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Part (1-b)*

Examples on Differential Analysis of
Incompressible Viscous Flow

2.0 Summary of Conservation Differential Equations (from Part 1-a ):

(I) Conservation of Mass:

| I pud I pv I pw
g+r(g)+r(p)+r(g )
dr ox dy o7

=0 (2.1)

As previously mentioned, this equation is also commonly referred to as the continuity
equation.

The continuity equation is one of the fundamental equations of fluid mechanics and,
as expressed in Eq. 2.1 . is valid for steady or unsteady flow, and compressible or incom-
pressible fluids. In vector notation, Eq. 2.1 can be written as

ap i _
§+v-pv=o (2.2)

Two special cases are of particular interest. For steady flow of compressible fluids
V:-pV=0
d( pu d(pv d(pw
(pu) | opv) | lpw) _

ox dy az

0 (2.3)

This follows since by definition p is not a function of time for steady flow, but could be a
function of position. For incompressible fluids the fluid density, p. is a constant throughout
the flow field so that Eq. 2.2 becomes

V-V=0 (2.4)
or
ou dv dw
—+—+—=0 ( 2.5)
dx rJ_'1,‘ dz

Equation 2.5 applies to both steady and unsteady flow of incompressible fluids. Note that
Eq. 2.5 is the same as that obtained by setting the volumetric dilatation rate (Eq. 1.9) equal
to zero. This result should not be surprising since both relationships are based on conserva-
tion of mass for incompressible fluids. However, the expression for the volumetric dilation
rate was developed from a system approach, whereas Eq. 2.5 was developed from a control
volume approach. In the former case the deformation of a particular differential mass of fluid
was studied, and in the latter case mass flow through a fixed differential volume was studied.

*Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental
of Fluid Mechanics” 4™ ed., John Wiley & Sons, Inc., 2002.
(2) Frank M. White “Fluid Mechanics”, 4™ ed. McGraw Hill, 2002.
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The differential form of the continuity equation in cylindrical coordinates is

i | d(rpv, 1 o pv, 3 p.
g+_r(f )+_r(§ _))+r({? J_ g (26)
ot roooar rooaf az

This equation can be derived by following the same procedure used in the preceding section
For steady, compressible flow

1 d(rpv,) 1 d(pvy)  d(pv.)

rooar roof dz ( )
¥ ’E‘Q
ye‘\r
g
@Z
vy
|
r v, I
| e x
|/
‘19 | 7
|7 .
- - B FIGURE 2.1 The representation of
velocity components in cylindrical polar
Z coordinates.

For incompressible fluids (for steady or unsteady flow)

La(rv,) 1wy oo,
——+—+—=0 (2.8)
roodr rag oz

du 0w du ou dp Fu Fu du
pl—tu—+v—+w—|=——"+pg,+tpu +—+—| (29%9)
ot ox dy 0z 0x g

(v direction)

ow o w v ap v v ot
p\l—+u—+v—+w—|=—+pg,+t pl—+—+—, (29)
ot dx dy 07 | 0- i

(z direction)
2

w dw ow w ip Pwoatw o dw
p_—+H'—+U’—+W, =—r—+pg;+,u, ._2+,0+.2 (290)
ot X dy dz7 a7 0x dy”
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In terms of cylindrical polar coordinates (see Fig.]1.6), the Navier—Stokes equation can
be written as

(r direction)

v, w, v, d, v Jv,
p\—*tvo,——+—————+v-
ar ar rooof r "oz

ap 1 d

!
= —— 4+ po 4+ u|—A r
ar PE: 'u[rar(

2 v, v,
— + — ,,} (2.10a)

rr Pt ot rt a0 az?

