, and
w. Since the element is small, the volume ntegral in Eq. 1.19 can be expressed as
a ap
— P d¥ = —— 5y v a2 {1.201n
ol Joy ol !
The rate of mass flow through the surfaces of the element can be obtained by considering
the flow in each of the coordinate directions separately. For example, in Fig. 1.5/ flow in

|i,m— Lﬂjﬂl ﬂ v é; & ! :
X 2 ’

f dy
| el '

- . ——

¥ S Jipit) Ay ] g 5-

f.f B: |}m + L‘.Hl_l __‘::_j|:‘i). az

ax
{e) (i)
mFIGURE 1.5 A differential element for the development of conservation of mass

equation.
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the x direction is depicted. If we let pu represent the v component of the mass rate of flow
per unit area at the center of the element, then on the right face
a(pu) Sx

ax 2

.”“|.1-+{.HI,,,;, = pi + (1.21)

and on the left face

d(put) &x
X 2

P g = pit — (1.22)
Note that we are really using a Taylor series expansion of pu and neglecting higher order
terms such as (8x)% (8x)". and so on. When the right-hand sides of Egs. 1.21 and 1.22 are
multiplied by the area 5v 6z, the rate at which mass is crossing the right and left sides of the
element are obtained as is illustrated in Fig. 1.56. When these two expressions are combined,
the net rate of mass flowing from the element through the two surfaces can be expressed as

Net rate of mass - Npu) 5x ] _ 5
outtflow in x direction ax 2 '

W pil) Ax I i
— [.-‘m - ‘(i )%j| ez = e }S.r oy az (1.23)
TN

o0
o

X

For simplicity, only flow in the x direction has been considered in Fig. 1.5/, but, in
general, there will also be flow in the v and 2 directions. An analysis similar to the one used
for Now in the v direction shows that

st Fate aF rase dl prv
MNelt r.|_l-:_ 0l !n.m: . ( )ﬁ_\' Sv 8z (1.24)
outflow in v direction av '
and
Net rate of mass a(pw)
. . . . — SX OV 67 25
outflow in 2 direction gz v oy oz (1.23)
Thus,
MNet rate of a(pu)  a(pr)  a(pw)
. = + =+ SN OV 52 26
mass outflow [ i av az | v oY o< (1.26)

From Eqs. 1.19, 1.20, and 1.26 it now follows that the differential equation for conservation
of mass is

iJ5] i paid il i pw
Py (f ) 4 (f ) 4 (‘f ) _ o (1.27)
it il X ri_‘;‘ il

As previously mentioned, this equation 1s also commonly referred to as the continuity
equation.

The continuity equation is one of the fundamental equations of fluid mechanics and,
as expressed in Eq. 1.27. is valid for steady or unsteady flow, and compressible or incom-
pressible fluids. In vector notation, Eq. 1.27 can be written as

ap

? + ¥ - pv =0 (1.28)
i

Two special cases are of particular interest. For steady flow of compressible fluids
V-pV =20
Dr. Mohsen Soliman -12-




Ipu)  8pv) | d(pw) _
X v Az

O (1.29)

This follows since by definition o is not a function of time for steady flow. but could be a
function of position. For incompressibrle fluids the fluid density. p. is a constant throughout
the flow field so that Eq. 1.28 becomes

V-V =0 (1.30)
Or
& & ShNE
1:14' ('v ri‘VL« — o0 (1.31)
N v oz

Equation 1.3 1 applies to both steady and unsteady flow of incompressible fluids. WNote that
Eq. 1.31 is the same as that obtained by setting the volumetric dilatation rate (Eq. 1.9) equal
to zero. This result should not be surprising since both relationships are based on conserva-
tion of mass for incompressible fluids., However. the expression for the volumetric dilation
rate was dewveloped from a system approach. whereas Eq. 1.31 was developed from a control
volume approach. In the former case the deformation of a particular differential mass of fluid
was studied. and in the latter case mass flow through a fixed differential volume was studied.

Example 1.2a:

Given the eulerian velocity-wvector field

Vo= 3ri + xzj + nk

hnd the acceleration of a particle.

Solution

First note the specific given components

2
w = 3¢ L= I w = Iy

Then evaluate the vector derivatives reguired

a—v=iﬂ+jﬂ+kﬂ=3i+}2k
ar ar oar o
ax aw az

This could have been worse: There are only five terms in all, whereas there could have been as
many as twelve., Substitute directly
AV
ot

= {3i + vk + (3 + (a2 20vk) + (07 W)

Collect terms for the final result

dW
ot

= 3i + (3rz + o7 )j + (2avze + vk Arns.

Assuming that %V is valid evervwhere as given. this acceleration applies to all positions and times
within the flow field.

Example 1.2b:

Under what conditions does the velocity field

VNV ={ax + v+ cizi + (axx + by + c2z)j + (asx + by + cazik

where a;. ;. etc. = const, represent an incompressible flow which conserves mass?
Solution
Recalling that ¥V = wi + vj + wk we see that v = fa,x + v + c2). etc. Substituting into Eq.

for incompressible continuity. we obtain

9 (cx + byv + cz) + 9 (ax + bav + caz) +
ax aw

o
az

(azx + bsy + c3z) = O

or a, + b5 + o3 =0 Arns.

At least two of constants a,. &>, and ¢z must have opposite signs. Continuity imposes no re-
strictions whatever on constants b, ¢, @z, €2, ada, and b5, which do not contribute to a mass in-
crease or decrease of a differential element.

Dr. Mohsen Soliman -13-



Example 1.2c:

An incompressible velocity field is given bwy

H=aix" — v v unknown w=~h

where a and & are constants. What must the form of the velocity component v be?

Solution

Again Eq. ( 1.31) applies

B @ —ay@)y+ 4 2 _
ax ' ay  az
or v _ —2ax (1)
ay

This is easily integrated partially with respect to v
vix, v, 2, 1) = —2axy + fix, Z. 1) Amns.
"This is a very realistic flow which simulates the turning of an inviscid fluid through a 60° angle
This 1s the only possible form for v which satisfies the incompressible continuity equation. The

function of integration f is entirely arbitrary since it vanishes when v is differentiated with re-
spect to y."

Example 1.2d:
A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15°C and 1-atm pressure.

What is the maximum allowable impeller rotational speed to avoid compressibility effects at the
blade tips?

Solution

The speed of sound of hydrogen for these conditions is a = 1300 m/s. Assume that the gas ve-
locity leaving the impeller is approximately equal to the impeller-tip speed

V=0Or= %ﬂD
Our rule of thumb, W&# =03 | neglects compressibility if
V= 30D = 0.3a = 390 m/s
or 10(0.4 m) = 390 m/s Q = 1950 rad/s
Thus we estimate the allowable speed to be quite large
£} = 310 r/s (18,600 r/min) Ans.

An impeller moving at this speed in air would create shock waves at the tips but not in a light
gas like hydrogen.

Example 1.2e:
The velocity components for a certain incompressible, steady flow field are

HZ.KE+}'3—|—_;{2
v =XV + VvI—+Z
w = ?

Determine the form of the z component. w, required to satisfy the continuity equation.
Dr. Mohsen Soliman -14-



SoLuTion

Any physically possible velocity distribution must for an incompressible fluid satisfy con-
servation of mass as expressed by the continuity equation

if e fe At
+ -+

s . —— = 0
X % oz
For the given wvelocity distribution
gre o er
(_ = 2.x and (_ = x + =z
(e o v
so that the required expression for dw/dz is
e
= —2x — (x + ) = —3x — zZ
ot 7
Integration with respect to z yields
-2
w = —3xz — ”E + fx.v) (Ans)

The third velocity component cannot be explicitly determined since the function f(x. v)
can have any form and conservation of mass will still be satisfied. The specific form of this
function will be governed by the flow field described by these wvelocity components—that
is. some additional information is needed to completely determine w.

.

1.2.2 Cylindrical Polar Coordinates

For some problems it is more convenient to express the various differential relationships in
cylindrical polar coordinates rather than Cartesian coordinates. As is shown in Fig. 1.6, with
cylindrical coordinates a point is located by specifying the coordinates ., #. and z. The co-
ordinate r is the radial distance from the z axis. # is the angle measured from a line parallel
to the x axis (with counterclockwise taken as positive), and z is the coordinate along the
z axis. The velocity components, as sketched in Fig. 1.6, are the radial velocity., v,. the tan-

gential velocity., v,. and the axial wvelocity, v.. Thus, the velocity at some arbitrary point P
can be expressed as

V = v €& + v,é, + v é._ (1.32)

where &,. &,. and €_ are the unit vectors in the r, #., and z directions, respectively. as are il-
lustrated in Fig. 1.6. The use of cylindrical coordinates is particularly convenient when the
boundaries of the flow system are cylindrical. Several examples illustrating the use of cylin-
drical coordinates will be given in succeeding sections in this chapter.

The differential form of the continuity equation in cylindrical coordinates 1s

ap  190pv) 1 0(pvy)  9(pv) _

- - . - 0 (1.33)
ar r ar r atd a7

This equation can be derived by following the same procedure used in the preceding section
(see Problem 1.17). For steady. compressible flow

1a(rpw,) 1 3(pvy) | A(pv)

; - - =0 (1.34)
P ar r Al o7
¥ s
_ 6,
P Fal
vy e,
e,
v,
I
r v, I
I 7 x
I s
v
\ w -
e 7 M FIGURE 16 The representation of
velocity components in cylindrical polar
Z coardinates:
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For incompressible fluids (for steady or unsteady flow)

1a(re) 1w, v,

= 0 1.35)
Foody roan ar ¢

1.2.3 The Stream Function

Steady, incompressible, plane, two-dimensional flow represents one of the simplest types of
flow of practical importance. By plane. two-dimensional flow we mean that there are only
two velocity components, such as ¢ and 2, when the flow is considered to be in the x—v
plane. For this flow the continuity equation. Eq. 131, reduces to

it o

— 4+ —=0 (1.36)

ax ooy
We sill have two variables, @ and ». to deal with, but they must be related in a special way
as indicated by Eq. 1.36. This equation suggests that if we define a function «f(x. v). called
the stream function, which relates the velocities as

fr el
L (1.37)
ay oy

u=
then the continuity equation is identically satisfied. This conclusion can be verified by sim-
ply substituting the expressions for ¢ and v into Eq. 1.36 so that

a f i il i il i
YU I A =0
ax \ ay av iy ax ay v ax

Thus, whenever the velocity components are defined in terms of the stream function we know
that conservation of mass will be satistied. Of course, we still do not know what fi(x, v) is
for a particular problem, but at least we have simplified the analysis by having to determine
only one unknown function, «+(x, v). rather than the two functions, #(x, v) and v»(x. v).

Another particular advantage of using the stream function is related to the fact that
lines along which i is constant are streamlines, Recall from second year that streamlines
are lines in the flow field that are everywhere tangent to the velocities, as is illustrated in
Fig. L7. It follows from the definition of the streamline that the slope at any point along a
streamline is given by

v v
iy i
The change in the value of ¢ as we move from one point (x, v) to a nearby point (x + dx,
v + dv) is given by the relationship:
chifi chifi

difi = —dy + —dv = —vdy + udv
X oy '

Streamline

: m FIGURE 1.7 Velocity and velocity
components along a streamline.
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Along a line of constant ¢ we have dif = 0 so that
—vdx +udy =0

and. therefore, along a line of constant i

which is the defining equation for a streamline. Thus, if we know the function (x, v) we
can plot lines of constant ¢ to provide the family of streamlines that are helptul in visualiz-
ing the pattern of flow, There are an infinite number of streamlines that make up a particu-
lar flow field, since for each constant value assigned to o a streamline can be drawn.

The actual numerical value associated with a particular streamline is not of particular
signilicance, but the change in the value of i is related to the volume rate of flow. Consider
two closely spaced streamlines, shown in Fig. 1.8a. The lower streamline is designated i
and the upper one i + difs. Let dg represent the volume rate of flow (per unit width per-
pendicular to the x—vy plane) passing between the two streamlines. Note that flow never crosses
streamlines. since by definition the velocity is tangent to the streamline. From conservation
ol mass we Know that the inflow, dg. crossing the arbitrary surface AC of Fig. 1.8a muslt
equal the net outflow through surfaces AS8 and BC. Thus,

dg = udv — vdx
or in terims of the stream function

chifs chifs
dg = —dv + —dx (1.38)
ay RN

The right-hand side of Eq. 1.38 is equal to difi so that
deg = difs (1.39)

Thus, the volume rate of flow, ¢g. between two streamlines such as o and - of Fig., 1.86
can be determined by integrating Eq. 1.39 to vield

“ifiz

g = difr = e, = s (1.40)

o iy

It the upper streamline, 75, has a value greater than the lower streamline, . then g is positive,
which indicates that the flow is from left to right. For o, = s the flow is from right to left.
In cylindrical coordinates the continuity equation (Eq. 1.35) for incompressible, plane,

two-dimensional flow reduces to

La(re,) 1w,

= {) 1.41
rooar roab { }

W & iy

¥

B FIGURE 1.8
X The flow hetween
{e2) ih two streamlines.
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and the velocity components, v, and vy, can be related to the stream function, s(r, #), through
the equations

5, )
v, = L2V o= —2 (1.42)
roa6 ar

Substitution of these expressions for the velocity components into Eq. 1.41 shows that the
continuity equation is identically satisfied. The stream function concept can be extended to
axisymmetric flows, such as flow in pipes or flow around bodies of revolution. and to two-
dimensional compressible flows. However, the concept is not applicable to general three-
dimensional flows.

Example 1.3:
The velocity components in a steady. incompressible, two-dimensional flow field are

=2y
v = 4x

Determine the corresponding stream function and show on a sketch several streamlines. In-
dicate the direction of flow along the streamlines.

§oLuTioN
From the definition of the stream function (E.L|."-i. 1.37}
ihfs
U =—= 32y
Ay
and
i
B o= _f_f — 4|1-
(IR

The first of these equations can be integrated to give
=3+ fi()
where fi(x) is an arbitrary function of x. Similarly from the second equation
o= =20 + fo(y)

where f5(v) is an arbitrary function of v. It now follows that in order to satisfy both expres-
sions for the stream function

Y = -y + },J + (Ans)

where C is an arbitrary constant.

Since the velocities are related to the derivatives of the stream function. an arbitrary
constant can always be added to the function, and the value of the constant is actually of no
consequence. Usually, for simplicity, we set € = 0 so that for this particular example the
simplest form for the stream function is

. 3 1
ifi = =2x7 + v (1) (Ans)
Either answer indicated would be acceptable,

Streamlines can now be determined by setting o = constant and plotting the resulting

curve. With the above expression for o (with € = 0) the value of i at the origin is zero so
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¥y =0

N4
AN

TN

that the equation of the streamline passing through the origin (the ¥ = 0 streamline) is

B FIGURE E6.3

O=—2x2+_v2

or

y = = V2x

Other streamlines can be obtained by setting i+ equal to various constants. It follows from
Eq. 1 that the equations of these streamlines (for ¢ # 0) can be expressed in the form

2 2 _

Yo /2

which we recognize as the equation of a hyperbola. Thus, the streamlines are a family of hy-
perbolas with the ¥ = O streamlines as asymptotes. Several of the streamlines are plotted in
Fig. E1.3. Since the velocities can be calculated at any point, the direction of flow along a
given streamline can be easily deduced. For example, v = —adis/dx = 4x so that v > 0 if
x = 0Oand v << O if x << 0. The direction of flow is indicated on the figure.

\

1.3 Conservation of Linear Momentum

To develop the differential, linear momentum equations we can start with the linear mo-
mentum equation

DP
F ="

= Dr (1.43)

SVS

where F is the resultant force acting on a fluid mass, P is the linear momentum defined as
P = l Vdm
< 55

and the operator D( )/Dt is the material derivative (see Section 1.2.1). In the last chapter it
was demonstrated how Eq. 1.43 in the form

d

E Fcontems of the

control volume or

l Vpd¥ + l VpV - fidA (1.44)
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could be applied to a finite control volume to solve a variety of flow problems. To obtain the
differential form of the linear momentum equation, we can either apply Eq 1.43 to a differ-
ential system, consisting of a mass, ém., or apply Eq. 1.44 to an infinitesimal control volume,
a¥ . which initially bounds the mass ant. It is probably simpler to use the system approach
since application of Eq. 1.43 to the differential mass, dm. vields

. D(V éam)

hl-l = —

Dr

where 6F is the resultant force acting on ém. Using this system approach dm can be treated
as a constant so that

- - DV
ol = am

But DV /Dr is the acceleration, a, of the element. Thus,

oF = ém a (1.45)
which is simply Newton’s second law applied to the mass ém. This is the same result that
woluld be obtained by applying Eq. 1.44 to an infinitesimal control volume (see Ref. 1). Before

we can proceed, it is necessary to examine how the force alFF can be most conveniently
cxpressed.

1.3.1 Description of Forces Acting on the Differential Element

In general, two types of forces need to be considered: surface forces, which act on the sur-
face of the differential element. and bady forces, which are distributed throughout the ele-
ment. For our purpose, the only body force, 8F,. of interest is the weight of the element,
which can be expressed as

ok, = ém g (1.46)

where g is the vector representation of the acceleration of gravity. In component form

af,, = om g, (1.472)
:‘5!*',,.,, om 8y (1.47h)
SF,. = ém g. (1.47¢)

where g, g,. and g. are the components of the acceleration of gravity vector in the x, v, and
z directions, respectively.

Surface forces act on the element as a result of its interaction with its surroundings. At
any arbitrary location within a fluid mass, the force acting on a small area, 6A, which lies in
an arbitrary surface, can be represented by 8F,, as is shown in Fig. 1.9. In general, 5F; will
be inclined with respect to the surface. The force 8F, can be resolved into three components,

™~ Arbitrary B FIGURE 1.9 Component of force acting on
surface an arbitrary differential area.
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of,. oF ., and &F;, where 6F, is normal to the area, 8A, and &F, and &F, are parallel to the

area and orthogonal to each other. The normal stress, o, is defined as

ne
In B"'.”
o, = hm ——
" A0 oA
and the shearing stresses are defined as
. ﬁFL
Ty = lim —
FA-—s0 OA
and
i aF,
75 = lim —
- Ad—0 0A

We will use o for normal stresses and 7 for shearing stresses, The intensity of the force
per unit area at a point in a body can thus be characterized by a normal stress and two shear-
ing stresses, if the orientation of the area is specified. For purposes of analysis it is usually
convenient to reference the area to the coordinate system. For example. for the rectangular
coordinate system shown in Fig. 1.10 we choose to consider the stresses acting on planes
parallel to the coordinate planes. On the plane ABCD of Fig. 1.10a. which is parallel to the
v—2 plane, the normal stress is denoted o, and the shearing stresses are denoted as 7, and
T... To easily identify the particular stress component we use a double subscript notation.
The first subscript indicates the direction of the sormal to the plane on which the stress acts,
and the second subscript indicates the direction of the stress. Thus, normal stresses have re-
peated subscripts, whereas the subscripts for the shearing stresses are always different.

[t 1s also necessary to establish a sign convention for the siresses. We define the posi-
tive direction for the stress as the positive coordinate direction on the surfaces for which the
outward normal is in the positive coordinate direction. This is the case illustrated in Fig. 1.10a
where the outward normal to the area ABCD is in the positive x direction. The positive di-
rections for . 7. and 7. are as shown in Fig. 1.104. If the outward normal points in the
negative coordinate direction. as in Fig. 1.10b for the area A'B'C'[)’, then the stresses are
considered positive if directed in the negative coordinate directions. Thus, the stresses shown
in Fig. 1.104 are considered to be positive when directed as shown., Note that positive nor-
mal stresses are tensile stresses; that is, they tend to “streteh™ the material.

[t should be emphasized that the state of stress at a point in a material is not completely
defined by simply three components of a “siress vector.” This follows, since any particular
stress vector depends on the orientation of the plane passing through the point. However, it
can be shown that the normal and shearing stresses acting on any plane passing through a

(h) {ar)

B FIGURE 1.10
Double subscript nota-

tion for stresses,
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point can be expressed in terms of the stresses acting on three orthogonal planes passing
through the point (Ref, 2).

We now can express the surface forces acting on a small cubical element of fluid in
terms of the stresses acting on the faces of the element as shown in Fig. 1.11. It is expected
that in general the stresses will vary from point to point within the flow field. Thus, we will
express the stresses on the various faces in terms of the corresponding stresses at the center
of the element of Fig. 1.11 and their gradients in the coordinate directions. For simplicity
only the forces in the x direction are shown. Note that the stresses must be multiplied by the
arca on which they act to obtain the torce, Summing all these forces in the x direction yields

: der (R r}T.\'\' v = - =
al,, = - + — + OX OV 02
[ERY oy

for the resultant surface force in the x direction. In a similar manner the resultant surface

T

(1.48a)

oZ

forces in the v and 2 directions

can be obtained and expressed as

) T g air, TN
of = |—— -~ — )ox &y éz ( 1.48b)
X oy ol
and
o T o AT s dery
ob =\ —— + — — Jéx &y oz (1.48¢)
' X ay o3
The resultant surface force can now be expressed as
8F, = 8F,i + 8F,,j + 8F k (1.49)

and this force combined with the body force, alfy,, vields the resultant force, slv, acting on
the differential mass, &m. That is, 8F = &F, + &F,.