. o2
r{vr) _ ¥, 1 %,
dr

(# direction)

v

o, v, v, 0v, VA, vy
( -+ + + ———+

at " or roaf r ¢ az
1 ap 1 o[ dv, vy 1 &, 2dv, P,
r a6 P&s T K% ar\. dr rr ot an? r* o6 3z
(z direction)
dv. v, v, dv, v,
p - + vr’ - + - + vr -
dt or rodd RS
ap N N 1o/ dv, N | 0", N o, 5 10
= —— a —| r — .10c¢
oz PR R\ 2o a2 | ! )

2.1 Some Simple Solutions for Viscous, Incompressible Fluids

A principal difficulty in solving the Navier—Stokes equations is because of their nonlinear-
ity arising from the convective acceleration terms (i.e., u du/dx, w dv/az, etc.). There are no
general analytical schemes for solving nonlinear partial differential equations (e.g., superpo-
sition of solutions cannot be used), and each problem must be considered individually. For
most practical flow problems, fluid particles do have accelerated motion as they move from
one location to another in the flow field. Thus, the convective acceleration terms are usually
important. However, there are a few special cases for which the convective acceleration van-
ishes because of the nature of the geometry of the flow system. In these cases exact solu-
tions are usually possible. The Navier—Stokes equations apply to both laminar and turbulent
flow, but for turbulent flow each velocity component fluctuates randomly with respect to time
and this added complication makes an analytical solution intractable. Thus, the exact solu-
tions referred to are for laminar flows in which the velocity is either independent of time
(steady flow) or dependent on time (unsteady flow) in a well-defined manner.

2.1.1  Steady, Laminar Flow Between Fixed Parallel Plates

We first consider flow between the two horizontal, infinite parallel plates of Fig. 2.2 a . For
this geometry the fluid particles move in the x direction parallel to the plates, and there is
no velocity in the v or 7 direction—that is, ¥ = 0 and w = 0. In this case it follows from the
continuity equation (Eq. 2.5 ) that du/dx = 0. Furthermore, there would be no variation of
u in the z direction for infinite plates, and for steady flow du/df = 0 so that u = u(y). If
these conditions are used in the Navier—Stokes equations (Eqs. 2.9 ), they reduce to

Dr. Mohsen Soliman -5-



ap J%u
OZ—f—I—_,u(P_—‘z) (2.11)

ax ay
ap
0= —"——pg (2.12)
ay
ap
0= —— ( 2.13)
dz
where we have set g, = 0, ¢, = —g. and g_ = 0. That is, the y axis points up. We see that

for this particular problem the Navier—Stokes equations reduce to some rather simple equa-
tions.
Equations 2.12 and 2.13 can be integrated to yield

p = —pgy + fi(x) (2.14)

-1
)
—1
e

je— =
&4

g

(a) (b)

B FIGURE 22 The viscous flow between parallel plates: (a) co-
ordinate system and notation used in analysis; (b) parabolic velocity dis-
tribution for flow between parallel fixed plates.

which shows that the pressure varies hydrostatically in the y direction. Equation 2.11 , re-
written as

d’u 1ap

dyt  poox
can be integrated to give
du 1 (r’!p)
=—\--]yta
dy p\ox/
and integrated again to yield
1 [dp
U= —<—> Vot eyt oo (2.15)
Zpt ax

Note that for this simple flow the pressure gradient, dp/dx, is treated as constant as far as
the integration is concerned, since (as shown in Eq. 2.14 ) it is not a function of y. The two
constants ¢; and ¢, must be determined from the boundary conditions. For example, if the
two plates are fixed, then # = 0 for y = *h (because of the no-slip condition for viscous
fluids). To satisfy this condition ¢; = 0 and
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| i)
Ch = ——— (('_p> hE
- 2\ dx

Thus, the velocity distribution becomes

u l (d_p) (yv* — h?) (2.16)

_E ox

Equation 2.16 shows that the velocity profile between the two fixed plates is parabolic as
illustrated in Fig. 22 b.