.l .3.2

The expressions for the body and surface forces can now be used in conjunction with Eq. 1.45
to develop the equations of motion. In component form Eq. 1.45 can be written as

Equations of Motion

ol = oma,
oF . = dma,
al. = oma.

e &

o

| PTay B v o
M/— o [T_..,‘.— ,..I;-.:l i‘-f)ﬂ'." oy
| - &y
| .
f"}!'l'.... 54 - | Ty 5.4
Syd= = i — — - Sy &3
(‘"’.-.-.r v 12-.) GV 2 — I S t”.m + =T Gy e
T
T, I & g .
[r... T X ]m- dy e =T az
o r'l'I -
: ) R
ay \
";"rn' AT
- = SR
[r,\.v ST 512)‘.4 8;

m FIGURE 1.11
Surface forees in the
x direction acting on
a fluid element.
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where &m = p 6x 6y 6z. and the acceleration components are given by Eq. 1.3. It now fol-
lows (using Eqs. 1.47 and 1.48 for the forces on the element) that

do,. Ty 0T ou du du du _
pg, + —+ —+ —=p|l—F+u—+v—+w— (1.50a)
' dx dJy oz dr ox dy az
d Txy dar yy d Tzy Jv av Ju av -
pg,+—+ —+—=p|—F+u—+v—+w— (1.50b)
: dx dy dz df ox dy dz
0T,. 0Ty do, aw aw aw aw _
pg.+—+—+—=p|—+u—+v—+ w-— (1.50¢)
ax dy dz af ax dy dz

where the element volume &x oy 6z cancels out.

Equations 1.50 are the general differential equations of motion for a fluid. In fact, they
are applicable to any continuum (solid or fluid) in motion or at rest. However, before we can
use the equations to solve specific problems, some additional information about the stresses
must be obtained. Otherwise, we will have more unknowns (all of the stresses and velocities
and the density) than equations. It should not be too surprising that the differential analy-
sis of fluid motion is complicated. We are attempting to describe, in detail, complex fluid
motion.

Note (1): The Differential continuity equation is the same for both viscous or inviscid flow
(why?).

Note (2): Up to this point, we did not define the shear stress tensor oj; in the above linear
momentum equations (1.50).

We can have two cases:

Case one:

We define (as in Part (3) of this course) the tensor Gj; = zero for inviscid or ideal or frictionless
flows for which there is no effect of any shear stress in the flow field. In this case all the terms of
o;; are neglected in the equations of motion.

Case two:

We define ;; for real viscous flows for which the shear stress is function of the fluid viscosity and
the effect of shear stress in the flow field is dominant and hence can not be neglected in the
equations of motion. In Part (2) of this course, we study few applications for which we solve the
equations of motions for some real viscous flows.

Case one: (It is discussed in details with examples in Frictionless Flow Analysis)

1.4 Inviscid Flow

As is discussed in 2nd year . shearing stresses develop in a moving fluid because of the
viscosity of the fluid. We know that for some common fluids, such as air and water, the vis-
cosity is small, and therefore it seems reasonable to assume that under some circumstances
we may be able to simply neglect the effect of viscosity (and thus shearing stresses). Flow
fields in which the shearing stresses are assumed to be negligible are said to be inviscid,
nonviscous, or frictionless. These terms are used interchangeably. As is discussed in 2nd
year, for fluids in which there are no shearing stresses the normal stress at a point is in-
dependent of direction—that is, o, = o, = o_. In this instance we define the pressure, p.
as the negative of the normal stress so that
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—p = o, = r

y = O

The negative sign is used so that a compressive normal stress (which is what we expect in a
fluid) will give a positive value for p.

In  2nd year the inviscid flow concept was used in the development of the Bernoulli
equation, and numerous applications of this important equation were considered. In this sec-
tion we will again consider the Bernoulli equation and will show how it can be derived from
the general equations of motion for inviscid flow.

1.4.1 Euler’s Equations of Motion

For an inviscid flow in which all the shearing stresses are zero, and the normal stresses are
replaced by —p. the general equations of motion (Egs. 1.50) reduce to

ap du du du du -
pg. ——_—=p|\—tu_—-—+tv_—+w_— (1.51a)
ox ot ax dy oz
ap ov av v av _
P8y — T =P .—+H.—+’U,—+w,—) (1.51b)
| ay ot dx ay Jaz
dp ow dw dw dw -
pg.— —=pl—H+u—+v— + w— (1.51¢)
© 0z ar ax ay a7z

These equations are commonly referred to as Euler’s equations of motion, named in honor
of Leonhard Euler (1707-1783), a famous Swiss mathematician who pioneered work on
the relationship between pressure and flow. In vector notation Euler’s equations can be ex-
pressed as

r

AV
pg — Vp=p [(Tr + (V- V)V} (1.52)
[

Although Egs. 1.51 are considerably simpler than the general equations of motion, they
are still not amenable to a general analytical solution that would allow us to determine the
pressure and velocity at all points within an inviscid flow field. The main difficulty arises
from the nonlinear velocity terms (such as u du/dx, v du/dy, etc.), which appear in the con-
vective acceleration. Because of these terms, Euler’s equations are nonlinear partial differ-
ential equations for which we do not have a general method of solving. However, under some
circumstances we can use them to obtain useful information about inviscid flow fields. For
example, as shown in the following section we can integrate Eq. 1.52 to obtain a relation-
ship (the Bernoulli equation) between elevation, pressure, and velocity along a streamline.

1.4.2 The Bernoulli Equation

In 2nd year the Bernoulli equation was derived by a direct application of Newton’s sec-
ond law to a fluid particle moving along a streamline. In this section we will again derive
this important equation, starting from Euler’s equations. Of course, we should obtain the
same result since Euler’s equations simply represent a statement of Newton’s second law ex-
pressed in a general form that is useful for flow problems. We will restrict our attention to
steady flow so Euler’s equation in vector form becomes

pg — Vp =p(V-V)V (1.53)

We wish to integrate this differential equation along some arbitrary streamline (Fig. 1.12) and
select the coordinate system with the z axis vertical (with “up” being positive) so that the ac-
celeration of gravity vector can be expressed as
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g = —gVz

where g is the magnitude of the acceleration of gravity vector. Also, it will be convenient to
use the vector identity

(V-V)V=3V(V-V) -V x (VX V)

Equation 1.53 can now be written in the form

—pgVz = Vp = LW(V- V) = pV x (V x V)

Streamline
ds

m FIGURE 1.12 The notation for dif-
x ferential length along a streamline.

and this equation can be rearranged to yield

Vp 1 2 , ,
?-F;V(V‘)-i—gvz:\ X(VXV)

We next take the dot product of each term with a differential length ds along a streamline
(Fig. 1.12). Thus,

v |
7’0 - ds + EV(VE) ~ds + gVz-ds =[V x (VX V)]-ds (1.54)

Since ds has a direction along the streamline, the vectors ds and V are parallel. However, the
vector V X (V X V) is perpendicular to V (why?). so it follows that

(VX (VX V)]-ds=0

Recall also that the dot product of the gradient of a scalar and a differential length gives the
differential change in the scalar in the direction of the differential length. That is, with ds =
dxi+ dy)+dzk we can write Vp-ds = (dp/ox) dx + (ap/ay)dy + (dp/oz)dz = dp.
Thus, Eq. 1.54 becomes

A T
% + S d(V) + gdz =0 (1.

h

5)

where the change in p, V, and z is along the streamline. Equation 1.55 can now be integrated
to give
Cdp  V? _
— + — + gz = constant (1.56)
P 2
which indicates that the sum of the three terms on the left side of the equation must remain
a constant along a given streamline. Equation 1.56 is valid for both compressible and in-
compressible inviscid flows, but for compressible fluids the variation in p with p must be
specified before the first term in Eq. 1.56 can be evaluated.
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For inviscid, incompressible fluids (commonly called ideal fluids) Eq. 1.56 can be
written as

2

V
2

+

+ gz = constant (1.57)

o |

and this equation is the Bernoulli equation used extensively in 2nd year . It is often conve-
nient to write Eq. 1.57 between two points (1) and (2) along a streamline and to express the
equation in the “head” form by dividing each term by g so that

+ ) ( 1.58}

It should be again emphasized that the Bernoulli equation, as expressed by Eqs. 1.57 and
1.58, is restricted to the following:

B inviscid flow

B steady flow

B incompressible flow

|

flow along a streamline

Case Two: this case is discussed in more details here
(in Part 1-b, we have examples on analysis of viscous flow)

1.8  Viscous Flow

__________________________________________________________________________
To incorporate viscous effects into the differential analysis of fluid motion we must return
to the previously derived general equations of motion, Eq. 1.50. Since these equations in-
clude both stresses and velocities, there are more unknowns than equations, and therefore
before proceeding it is necessary to establish a relationship between the stresses and veloc-
ities.

1.8.1 Stress-Deformation Relationships

For incompressible Newtonian fluids it is known that the stresses are linearly related to the
rates of deformation and can be expressed in Cartesian coordinates as (for normal stresses)

du -
0, =—p+2u— (1.125a)
ox
okh
= —p + 2p— (1.125b)
> ay
-
o= —p+ 2 (_j” (1.125¢)
az
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(t'm‘ shearing stre H:'-L‘:'-)

HH‘ iy
Tow = Tww = ,l.l( . .) (1.125d)
rH X
ap W _
Ty = T., = lL (— + —) (1.125¢)
- AY
ow it
Toe = T = | -7+ = (1.1256)
RS o

where p is the pressure. the negative of the average of the three normal stresses: that is
—p = ('})(rrw + oy, + or__). For viscous fluids in motion the normal stresses are not neces-
sarily the same in different directions. thus, the need to define the pressure as the average of
the three normal stresses. For fluids at rest, or frictionless fluids, the normal stresses are equal
in all directions. (We have made use of this fact in the chapter on fluid statics and in devel-
oping the equations for inviscid flow.) Detailed discussions of the development of these stress—
velocity gradient relationships can be found in Refs. 3, 7, and 8. An important point to note
is that whereas for elastic solids the stresses are linearly related to the deformation (or strain).
for Newtonian fluids the stresses are linearly related to the rate of deformation (or rate of
strain).

In evlindrical polar coordinates the stresses for incompressible Newtonian fluids are
expressed as (for normal stresses)

do,
ir,, = —p + 21 ; (1.126a)
ar
- - 1 au, v,
tFrgn = —f? + 2 ? oy + T i 1.126h)
i
v,
r.. = —=p + 2u ; . (1.126¢)
g
(for shearing stresses)
a vy 1 dwv,
- = -, == [ — B 3
T 5 1y M{f ‘_”_( r ) + r ;'JH } ( l-rl-f'l(l}
vy, | o, 196
e = Tap = M + . :
Toz T K S roafl a €)
v, v, .
Tep = Tpe = | — + — (6.1261)
oF A

The double subscript has a meaning similar to that of stresses expressed in Cartesian coor-
dinates—that is, the first subscript indicates the plane on which the stress acts, and the sec-
ond subscript the direction. Thus, for example, o, refers to a stress acting on a plane per-
pendicular to the radial direction and in the radial direction (thus a normal stress). Similarly,
7.0 Tefers to a stress acting on a plane perpendicular to the radial direction but in the tan-
gential (# direction) and is therefore a shearing stress.

1.8.2 The Navier-Stokes Equations

The stresses as defined in the preceding section can be substituted into the differential equa-
tions of motion (Iqs. 1.50) and simplified by using the continuity equation (Eq. 1.31) to ob-
tain (v direction):
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o i it il ap a'u a'u o u
p\—+u—+v—+w—J|=——""4pe +pl—+—+—— (1.127a)
ot ox oy iz 1 ' X oy az=

(v direction)

av av av v ap dv v e
pl—+tu—+v—+w—|=———+pg. + pl|l—5+—5+—| (1.127h)

of (iAW til\‘ ol r-‘l\‘ ' - til\“‘ [

(z direction)
& & p D 2 -3 ) )

Aaw Aaw iw iw ap aw i w arw
pl— +u—+ v —+ w— ==+ pp.+ p|\—+ — + — (1.127¢)

of ox Jy az Jz N ox” ay” [

where we have rearranged the equations so the acceleration terms are on the left side and
the force terms are on the right. These equations are commonly called the Navier—Srokes
cquations. named in honor of the French mathematician L. M. H. Navier (1758~ 1836) and
the English mechanician Sir G. G Stokes (1819-=1903), who were responsible for their for-
mulation. These three equations of motion, when combined with the conservation of mass
equation (Eq. 1.31), provide a complete mathematical description of the flow of incom-
pressible Newtonian fluids. We have four equations and four unknowns (i, 2, w, and p), and
thercfore the problem is “well-posed”™ in mathematical terms. Unfortunately, because of
the general complexity of the Navier—=Stokes equations (they are nonlinear, second-order, par-
tial differential uquuliunﬁ). they are not amenable to exact mathematical solutions except in
a few instances, However, in those few instances in which solutions have been obtained and
compared with experimental results, the results have been in close agreement. Thus, the
Navier—5tokes equations are considered to be the governing differential equations of motion
for incompressible Newtonian fluids,

In terms of eylindrical polar coordinates (see Fig. 1.6), the Navier—Stokes equation can
be written as

(r direction)

. . - 3 .
v, av, v, dv, U v,
p(—’+-e;-.—'+——'——+-a:_ !

¥

o ar roaf r Y dz
ap 1 & du, v, 1 .a’l"'*u‘,. 2 awy .a'l"'*u‘,.
= oe—— = g, + —_ |-t -+ > (1.128a)
ar | PErT [ r r'n'( ar ) re rFeoan® e af az*
(# direction)
P ﬁ:u” + v, ﬂ,fu" + @_ﬂ'w,, I, ﬂrw”
ol or rode r T
. ,
| ap | iy Vy 1 a7 vy, 2 dv, auy
= ——— 4 g, + ——\lr— |-+t +—+ (1.128h)
ron PR ‘”‘[ rar\. or rt o r? ae? rt ad az2
(z direction)
av. av. o, v, .
pl—+uv,—+ —— + p.—
it ar roafd Yoz
Py pe + [] ”( 'rw"') L2 “:v“} 1.128
= = I -\ r— I — v 1. )
iz P&: H Far iar re a9 ”:_"

To provide a brief introduction to the use of the Navier—Stokes equations, a few of the
simplest exact solutions are developed in the next section. Although these solutions will prove
to be relatively simple. this is not the case in general. In fact, only a few other exact solu-

tions have been obtained.
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EXAMPLE 1.4

Take the velocity field of Example1.2Cwith & = 0 for alpebraic convenience
u=alx — _1*1] v= —2axy w=10

and determine under what conditions it is a solution to the Navier-Stokes momentum equation
{127, Assuming that these conditions are met, determine the resulting pressure distribution when

Zistup” (g, =0, g, =10, g.= —g).

Scolution

Make a direct substitution of &, v, w into Eq. (1.127)
pl0) — —ﬂ‘:—f + pi2a — 2a) = 2a°p(x" + n7) (1)

When compressibility is significant, sdditional small terms arise containing the element volume ex-
pansion rate and a second coefficient of \-‘i&ﬂﬂﬁil’j"; see Refs. 4 and 5 for details.

p(U)-— Ly w(0) = 2800 + 77 (2)

dp
pl—g) — ——+mm (3)

The viscous terms vanish identically (although w is not zero). Equation (3) can be integrated
partially to obtain

p=—pgz+filx,y) (4)

i.e., the pressure is hydrostatic in the 7 direction, which follows anyway from the fact that the
flow 1s two-dimensional (w = 0). Now the question is: Do Egs. (1) and (2) show that the given
velocity field is a solution? One way to find out is to form the mixed derivative 8°p/(9x y) from
(1) and (2) separately and then compare them.

Differentiate Eq. (1) with respect to y

"2
;:ﬂ g‘r = —4a’pry (3)
Now differentiate Eq. (2) with respect to x
0’ :
—E}f g\‘ = —% [fozp(xz_r + 3'3 )| = —4(.’2}[12{}' (6)

Since these are identical, the given velocity field is an exact solution to the Navier-Stokes
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equation. Ans.

To find the pressure distribution, substitute Eq. (4) into Eqs. (1) and (2), which will enable
us to find fi(x. v)

9 - _2@2p(3 + ) (7

dx

_Lﬂfi L= —2a%p(x"y + ) (8)
Vv

Integrate Eq. (7) partially with respect to x
fi = —3ap(x* + 27%) + foly) (9)

Differentiate this with respect to y and compare with Eq. (8)

aﬂ_ﬁ = —jajprz}z —|—f£{}1} {IU}
v

Comparing (8) and (10), we see they are equivalent if
fily) = —2a°py’
or fHy)=—tapy’ + C (11)

where C is a constant. Combine Eqgs. (4), (9), and (11) to give the complete expression for pres-
sure distribution

px, ¥, 2) = —pgz — 3@’ pl’ +y* + 20°0) + C Ans. (12)

This is the desired solution. Do you recognize it? Not unless you go back to the beginning and
square the velocity components:

e ent=V= (;2[,1“4 + }'4 + 2,\”2}'2) (13)
Comparing with Eq. (12), we can rewrite the pressure distribution as
p+apV+pg=C (14

This is Bernoulli’s equation That 1s no accident, because the velocity distribution given in
this problem is one of a family of flows which are solutions to the Navier-Stokes equation and
which satisfy Bernoulli’s incompressible equation everywhere in the flow field. They are called
irrotational flows, for which curl V.=V X'V = (). This subject is discussed again in Part 3
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1.9.1 The Differential Equation of Angular Momentum:

Having now been through the same approach for both mass and linear momentum, we
can go rapidly through a derivation of the differential angular-momentum relation. The
appropriate form of the integral angular-momentum equation for a fixed control vol-

ume is

— ot

ST M, = 9 [] (r X V)p d‘"lz"'] + ] (r X V)p(V - n) dA (1.129)
Jov 'S

We shall confine ourselves to an axis  which is parallel to the z axis and passes through
the centroid of the elemental control volume. This is shown in Fig.1.13. Let 6 be the
angle of rotation about O of the fluid within the control volume. The only stresses
which have moments about O are the shear stresses 7., and 7,,. We can evaluate the
moments about @ and the angular-momentum terms about O. A lot of algebra is in-
volved, and we give here only the result

1 o 1 o

|:'T_xj-‘ — Tax + E E (ij-‘) dx — E E (’T_\-‘_x') '“r\‘] dx 'f‘!\‘ dz
1 2 2 ff29

= —— pldx dv dz2)(dx~ + dv™) —=
P A ) g2 (1.130)

. . 2 2. e e . .
Assuming that the angular acceleration &~ 6/dr” is not infinite, we can neglect all higher-

Tyt _i (ryx) dy
' dy -

o
= Rotation
angle
T | | dy + T +%{1—_U‘) dx
Axis O

Fig.1.13 Elemental cartesian fixed
control volume showing shear dx
stresses which may cause a net an- -
gular acceleration about axis O. Ty

order differential terms, which leaves a finite and interesting result
'T_r_\-' = 'T_\-'.r

Had we summed moments about axes parallel to y or x, we would have obtained ex-
actly analogous results

Txg = Tox T_\-‘: = T:)-‘
There is no differential angular-momentum equation. Application of the integral theo-
rem to a differential element gives the result, well known to students of stress analy-
sis, that the shear stresses are symmetric: 7; = 7;. This is the only result of this sec-
tion.”> There is no differential equation to remember, which leaves room in your brain
for the next topic, the differential energy equation.
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1.9.2 The Differential Equation of Energy:

We are now so used to this type of derivation that we can race through the energy equa-
tion at a bewildering pace. The appropriate integral relation for the fixed control vol-
ume of Fig.1.14 is

S . _ 9 E) .
- W, — W, = — di | + >+ V- 1A (1.131)
© * v ar (va €p ) JC.s (f P P m ¢

where W, = 0 because there can be no infinitesimal shaft protruding into the control
volume. By analogy with Eq.1.129 ., the right-hand side becomes, for this tiny element,

O — W, = [% (pe) + 2= (pu) + - (pvg) + <= (pw@] dx dv dz  (1.132)

where { = ¢ + p/p. When we use the continuity equation by analogy this becomes

de
dr

O — W, = ( P + V- Vp) dx dy dz

To evaluate Q. we neglect radiation and consider only heat conduction through the sides
of the element. The heat flow by conduction follows Fourier’s law

q= —kVT
where k& is the coefficient of thermal conductivity of the fluid. Figurel.14 shows the

heat flow passing through the x faces. the v and z heat flows being omitted for clarity.
We can list these six heat-flux terms:

Faces Inlet heat flux Outlet heat flux

x g, dy dz q, + 9 (q,) dx| dvdz
ax
y gy dx dz gy + 2 (qy) dy | dx dz
. - a}. »
z g dx dy 4.+ 5o (@) dz | dx dy
&y

"We are neglecting the possibility of a finite couple being applied to the element by some powerful ex-
ternal force field. See, e.g., Ref. 6, p. 217.
This section may be omitted without loss of continuity.