The volume rate of flow, g, passing between the plates (for a unit width in the z di-
rection) is obtained from the relationship

~h ~h

| (o ;
udy = [ —(i) (v — h?)dy

{ —
j‘ —h 2.,{.(, ox

J—h
or
21 (4
g = ——((,—‘”) (2.17)
3\ ox

The pressure gradient dp/dx is negative, since the pressure decreases in the direction of flow.
If we let Ap represent the pressure drop between two points a distance € apart, then

Ap  dp
¢ ox
and Eq. 2.17 can be expressed as
21 Ap
qg = 3l (2.18)

The flow is proportional to the pressure gradient, inversely proportional to the viscosity, and
strongly dependent (~h3) on the gap width. In terms of the mean velocity, V, where V = ¢/2h,
Eq. 2.18 becomes

h*Ap

V = 2.19
o (2.19)

Equations 2.18 and 2.19 provide convenient relationships for relating the pressure drop
along a parallel-plate channel and the rate of flow or mean velocity. The maximum velocity,
Umax» OCcurs midway (v = 0) between the two plates so that from Eq.2.16

()
Upax = — o
2\ ox

v (2.20)

or

|7 (%]

u =

max

The details of the steady laminar flow between infinite parallel plates are completely
predicted by this solution to the Navier—Stokes equations. For example, if the pressure gra-
dient, viscosity, and plate spacing are specified, then from Eq. 2.16 the velocity profile can
be determined, and from Eqs. 2.18 and 2.19 the corresponding flowrate and mean veloc-
ity determined. In addition, from Eq. 2.14 it follows that
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where p, is a reference pressure at x = y = 0, and the pressure variation throughout the fluid
can be obtained from

p = —pgy + (?) x + pg (2.21)
For a given fluid and reference pressure, p,. the pressure at any point can be predicted. This
relatively simple example of an exact solution illustrates the detailed information about the
flow field which can be obtained. The flow will be laminar if the Reynolds number,
Re = pWV(2h)/p. remains below about 1400. For flow with larger Reynolds numbers the flow
becomes turbulent and the preceding analysis is not valid since the flow field is complex,
three-dimensional, and unsteady.

Moving
pllate
15
—
T
¥
b
b
}.‘
X
I \ )
X Fixed
plate i
U
(a) ()

B FIGURE 2.3 The viscous flow between parallel plates with bottom plate fixed and
upper plate moving (Couette flow): (@) coordinate system and notation used in analysis; (b) ve-
locity distribution as a function of parameter, P, where P = —(b%/2uU) dp/0x. (From Ref. 8,
used by permission.)

2.1.2 Couette Flow

Another simple parallel-plate flow can be developed by fixing one plate and letting the other
plate move with a constant velocity, U, as is illustrated in Fig. 2.3 a . The Navier—Stokes
equations reduce to the same form as those in the preceding section, and the solution for the
pressure and velocity distribution are still given by Eqs. 2.14 and 2.15 | respectively. How-
ever, for the moving plate problem the boundary conditions for the velocity are different. For
this case we locate the origin of the coordinate system at the bottom plate and designate the
distance between the two plates as b (see Fig. 2.3 a ). The two constants ¢; and ¢, in Eq.
2.15 can be determined from the boundary conditions, # = Oaty = Oand u = U aty = b.
It follows that

y 1 [ adp R
u = U'!—) + Q(Ti‘) (_‘,‘* - b_'}') (2.22)

". ! 2 'j ) ". 1.
“ = ’ (i)(—Xl - '—) ( 2.23)
Uu b 2uU\dx/\b b

Dr. Mohsen Soliman -8-
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The actual velocity profile will depend on the dimensionless parameter

bt (4
p=—= i)
2l \ odx

Several profiles are shown in Fig. 2.3 b . This type of flow is called Coueitte flow.

The simplest type of Couette flow is one for which the pressure gradient is zero: that
is, the fluid motion is caused by the fluid being dragged along by the moving boundary. In
this case, with ap/dx = 0, Eq. 2.22 simply reduces to

u = Ul (2.24)
b

which indicates that the velocity varies linearly between the two plates as shown in Fig. 2.3 b
for P = 0. This situation would be approximated by the flow between closely spaced con-
centric cylinders in which one cylinder is fixed and the other cylinder rotates with a constant
angular velocity, w. As illustrated in Fig. 2.4 . the flow in an unloaded journal bearing might
be approximated by this simple Couette flow if the gap width is very small (i.e., r, — r; <€ r;).
In this case U = r;w, b = r, — r;, and the shearing stress resisting the rotation of the shaft
can be simply calculated as 7 = ur;w/(r, — r;). When the bearing is loaded (i.e., a force
applied normal to the axis of rotation) the shaft will no longer remain concentric with the
housing and the flow cannot be treated as flow between parallel boundaries. Such problems
are dealt with in lubrication theory (see. for example, Ref. 9).

Lubricating
oil

Rotating shaft

Housing
/

B FIGURE 24 Flow in the narrow gap of a
journal bearing.

Couette Flow Between a Fixed and a Moving Plate:

Consider two-dimensional incompressible plane (d/9z = 0) viscous flow between par-
allel plates a distance 2h apart, as shown in Fig. 2.5 . We assume that the plates are
very wide and very long, so that the flow is essentially axial, u ¥ O but v = w = 0.
The present case is Fig. 2.5a . where the upper plate moves at velocity V but there is
no pressure gradient. Neglect gravity effects. We learn from the continuity equation
that

o n r:iv n r”i'w — 0= it
ox ay dz ox

+0+0 or u = u(y) only

Thus there is a single nonzero axial-velocity component which varies only across the
channel. The flow is said to be fully developed (far downstream of the entrance). Sub-
stitute «© = u(v) into the x-component of the Navier-Stokes momentum equation

for two-dimensional (x, y) flow:

did dif adp d i d7u
u——l—v—):——+ .+ + )
p(x ax ay ax P& H ( axr | oy,
d’u’
or p(O—l—O):O—l—O—l—‘u(O—l—ﬁ) ( 2.25)
ay |

Dr. Mohsen Soliman -9-



— Fixed

v=+4h

Y

max

l

- »

Fig. 2.5 Incompressible viscous
= u(y)

[low between parallel plates: (a) no

pressure gradient, upper plate mov-  y=—p
ing; (b) pressure gradient dp/ox Fixed Fixed
with both plates fixed. (@) (b)

Most of the terms drop out, and the momentum equation simply reduces to

,
du

5 0 or " = C|'1|-' + C2
dy~ :

The two constants are found by applying the no-slip condition at the upper and lower
plates:

Aty = +h: u=V=Cch+ C,

Aty = —h: u=0=0C(—h +

or C,=— and C, = Y
2h 2

Therefore the solution for this case (a), flow between plates with a moving upper wall, is
u=—yv+ = —h=vy=+h (2.20)

This is Couette flow due to a moving wall: a linear velocity profile with no-slip at each
wall, as anticipated and sketched in Fig. 2.5a . Note that the origin has been placed in
the center of the channel, for convenience in case (/) below.

Flow Due to Pressure Gradient Between Two Fixed Plates:
Case (D) is sketched in Fig. 2.5b . Both plates are fixed (V = 0), but the pressure varies
in the x direction. It v= w = 0, the continuity equation leads to the same conclusion
as case (a). namely, that ¥ = u(y) only. The x-momentum equation 2.127a changes
only because the pressure 1s variable:

du _ ap
dv  ax

(2.27)

Also. since v=w = 0 and gravity 1s neglected. the y- and z-momentum equations
lead to

i = () and P =

() or = p(x) only
dy P P = pix) 3

Thus the pressure gradient in Eq. ( 2.27 ) 1s the total and only gradient:
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2
" jz; = g—f; = const < 0 (2.28)
Why did we add the fact that dp/dx is constant’? Recall a useful conclusion from the
theory of separation of variables: It two quantities are equal and one varies only with
v and the other varies only with x, then they must both equal the same constant. Oth-
erwise they would not be independent of each other.