|
Heat flow per I dx
unit area: : )
. d
(‘!‘x:—kl_—j_T_*. : S i QI+E(QI}JI
X |
I
I
1
I
I
, dy
I
I
I )
W, i : S Wt % (wy) dx
Fig.1.14Elemental cartesian control . o —— ——=
. - _ Viscous P
\-:nlurm, showing hml—llurw and work rate 7 iz
viscous-work-rate terms in the x per unit
direction. area: W, =—(UT, VT, +WT,)
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By adding the inlet terms and subtracting the outlet terms, we obtain the net heat
added to the element

9

dv

As expected, the heat flux is proportional to the element volume. Introducing Fourier’s
law we have

Q=V-(kVT) dxdyvdz
The rate of work done by viscous stresses equals the product of the stress compo-
nent, its corresponding velocity component, and the area of the element face. Figure

1.14shows the work rate on the lelt x face is

Wore = w, dv dz where w, = — (U7 + UT, + WTyo)
{where the subscript LF stands for left face) and a shightly different work on the rnght
face due to the gradient in w,. These work fluxes could be tabulated in exactly the same
manner as the heat fluxes in the previous table, with w, replacing g,. etc. After outlet
terms are subtracted from inlet terms, the net viscous-work rate becomes

; %)
W, = _[E (U7 + U7, + wr) + ﬂi} (u7,, +v7r, + wr,)

+ % (7= + v7y + WT;:):| dx dy dz

= —V (V-7 dxdyd:z

We now substitute to obtain one form of the dif ferential energy equation

p%—l—ﬁ’-?p:v-(k?ﬂ—l—T-(V-T,}-} where e = i@ + V* + gz

Aomore useful form is obtained if we split up the viscous-work term
VAV -7 =V (V-7 + D
. . . . . . 7 . . .
where @ is short for the viscous-dissipation function.” For a newtonian incompressible

viscous fluid, this function has the form

PR n 2 P n 2 n n 2 P n 2
dut dv dw v dit
o= o8] o) o)+ (308
ox dy dz ox dy
¢ o - n 2 n n 2
» ‘,!
+(dw+dv)+(6‘u+8t)
ay dz dz dx
Since all terms are quadratic. viscous dissipation is always positive, so that a viscous
flow always tends to lose its available energy due to dissipation, in accordance with
the second law of thermodynamics.
Now substitute , using the linear-momentum equation
to eliminate V - ;. This will cause the kinetic and potential energies to cancel. leav-

ing a more customary form of the general differential energy equation

P L . I_'r{T .V | vy TJ{, ! 1II (1133)

I
add

This equation is valid for a newtonian fluid under very general conditions of unsteady,
compressible, viscous, heat-conducting flow, except that it neglects radiation heat trans-

_fer and internal sources of heat that might occur during a chemical or nuclear reaction.
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Equation 1.133 is too difficult to analyze except on a digital computer [1]. It is cus-
tomary to make the following approximations:

dit = ¢, dT Com fL, k. p = consit

Equation 1.133 then takes the simpler form

dT

—— =kVT+ @
dt

Py
which involves temperature T as the sole primary variable plus velocity as a secondary
varitable through the total time-derivative operator

a1 = E!T + u oT + vﬂ—T + w oT (1'134)
dt at ax Iy oz

A great many interesting solutions to Eq. 1.134 are known for various flow conditions,

and extended treatments are given in advanced books on viscous flow [4, 5] and books
on heat transfer [7. 8].

One well-known special case of Eq. 1.134 occurs when the fluid is at rest or has

negligible velocity, where the dissipation @ and convective terms become negligible

PCu % =k VT {1.135)

This is called the heat-conduction equation in appliecd mathematics and i1s valid for
solids and fluids at rest. The solution to Eq. 1.135 for various conditions is a large part
of courses and books on heat transfer.

This completes the derivation of the basic differential equations of fluid motion.

"For further details, see, e.g., Ref. 5, p. T2,

1.9.4 Boundary Conditions for the Basic Differential Equations:
There are three basic differential equations of fluid motion, just derived. Let us sum-

marize them here:

Continuity: (;—f +V-(pV)=0 (1.136)
C
dV . _
Momentum: P T PET Vp+ V-5, (1.137)
¢
Energy: pdTL: +p(V-V)=V-(kVIH + P (1.138)
(

where @ is given ineq 1.133 . In general. the density is variable. so that these three
equations contain five unknowns, p, V, p. i, and T. Therefore we need two additional
relations to complete the system of equations. These are provided by data or algebraic
expressions for the state relations of the thermodynamic properties

p=pp.T) da=i(pT) (1.139)

For example, for a perfect gas with constant specific heats, we complete the system with

) '
p= F i=|c,dl= ¢, T+ const (1.140)

 RT J
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It is shown in advanced books [4. 5] that this system of equations 1.136to 1.139 is
well posed and can be solved analyvtically or numerically, subject to the proper bound-
ary conditions.

What are the proper boundary conditions? First, if the flow is unsteady, there must
be an initial condition or initial spatial distribution known for each variable:

Arr=0: p. V. p.oii,. T = known fix. v. ¢

Thereafter, for all times ¢ to be analyzed. we must know something about the variables
at each boundaryv enclosing the flow.

Figurel.l5illustrates the three most common types of boundaries encountered in
fluid-flow analysis: a solid wall, an inlet or outlet. a liquid-gas interface.

First, for a solid. impermeable wall. there is no slip and no temperature jump in a
viscous heat-conducting fluid

Viauwia = Vaan Thvia = Twan solid wall

The only exception to last eq. occurs in an extremely rarefied gas flow. where slip-
page can be present [5].

Second, at any inlet or outlet section of the flow, the complete distribution of ve-
locity, pressure, and temperature must be known for all times:

Inlet or outlet: Known V., p, T

These inlet and outlet sections can be and often are at = =o, simulating a body im-
mersed in an infinite expanse of fluid.

Finally, the most complex conditions occur at a liquid-gas interface. or free surface,
as sketched in Fig.1.13 Let us denote the interface by

Interface: z = mlx. v, )

Liquid-gas interface = 1{x, y. ):
p]iq = pgns _Y‘{R;L + R_jl}

Z dn
+ “"Il-lq = wgns = E
: Equality of g and T across interface |
I |
| |
| |
I > |
| Liquid |
I |
T |
Inlet: I T
m YV
known V, p, T : : Outlet:
known V. p. T
\‘_\_J_\—_-' [ P
| —_—
I |
I |
I |
e —
I Solid contact: I
Figl.15Typical boundary condi- | (V. Tuia = (V. Tyan |
tions in a viscous heat-conducting
fluid-flow analysis. Solid impermeable wall

Then there must be equality of vertical velocity across the interface. so that no holes
appear between liquid and gas:

dﬂ:aﬂ_'_”ﬂ'.r;l_'_va'ﬂ

“:‘ - = u‘ e ==
H B dt ar ax ay

This is called the Akinnematic boundarv condition.
There must be mechanical equilibrium across the interface. The wiscous-shear
stresses must balance

('T:_‘r)llq = '[:'T:_'r)gas {:T:.x)]iq = ('T:x)gar:
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Neglecting the wviscous normal stresses, the pressures must balance at the interface ex-
cept for surface-tension effects

Piq = Ppas — Y(R;L + R\_l)

which is equivalent to Eq. ###%# The radii of curvature can be written in terms of the
free-surface position n

l l 3 dnAox
RI' + R = - — -
: ax | V1 + (anox)? + (ansay)’
B ansov
+ = 2 - 2
v | V1 + (anax)? + (anoy)

Finallv, the heat transfer must be the same on both sides of the interface, since no
heat can be stored in the infinitesimally thin interface
{Q:)liq = (Q:)gzﬁ
Meglectung radiation. this is equivalent to
6?""'-'

E]T"\I
az Aig

Fi /
(k20), = (2
X dZ J.l' Eas

This i1s as much detail as we wish to give at this level of exposition. Further and even
more complicated details on fluid-flow boundary conditions are given in Refs. 5 and 9.

Simplified Free Surface Conditions:

In the introductory analyses given in this book, such as open-channel flows in Chap.
10, we shall back away from the exact conditions shown before and assume that the
upper fluid 18 an “atmosphere™ which merely exerts pressure upon the lower fluid, with
shear and heat conduction negligible. We also neglect nonlinear terms involving the
slopes of the free surface. We then have a much simpler and linear set of conditions at
the surface

/52 2.

Pig = Pgas — YE ;_;2] + 212,] Wiig = i‘f
EFE}V.\] == () (FaT\l = ()
, 02 Nig dz g

In many cases. such as open-channel flow, we can also neglect surface tension, so that

p]iq == Patm
These are the types of approximations which will be used in Chap. 10. The nondi-
mensional forms of these conditions will also be useful in Chap. 5.

Incompressible flow with constant properties:
Flow with constant p, p, and & 1s a basic simplification which will be used, e.g.. through-
out Chap. 6. The basic equations of motion 1.136-1.138 reduce to:

Continuity: V-¥V=0

dV 2ys
Momentum: P =P8 Vp + n V-V
Energy: pf‘v% =kVT+ D
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Since p is constant, there are only three unknowns: . V., and 7. The system is closed.®
MNot only that. the system splits apart: Continuity and momentum are independent of

7. Thus we can solve the above eqs. entirely separately for the pressure and
velocity, using such boundary conditions as
Solid surface: Y o= V.an

*For this system. what are the themodynamic equivalents to Eq. (4.59)7

- 7'2
v = U (1 — = v, = 0O Ve =0
= 2
where T 1s the maximum or centerline velocity and R i1s the tube radius. If the wall
temperature is constant at Tw and the temperature T — T(r) only. find T(r) for this
flow .

For the given conditions. the energy equation reduces to

. a7 ( ) I~ j N
p ( » \rr - -+ _—
o 7 d 7 o o
Substituting for vz and realizing the v, — 0. we obtain
Inlet or outlet: Enown V. p
Free surface: P =~ Pa W= %?—

Later. entirely at our leisure.” we can solve for the temperature distribution from Eq.

. which depends upon velocity ¥V through the dissipation @ and the total time-
derivative operator o/dr.

“Since temperature is entirely uncoupled by this assumption, we may never get around to solving for it
here and may ask you to wait until a course on heat transfer.
Frictionless Flow Approximation:

Chapter 8 assumes mviscid flow throughout. for which the viscosity g = 0. The mo-
mentum equation reduces to

dV
= -V
P PE P
This 1s Euler’'s equation; it can be integrated along a streamline to obtain Bernoulli’s
equation (see Sec. ). By neglecting viscosity we have lost the second-order deriva-
tive of V in Eq. : therefore we must relax one boundary condition on velocity.

The only mathematically sensible condition to drop is the no-slip condition at the wall.
We let the flow slip parallel to the wall but do not allow it to flow into the wall. The
proper inviscid condition is that the normal velocities must match at any solid surface:

Inviscid flow: (Vo) imia = (Vi dwan

In most cases the wall is fixed; therefore the proper inviscid-flow condition is
V, =0

There is no condition whatever on the tangential velocity component at the wall in in-
viscid flow. The tangential velocity will be part of the solution, and the cormrect value
will appear after the analysis i1s completed (see Chap. 8).