Why did we state that the constant is nregative? Physically, the pressure must de-
crease in the flow direction in order to drive the flow against resisting wall shear stress.
Thus the velocity profile #(y) must have negative curvature everywhere, as anticipated
and sketched in Fig. 2.5b.

The solution to Eq. ( 2.28) is accomplished by double integration:

2
u = L ﬁ .\_ -+ C|\" -+ C2
Moodx 2 :
The constants are found from the no-slip condition at each wall:
dp h*
Atv = *=h: =0 or ;=0 and Cr = ——— ——
- dx 2
Thus the solution to case (/). flow in a channel due to pressure gradient, is
2 2
dx 2\ h=,

The flow forms a Peoiseuille parabola of constant negative curvature. The maximum ve-
locity occurs at the centerline v = O:

>

_dp h~

dx 2

Umax =

( 2.30)

Other (laminar) flow parameters are computed in the following example.

EXAMPLE 2.1

For case (D) above, flow between parallel plates due to the pressure gradient, compute (a) the
wall shear stress, (#) the stream function, (¢) the vorticity, (d) the velocity potential, and (e) the
average velocity.

Solution

All parameters can be computed from the basic solution, Eq. ( 2.29). by mathematical
manipulation.

{a) The wall shear follows from the definition of a newtonian fluid

= =+ % h = 172“;“““ Ans. (a)

The wall shear has the same magnitude at each wall, but by our sign convention of
the upper wall has negalive shear stress.
(b) Since the flow is plane, steady. and incompressible. a stream function exists:
2
u=2 1 =% v=—- -0
ay \ h=/ ax
Dr. Mohsen Soliman -11- )




Integrating and setting = O at the centerline for convenience, we obtain

3
E{‘ = ”maxliy - th:l Ans. {b}
At the walls, y = = hvand v = = 2u_  A/3. respectively.
(c) In plane flow. there is only a single nonzero vorticity component:
. du dul 2 ax
L=(curl V), =— — — = —5"=y Ans. (c)

ax  ay h*

The vorticity is highest at the wall and is positive (counterclockwise) in the upper half and
negative (clockwise) in the lower half of the fluid. Viscous flows are typically tull of vor-
ticity and are not at all irrotational.

{d) From part (c). the vorticity is finite. Therefore the flow i1s not irrotational. and the velocity
polential does not exist. Ans. (d)
(e} The average velocity is defined as V,, = /A, where O = J i dA over the cross section. For
our particular distribution #(yv) from Eq. ( 2.29). we obtain

1 ~+ i ¢ },2 \ B

In plane Poiseuille flow between parallel plates. the average velocity is two-thirds of the
maximum (or centerline) value. This result could also have been obtained from the stream
function derived in part ().

V., =L+ J u dA =

P Uimax Ans. (e)

U 19

2t axl 2 i’ 4 . .
Qchanne] = r-,i"u[:’pe'.r - til&lcrw‘e.r = r%-lx - (_ r'j;ax ) = ? unjaxh per unit width
whence V,,, = QF/A,_ | = (du . 3)(2h) = 2u,,../3. the same result.

This example illustrates a statement made earlier: Knowledge of the velocity vector V
[as in Eq. { 2.29 )] is essentially the solution to a fluid-mechanics problem. since all other
low properties can then be calculated.

Example 2.2:

A wide moving belt passes through a container of a viscous liquid. The belt moves vertically
upward with a constant velocity, V., as illustrated in Fig. E2.2. Because of viscous forces the
belt picks up a film of fluid of thickness 2. Gravity tends to make the fluid drain down the belt.
Use the Navier—Stokes equations to determine an expression lor the average velocity of the fluid
film as it is dragged up the belt. Assume that the flow is laminar, steady. and tully developed.