Example 1.5 on Solving the Energy Equation Analytically:

d T dv,)‘ AT g7

FA d P - - ~£ o rR*

Muluply by r/lkk and imtegrate to obtain
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g T L U757
=

Integrate a second time to obtain

2 a4
L U775
T = =T, Inr+ O
4 i R -
Since the term. In r. approaches imfinity as r approaches 0O, €9 = O.
A pplying the swall boundary condition., T = T, atr = R, we obtain for C2>
e L
c, = 77, + £
4 i

The final solution then becomes

yrs s ( = )
7C 7 7 1
N 4 7 R

1.9.5 Summary of the equations of motion and energy in Cylindrical Coordinates:

The equations of motion of an incompressible newtonian fluid with constant g, k, and
¢, are given here in cylindrical coordinates (r, 6, z). which are related to cartesian co-
ordinates (x. v, 7) as in Fig. 4.2:

X = rcos @ v = rsin 0 z=1z (D.1)
The velocity components are v,, vg. and v.. The equations are:
Continuity:
1 o 1 o d
——(rv) + ———= + —(v,) = .
roor (rv,) r ae (Vo) 0z =1 ARz
Convective time derivative:
_ d 1 d d
V-V =y, Y + FVoae TG (D.3)
Laplacian operator:
1 o/ o 1 87 a°
.-'2 = — —— - + - _|_ > -4
K r (:ir{ (:ir__) r 06”7 az” (DD
The r-momentum equation:
du, | 1 ap [ 2 v, 2 dvg
— + (V- Viu§, ——vyp= ———+ —l—p(vv T — ,,—_—) D.5
ot ( v r? p ar 5r N A [y (D-2)
The #-momentum equation:
dvg . 1 1 ap [ o Vg 2 ov,’ .
2+ (V- Vyvp + —vp = —— bt gy + v (Vg — 8+ S 5E) (D6
ar T Vg T Vg pr o6  se7 7 \ Yo T 2 T T 00 (D-6)
The z-momentum equation:
du. . l ap )
2 (Ve = — L 4o+ VP, (D.7)
ar - p 0z “ “
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The energy equation:

pcj,[(;—;: + (V- v)T] = KV T + w|2(€r, + €pg + €=) + €5 + €= + €:5] (ID.R)

o, | BTy
dur 1 dv g
= = - = — = D.9
Cz= az o o oaf z ( )
. — du, e - 1 7du,. v dug
= oz ar e > ( a6 8) A
WViscous stress components:
T — 21[-"-61'1' Tee — 2#6{9{9 Tzz — 2.!'-“‘-'5-::
(D10
Treg — ME€rg Tz — ME€gz Tz = M€z
Angular-velocity components:
w. — 1 dv.  dug
- oo az
_ du du_
we = 5 ar (D.11)
e T o8
1.10 Other Aspects of Differential Analvsis

In this chapter the basic differential equations that govern the flow of fluids have been
developed. The Navier—Stokes equations, which can be compactly expressed in vector
notation as

IV v
10((, _;_\f’.vy’): —Vp + pg + uV-V (1.141)

dr
along with the continuity equation
V-V=0 (1.142)

are the general equations of motion for incompressible Newtonian fluids. Although we have
restricted our attention to incompressible fluids, these equations can be readily extended to
include compressible fluids. It is well beyond the scope of this introductory text to consider
in depth the variety of analytical and numerical techniques that can be used to obtain both
exact and approximate solutions to the Navier—Stokes equations. Students, however, should
be aware of the existence of these very general equations, which are frequently used as the
basis for many advanced analyses of fluid motion. A few relatively simple solutions have
been obtained and discussed in this chapter to indicate the type of detailed flow information
that can be obtained by using differential analysis. However, it is hoped that the relative ease
with which these solutions were obtained does not give the false impression that solutions
to the Navier—Stokes equations are readily available. This is certainly not true, and as pre-
viously mentioned there are actually very few practical fluid flow problems that can be solved
by using an exact analytical approach. In fact, there are no known analytical solutions to
Eq. 1.141 for flow past any object such as a sphere. cube, or airplane.

Because of the difficulty in solving the Navier—Stokes equations, much attention has
been given to various types of approximate solutions. For example, if the viscosity is set
equal to zero, the Navier—Stokes equations reduce to Euler’s equations. Thus, the friction-
less fluid solutions discussed previously are actually approximate solutions to the Navier—
Stokes equations. At the other extreme, for problems involving slowly moving fluids, viscous
effects may be dominant and the nonlinear (convective) acceleration terms can be neglected.
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This assumption greatly simplifies the analysis, since the equations now become linear. There
are numerous analytical solutions to these “sfow flow™ or “creeping flow” problems. Another
broad class of approximate solutions is concerned with flow in the very thin boundary layer.
L. Prandtl showed in 1904 how the Navier—Stokes equations could be simplified to study
flow in boundary layers. Such “boundary layer solutions™ play a very important role in the
study of fluid mechanics. A further discussion of boundary layers is given in Part 4,

1.10.1 Numerical Methods

Numerical methods using digital computers are, of course, commonly utilized to solve a wide
variety of flow problems. As discussed previously, although the differential equations that
govern the flow of Newtonian fluids [the Navier—Stokes equations ( 1.141)] were derived
many years ago, there are few known analytical solutions to them. With the advent of high-
specd digital computers it has become possible to obtain approximate numerical solutions to
these (and other fluid mechanics) equations for a wide variety of circumstances.

Of the various techniques available for the numerical solution of the governing differ-
ential equations of fluid flow, the following three types are most common: (1) the finite dif-
ference method, (2) the finite element (or finite volume) method, and (3) the boundary ele-
ment method, In each of these methods the continuous flow field (i.e.. velocity or pressure
as a function of space and time) is described in terms of discrete (rather than continuous) val-
ues at prescribed locations. By this technique the differential equations are replaced by a set
of algebraic equations that can be solved on the computer.

For the finite element (or finite volume) method, the flow field is broken into a set of
small fluid elements (usually triangular areas if the flow is two-dimensional, or small volume
elements if the flow is three-dimensional). The conservation equations (i.e., conservation of
mass, momentum, and energy) are writlen in an appropriate form for each element, and the
sct of resulting algebraic equations is solved numerically for the flow field. The number, size,
and shape of the elements are dictated in part by the particular flow geometry and flow con-
ditions for the problem at hand. As the number of elements increases (as is necessary for
flows with complex boundaries). the number of simultancous algebraic equations that must
be solved increases rapidly. Problems involving 1000 to 10,000 ¢lements and 50,000 equa-
tions are not uncommon. A mesh for calculating flow past an airfoil is shown in Fig. 1.16 |
Further information about this method can be found in Refs. 10 and 13,

For the boundary element method, the boundary of the flow field (not the entire flow
field as in the finite element method) is broken into discrete segments (Ref. 14), and appro-

priate singularities such as sources, sinks, doublets, and vortices are distributed on these

.
A
.

0
)
i

]

o
, K]
.

HmFIGURE 1.15 Anisotropic adaptive mesh for the calculation of vis-
cous flow over a NACA (012 airfoil at a Reynolds number of 10,004}, Mach
number of 0.755, and angle of attack of 1.5° (From CFD} Laboratory, Concordia
University, Montreal, Canada. Used by permission.)
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m FIGURE 1.17
T, = strength of vortex on Panel method for flow
i™ panel past an airfoil.

boundary elements. The strength and type of the singularities are chosen so that the appro-
priate boundary conditions of the flow are obtained on the boundary elements. For points in
the flow field not on the boundary, the flow is calculated by adding the contributions from
the various singularities on the boundary. Although the details of this method are rather math-
ematically sophisticated, it may (depending on the particular problem) require less computa-
tional time and space than the finite element method.

Typical boundary elements and their associated singularities (vortices) for two-
dimensional flow past an airfoil are shown in Fig. 1.17 . Such use of the boundary element
method in aerodynamics is often termed the panel method in recognition of the fact that each
element plays the role of a panel on the airfoil surface (Ref. 15).

The finite difference method for computational fluid dynamics is perhaps the most
easily understood and widely used of the three methods listed above. For this method the
flow field is dissected into a set of grid points and the continuous functions (velocity, pres-
sure, etc.) are approximated by discrete values of these functions calculated at the grid points.
Derivatives of the functions are approximated by using the differences between the function
values at neighboring grid points divided by the grid spacing. The differential equations are
thereby transferred into a set of algebraic equations, which is solved by appropriate numer-
ical techniques. The larger the number of grid points used, the larger the number of equations
that must be solved. It is usually necessary to increase the number of grid points (i.e.. use a
finer mesh) where large gradients are to be expected, such as in the boundary layer near a
solid surface.

A very simple one-dimensional example of the finite difference technique is presented
in the following example.

A Solved Example 1.6 on Numerical Solutions:

A viscous oil flows from a large. open tank and through a long, small-diameter pipe as shown
in Fig. E1.11a. At time # = O the fluid depth is H. Use a finite difference technique to de-
termine the liquid depth as a function of time, 7 = h(t). Compare this result with the exact
solution of the governing equation.

§oLuTion

Although this is an unsteady flow (i.e., the deeper the oil, the faster it flows from the tank)
we assume that the flow is “quasisteady”™ (assume steady) and apply steady flow equa-

tions as follows.
As shown later in part 2, the mean velocity, V, for steady laminar flow in a round pipe

of diameter D is given by
D*A
v=""7
32t

(1

where Ap is the pressure drop over the length €. For this problem the pressure at the bottom
of the tank (the inlet of the pipe) is yh and that at the pipe exit is zero. Hence, Ap = yh and
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Eq. 1 becomes
f):'yh
32l
Conservation of mass requires that the flowrate from the tank. Q = 722 V/4, is related to the
rate of change of depth of oil in the tank. &7 /dr. by
7T .
} = —— Oy —
& a P14,
where /24 is the tank diameter. Thus,
T ] I - ol
=PV = - 2
a a 0
R
20N ddh
Vo= = Z — 3)
F .c)’!

By combining Eqgs. 2 and 3 we obtain

D __(Dryn
32t D J dr
or
g
dr A

where C = yD*/32u€D7% is a constant. For simplicity we assume the conditions are such that
C = 1. Thus, we must solve
dh )
— = —f with h = Hatr =0 (4)
dt
The exact solution to Eq. 4 is obtained by separating the variables and integrating to
obtain
h = He™' (5)
However, assume this solution were not known. The following finite difference technique
can be used to obtain an approximate solution.
As shown in Fig. E1.115. we select discrete points (nodes or grid points) in time and
approximate the time derivative of /i by the expression
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cdh h,.' - hj_l

| = (6)
dr | ,—, At
where Af is the time step between the different node points on the time axis and A; and h;_,
are the approximate values of 1 at nodes i and 7/ — 1. Equation 6 is called the backward-

difference approximation to dh/dr. We are free to select whatever value of Ar that we wish.
(Although we do not need to space the nodes at equal distances. it is often convenient to do
s0.) Since the governing equation (Eq. 4) is an ordinary differential equation. the “grid” for
the finite difference method is a one-dimensional grid as shown in Fig. E1.115 rather than a
two-dimensional grid (which occurs for partial differential equations) as shown in Fig. E1.125.

Thus, for each value of i = 2, 3.4, . . . we can approximate the governing equation,
Eq. 4. as
.r(?f- - "(?f—l _ _hf.
Ar
or
,! fiz (7)
1, =
' (1 + Ar)
We cannot use Eq. 7 for i = 1 since it would involve the nonexisting Ag. Rather we use the

initial condition (Eq. 4). which gives
:(?1 = H

The result is the following set of N algebraic equations for the N approximate values of A at
times fl == O. fz = .."ll-t..‘.‘,-t‘,l\r == (Ni l)._\.f.

:(?1 = H

h‘.\i - h;.,.'_ 1/(1 -+ Af)
For most problems the corresponding equations would be more complicated than those
just given, and a computer would be used to solve for the h;. For this problem the solution

is simply
hy = H/(1 + Ar)
hy = H/(1 + Ar)?

or in general
h; = H/(1 + Ar)—!

The results for O << ¢ << 1 are shown in Fig. E1.11c. Tabulated values of the depth for
t = 1 are listed in the table below.

At i forr=1 h;fort =1

0.2 6 0.4019H

0.1 11 0.3855H
0.01 101 0.3697H
0.001 1001 0.3681H
Exact (Eq. 4) — 0.3678H

It is seen that the approximate results compare quite favorably with the exact solution given
by Eq. 5. It is expected that the finite difference results would more closely approximate the
exact results as A7 is decreased since in the limit of A7 — 0 the finite difference approxi-
mation for the derivatives (Eq. 6) approaches the actual definition of the derivative.

.
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15 Fluid Report
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I-Engineering students may study Fluid Mechanics for many different reasons. Discuss
two different reasons for studying Fluid Mechanics in Mechanical Power Engineering.

2-We can study Fluid Mechanics using (a) Differential method; or (b) Integral method; or
(c) Dimensional analysis with some experimental work.
Explain very briefly those methods showing the main differences between them
regarding the reason for and the output result of each method. Give an example for each
method.

3-What is the viscosity of a fluid? Why viscosity is important in some flows and is not
important in other flows (give some examples for each case)? Discuss how is Reynolds
Number a measure to if viscous effects are important or not in any flow? Give some
examples to support your discussion.

4-Define both the No-slip condition and the stream-line in a flow? What is the difference
between Newtonian fluids and Non-newtonian fluids? Give some examples for each
type.

5-What do you know about the conservation equations in Fluid Mechanics? Stat three
main conservation equations of Fluid Mechanics.

6- Correct each of the following statement:

a- By solving the conservation equations in the integral form for a an integral control

volume, we can get exact and very detailed equations for velocity and pressure in the
flow field.

b- The partial differential momentum equations for a fluid particle are 1* order and
linear equations and therefore are easy to be solved for any geometric flow field or by
using a small computer.

c- Navier-Stoke’s equations represent the conservation of energy for a fluid particle in a
nonviscous (frictionless) flow and can be used for Newtonian fluids only.

d- Euler’s equations represent the linear momentum conservation equations for a laminar
flow where the no-slip condition must be valied far from the wall.

e- Euler’s equations can not be solved anywhere in a real viscous flow in a pipe
especially at the wall of the pipe or at the center-line where internal friction is
negligible.
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Word Problems

1

The total acceleration of a fluid particle is given bw Eq.
in the eulerian system. where VW is a known function
of space and time. Explain how we might evaluate parti-
cle acceleration in the lagrangian frame. where particle po-
sition 1 is a known function of time and initial position.
r = fonirg. ). Can you give an illustrative example™
Is it true that the continuity relation. Eqg. ( D). is wvalid for
bothh wviscous and inviscid, newtonian and nonnew tomnian.
compressible and incompressible flow ? If so. are there carmw
limitations on this eqguaticon™
Consider a CID compact disk rotating at angular wvelocity
£ Troes it have wvorticity in the sense of this chapter? If
so. how much vorticity™?
How much acceleration can fluids endure? Are fluids like
astronauts. who feel that Sg is severe” Perhaps use the flows
Ppattern of Example . at = R, to make some estimates
of fluid-acceleration magnitudes.
State the conditions (there are more than one) under which
the analwvsis of temperature distribution in a flow field can
be completely uncoupled. so that a separate analysis for
wvelocity and pressure is possible. Can we do this for both
laminar and turbulent flow?

Consider liguid flow owver a dam or weir. How might the
boundary conditions and the flow pattern change when we
compare water flow over a large prototvpe to SAE 30 oil
flow owver a tiny scale model™?

What is the difference between the stream function ¢ and
our method of finding the streamlines from Sec. T Or
are thewv essentially the same™?

Under what conditions do both the stream function ¢ and
the wvelocity potential ¢v exist for a flow field? When does
one exist but not the other?

Problems:

i)

ii)

iii)

Given the stecady. incompressible velocity distribution W —
3xi + Cwij + Ok, where « is a constant, if conservation of
mass is satisfied. the value of & should be

Caxd 3. Iy B2 Loy Oy, ey — B2, () — 3
Given the steady velocity distribution W — 3xi + Oj + vk,

where «F is a constant, 1f the floww is irrotational. the value
of & should be

() 3. 5y 32, (o) O (dy — 352, ey —3
Given the steady. incompressible velocity distribution W =
Bxi + Cvj + Ok, where 7 is a constant, the shear stress 7,
at the point (x. »w. =) is given by -
Ceax) Spe. CHy (3x + Cwipe. Co)y O, () Cpa.
(e) (3 + CHp

An idealized wvelocity field is given by the formula

Vo= 4drxi — 27r7vj + 4xzk

Is this flow field steady or unsteady™? Is it two- or three-di-
mensional? At the point (x. v. ) = (— 1. 1. O), compute ()
the acceleration vector and (/) any unit vector normal to the
acceleration.

Flow through the converging nozzle in Fig. P .2 can be ap-
proximated by the one-dimensional wvelocity distribution
r,fmi.f".g.(l—l—E = O e == ()

. i
() Find a general expression for the fluid acceleration 1
the nozzle. (/) For the speciftic case Vi = 10 ft/s and I
6 in., compute the acceleration. in g’s. at the entrance and at
the exit.

3
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» .2

3 A two-dimensional velocity field is given by
Vo= (a7 — v7 + x) — (2xy + Wj

in arbitrary units. At (x. v) = (1. 2). compute (a) the accel-
erations «, and .. (») the velocity component in the direc-
tion & = A0°, () the direction of maximum wvelocity, and (d&)
the direction of maximum acceleration.

) Suppose that the temperature field T = A4x= — 3}-‘3, in arbi-
trary units. is associated with the wvelocity field of Prob. 3.
Compute the rate of change Jd¥F7 dr at (v, vy = (2. 1)

in

The velocity field near a stagnation point {see Example 1. 10)
may be written in the form
Liox Loy

= — = — L and L oare constants
F3 L =

() Show that the acceleration wvector is purely radial. (H)
For the particular case £ = 1.5 m. if the acceleration at (.
w3 = (1 m. 1 m) is 25 mss—. what is the wvalue of [7,7

L&Y Avssume that flow in the converging nozzle of Fig. P 2 has
the formmm W — Vil +— (Z2xwil]i. Compute («) the fluid accel-
eration at x = . and (/») the time required for a fluid parti-
cle o travel from x» = O o x = F..

7 Consider a sphere of radius & immersed in a unifornmm stream
Ll . as shown 1in Fig. P T. According to the theory of Chap.
5. the fluid velocity along streamline AR is given by

3 .

V = wi — U.J{l 4+ B ]i
AT

Find (o) the position of maximurn fluid acceleration alongs
AR and (H) the time reguired for a fluid particle to trawvel
from A o B.

Ly w

— r=_—4aRrR \w

B When a valve is opened. fluid flows in the expansion duct

» 7

of Figs. according o the approximation
4 X Lir

W =i/l 1 — —— | tanh ——

! ( ZL:I anh 7y

Find (&) the fluid acceleraton at (x, )y = ([, F/SU) and (F)
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the time for which the fluid acceleration at x = [ is zero.
W hyw does the fluid acceleration becomme negative after con-
dition (/)7

9 A wvelocity field is given by W = (3v7 — 345 + Cayvj + Ok.
Determine the wvalue of the constant 7 it the flow is to be
() incompressible and (&) irrotational.

100 Wirite the special cases of the eguation of continuity for (o)
steady compressible flow in the vz plane. (H) unsteady in-
compressible flow in the xz plane. () unsteady compress—
ible ftlow in the v direction only. (4) steady compressible
flow in plane polar coordinates.

11 Derive Eqg. . ) for cvlindrical coordinates by consider—
ing the flux of an incompressible fluid in and out of the el-
emental control volume in Fig. .

12 Spherical polar coordinates (». 6. ¢db) are defined in Fig.
P 12. The cartesian transformations are

x = » sin & cos b
v = 5 sin & sin >
z = » cos 6

= oonnsEianrnt

» 12

The cartesian incompressible continuity relation | ¥ Ccar
be transformed to the spherical polar formm
1 o) 1

1 = - (=]
— F —+ —+ = O
= - i ) —in (rg sim &) =1 EEry’

What is the most general form of w. when the flow is purelw
raclial. that is. v, and ., are zero™
13 A two-dimensional velocity field is given by

Ko KR
x4+ v T+ v
where K 1s constant. Does this field satisty incompressible
continuity? Transformnmm these velocities to polar components
v and g, VWhat miight the flow represent™”
14 For incompressible polar-coordinate flow, wwhat is the most

ceneral formn of a purely circulatory MO tLoNn. W = g, G, 1)
and v = O, which satisfies continuity?

15 What is the most general formm of a purely radial polar-
coorcdinate incompressible-flow pattern. v — e, G ) and
i — O, which satisfies continuity 7

16 An incompressible steady—flow pattern is siven by w = x—
2z and w = _}-‘3 — 2wvz. What is the most general form of the

third component. iy, v, Z). which satisfies continuity ™

17 A reasonable approximation for the two-dimensional -
comprassible laminar boundary laver on the flat surface in
Fig. P .17 is

= L7 (251? — -';;2} for v = & where & = Cx'"'?, © = const

() Assuming a no-slip condition at the wall, find an ex-
pression for the wvelocity component wx., vy for v = &. (&)
Then find the maxirmurm value of » at the stationn v — 1 1.
for the particular case of airflow., when L7 = 3 s and &
1.1 ciru.
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Lo thickness S0

s —_— ——— —
| ==
u — LS = constarnt
z —
— —
= NN Fay
—
- . L e, D
-
L] s

| E g R

15 A piston Cormpresses ooas in a owlinkdder by mmowing at constant
speaec] T o aas i Fig, P 18 et the soas density anmnc lemngtihy, e
r = O be oo andc o, respectively. et the oas wveloocity wary limm—
early frormrm e = W oot the paston foace o e — O at v — £ IT the
mas cddensity varies oy wwith tirree . find aon expression foor ol o b

L o stauat e, £

L B £ ED

I
> .15 = b o= F_ (&

19 Ao incompressibhle Flosw Field has the oplindrical cormpomnents
Ty == A, mr. = K{Rz — .r'2), ar.. =— A F. wwwhere «F ommucd A ooare caoosrn—
stants ard - = MR = = J. . IDoes this floww satisfw ocomntinuicy
W Ehrar rmidasht 1t represent phyesicallne

2 A two—dimensional incompressible velocity field has o =

Kl — e . for x» =0> and O = v = =o. "What is the most
meneral formm of wix, w) for which continuity is satisftied and
= wrg at vw = O YWhat are the proper dimensions for con-

stants &K and <7

21 Avgr flows under steady., approximatelsy one-dimensional
conditions througsh the conical nozzle 1 Fig. P .21. If the
spead of sound is approximately 344000 mds. what is the min-
i nozzle-—diameter ratio £2Y_ /00y for which vwe can safelwy
neglect compressibility effects if Vo — () 10 m's and (&H)
3O s

-—_
| [ S

o / — — — j L
B—

__ >

-

| E - | e

22 Adr at a certain temperature and pressure flows throush =
contracting nozzle of length L whose area decreases linearly.

A= Al — N2 D)]. The alr awverage wvelocity Iincreases
nearly linearly from 76 s at v = O o 167 mu's at v = L. If
the density at x — O is 2.0 kgfrm~. estimate the density at
o= &

23 A tank wvolurmme 7 contains gas at conditions (oo, o. §ol. ST
tire F — O} 1t 1s punctured by a small hole of area A . Aoc-

cording o the theory of Chap. 9. the mass flow ouat of such
a hole is approximately proportional o A4 and o the tank
pressure. It the tank temperamare is assummed constant auncl
the gas is ideal. find an expression for the variation of den-
21ty within the tank.

24 Reconsider Fig. P 17 in the following general wwawy. It is
Enown that the boundary laver thickness Sixw) increasas -
notonically and that there is no slip at the wall (v = O). Fur-
ther, piv. v merges smoothly swith the outer strearm flow,
swhere w == L7 = constant outside the lawyer. Use these facts
o prove that () the component i, v is posIitive ewvery —
swhere within the laver., (/2) w» increases parabolically with w
wery near the wall, and (o) 2 s a maximurmnm at v — S.

25 An incompressible flow in polar coordinates is given by

. — K cos 9{‘] — f_;]
vy — — K sin 9{'1 -+ f;

Does this field satisfwy continuity ? For consistency. what
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27

23

W
[

W
W

s=howuld the dimensicons of constants & and & bhe™r Sketochy thie

surface where 25 — O arnud interprat.
CurwilitTyvemr., or streaamdline. coordinates are defirned i Figs.
| S 25, where rr is morrmal o the streammline i the plamne of
thhe radius of curvatuare . Showw thhat Euler™s fricoaonless rayo—
ISt L ey ecjuraat iovry o » im strearmdine coordinate s baecormes
=A% o 1 e =]
e e i el 1
o L=y = T L= i
P = 1 agp
- — == — —+ =
o = - O B =0
Furthhar show thhat the integral of Eg. (1) swith  respaect to 5 is
Nnorne other thoarn our old friend Boermvoulli®™s aeguuatior -
T L

Sireanrmlimme

P 2o

Ay frictionless., incompressible steady-flow field is givern by

W o= Z2aowvi — 1—‘2j

in arbitrary units. Let the density be oo — constant armnd ne-
glect grawvity. Find an expression for the pressure gradient
in the x direction.

If =z is “"up.” what are the conditions on constants < and &
for which the wvelocity field v = awv. v = Hoa, v = O 1Is an ex-—
act solution to the contimnwity and MNavier-Stokes eqguations
for incompressible flows ">

Consider a steady. two-dimensional., incompressible flow of
a new tonian fluid in which the velocitoy field is known., i.e..

= — 2wy, wr = _}-‘2 — a7, w = 0. () Does this flow satisfw
conscervation of mass7 (H)y Find the pressure field. pgrix. wd if
the pressure at the point (x = O, v = O) is egual to g,

Show that the tvwwo-dimensional flow field of Example 1.10
is an exact solution to the incompressible Navier-Stokes

cquations J). INeglecting gravity., compute the pressure
field pix. vy and relate it o thhe absolute velocity V= e+
L Interpret the result.

AMoccording to potential theory (Chap. 8) for the flow ap-
proaching a rounded tvwo-dimensional body., as in Fig. P4 .31,
the wvelocity approaching the stagnation point is given by
w — L1 — azfxzj, wihere o is the mose radius armnd L7 is the
welocity far upstreamm. Compute the value and position of
the maximurm wviscous normal stress along this streamline.

Stagonation
ot ——
e = Oy

A

» 31

Is this also the position of maximum fluid deceleration™
Evaluate the maxitnmurm wviscous normal stress 1f the fluid is
SAFE 30 oil act 20°C ) with 7 — 2 muf's and o — © Ccir.

The answer to Prolb. A is e — i) only. Do not reveal
this to wour friends if thew are still working on Prob, <14
Show that this flow field is an exact solution o the MNawvier—
Stokes eqguations » for only wo special cases of the
function fir). MNeglect grawvityw. Interpret thiese twwo cases phws-—
Tcallw.

From Prolb. 1S the purely radial polar-coordinate flows
which satisfies continuity is . — F . where F is an arbi-
trary function. Determine wwhat particular forms of /5 &) sat—
isfyv the full MNawvier-Stokes eguations in polar-coordinate
form from Eqgs. (ID.5) amnd (I .60,
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A4 The fully developed laminar-pipe-floww solution of Prol.

- A = Bl 1 — ARy e — O, 2s. =— O, Is an cxact sSo—

Iution to the owvlindrical Navier-Stokes eguations (AMApp. T

MNMegslecting oravity. compute the pressure distribution in the

Ppipe e, o) and the shear-stress dismribution «(r. D). using .

M mmx- anlnd ge as parameters. wWwhy does the maximuam shear

ocour at the wall? Why doe=s the density not appoar as @ -
ramcter’

325 From the MNavier-Stokes eguations for incompressilble flows
in polar coordinates (App. I for oviliindrical coordinates).
find the most general case of purely circulating mueotLlor gl # ).
v, = . = O, for fflow with no =slip between two fixed con-

=

centric cylinders. as in Fig. P .35,

» .35

o A constant-thickness filrm of wiscous liguid floww = i Llarri-
ar Imreoibion cdlonssyn o a plate inclined at angle &) as in Fig, P 300
The welocity profile 1s

e =— Cw((2Fr — W) o =— s —

Firnd the constant « in termms of the spoecific wweioht and vis-—
cosity and thhe angle &, Find the volurme flux 2 per unit widdth
iy terrms of these paramoeaters.

= #

P .50

BT A wviscous liguid of constant o and g falls due o gravity be-—
tvveaern v prlates a distance 2 apart. as in Fig, P4 .37 The
floww is fully developed. withh a single velococity Ccompaorert
s =— wi{xw ). There are no applicd pressure oradiemnts. ormly
ravwity . Solwe the MNavier-5Stokes ecuation for the weloocityw
Prrofile bbetween thhe plates.

i i
o
= "
» .37 ||
38 Reconsider the angular-rmormenturnm balance of Fig. =B

adding a concentrated Hody cowprle C- about the =z axis [6].
IDetermine a relation between the bodyw couple arnd shear
stress for equilibrivum. "What are the proper dimensions for
7T (Body couples are important in continuous mmedia with
microstructure. such as granular materials.)

39 Problems involving viscous dissipation of energy are depen-
dent on viscosity go. thermal conductivity A, samearmn velocity L.
and streamm temperature ¥ o Group these parameters into the di-
mensionless Brinfonarn mnornnder, which is proportional o ge.

4 As mentioned in Sec. . the velocity profile for lamidnar
flow between two plates. as in Fig. P 40, is
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o= fr Ty
e
L)
» IR 1 T
T y
r
v o= O o e
7.
| S 40
y — it o WL — WD o — e O

=

If thhe wall temperature is 7, at both walls, use the inocorrn-
pressible-floww energsy eguatiory o solwve for the terrn-—
poerature distribution 7 v) between the walls for steady Flow.
The approximate velocity profile in Prol., arndc Fig.

for steady laminar flosw throuush a duact, was sugoested as

==y
— 5= _,.I
Whith ar = e = O, it satistfied the mno-slip conditon and cave
o reasonable volurme-Flow estimmate (which was the point of
Pral. . Show ., howewver., that it does rmor satsify the x—
mormentumr MNavier-5Stokes eguation for duct floww with corn-
stant pressure gradient apsox =2 O, For extra craedit. explain
bricftflyw how the actual exact solution to this problemm is ob-
tained (see. for example., Ref. S, pp. 120—121 ).
In duct-flow problermns with heat transfer. one often defines
an average fluid temperature. Consider the duct flow of Figs.
F 40 of width & into the paper. Using a control-wvolume in-
tegral analysis with constant density and specific heat. de-
rive an expression for the temperature arising if the entire
duct floww poured into a bucket armnd was stitred unitforrrmly.
Avssume arbitrary ol w)d and Fiwv). This average is called the
CLFFP-FRrE i Fr g Fermperarie e of the flosww.
For the draining liguid filrtm of Fig. P
Propriate boundary conditions (o) at the bottormn w =—
(&) at the surface w Ffa 2
Suppose that we wish to analyvz=e the sudden pipe-expansion
flow of Fig. . using the full contimuity and MNawvier-
Stokes eguations. What are the proper boundary conditions
to handle this problemn™
Suppose that we wish to analvze thhe Ul-tube oscillation flows
of Fig. - using the full continuity and Navier-5Stokes
coguations. W hat are the proper boundary conditions to han-

. =R
L = Immas |:: 1 — 4;?}':: 1

Bo. what are the ap-
Oy el

dle this problern™
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