—-|h |.._

/Fluid layer
Vo

L] B FIGURE E22

§oLuTioN

Since the flow is assumed to be fully developed. the only velocity component is in the v di-
rection (the v component) so that # = w = 0. It follows from the continuity equation that
dgv/ay = 0. and for steady flow dv/dr = 0, so that v = v(x). Under these conditions the
Navier—Stokes equations for the x direction (Eq. 2.9 a ) and the z direction (perpendicular
to the paper) (Eq. 2.9 ¢ ) simply reduce to
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or

and thus

.

Thus, if Tay = 0 at x

Integration of Eq. | yields

ap ap
— =20 o
ax az

2

d-v
dx?

= —pg t

d*v

ol

¥
dx” L

v
= = lx + ¢
dx M

(d@;)
B dx

h, it follows from Eq. 2 that

v:

=

~h

g = l v dx
Jo

The average film velocity, V (where g =

Dr. Mohsen Soliman

yh
cp = ——
Ji

Y .Yk

X
2 M

CEZVD

and the velocity distribution is therefore

Y 2
2 s

2 M

i3
g = Voh — yn
3

Vh), is therefore
hz
vo vy, 2"
3

-13-

=0

— ——x+

h
X° _‘y—.f+ VD

~ I

h
I(y.\:z_‘yx_{_VD
J0

A second integration of Eq. 2 gives the velocity distribution in the film as

At the belt (x = 0) the fluid velocity must match the belt velocity, V;, so that

o

This result indicates that the pressure does not vary over a horizontal plane, and since the
pressure on the surface of the film (x = /) is atmospheric, the pressure throughout the film
must be atmospheric (or zero gage pressure). The equation of motion in the v direction
(Eq. 2.9 b ) thus reduces to

(1

(2)

On the film surface (x = /) we assume the shearing stress is zero—that is, the drag of the
air on the film is negligible. The shealmg stress at the free surface (or any interior parallel
surface) is designated as 7,,.

With the velocity distribution known we can determine the flowrate per unit width, ¢,
from the relationship

(Ans)

It is interesting to note from this result that there will be a net upward flow of liquid (positive
V) only if V, > vh?/3 . It takes a relatively large belt speed to lift a small viscosity fluid.



2.1.3 Steady, Laminar Flow in Circular Tubes

Probably the best known exact solution to the Navier—Stokes equations is for steady,
incompressible, laminar flow through a straight circular tube of constant cross section.
This type of flow is commonly called Hagen-Poiseuille flow, or simply Poiseuille flow. It is
named in honor of J. I.. Poiseuille (1799—-1869), a French physician, and . H. .. Hagen
(1797—1884), a German hydraulic engineer. Poiseuille was interested in blood flow through
capillaries and deduced experimentally the resistance laws for laminar flow through circular
tubes. Hagen’s investigation of flow in tubes was also experimental. It was actually after the
work of Hagen and Poiseuille that the theoretical results presented in this section were de-
termined. but their names are commonly associated with the solution of this problem.
Consider the flow through a horizontal circular tube of radius R as is shown in
Fig. 2.6 a. Because of the cylindrical geometry it is convenient to use cylindrical coordi-
nates. We assume that the flow is parallel to the walls so that v, = 0 and v, = 0. and from
the continuity equation ( 2.7) dv_/dz = 0. Also, for steady, axisymmetric flow, »_ is not a
function of 7 or # so the velocity, v_. is only a function of the radial position within the tube—

e

m FIGURE 2.6
The viscous flow in a
horizontal, circular
tube: (a) coordinate
system and notation
used in analysis: (5)
flow through differ-

{e) (#) ential annular ring.
that is, . = 2.(r). Under these conditions the Navier—Stokes equations (Egs. 2,10 ) reduce to
. ap
0= —pgsintd — > ( 2.31)
or
0 o — L0 ( 2.32)
= —pgcos B — <.32
PE Pl
5 ‘.i‘r; + ) I & ;'J’U_. { - ';',; )
= — r 2.3
IS el H Py i
where we have used the relationships g, = —gsin @ and g, = — g cos # (with # measured

irom the horizontal plane).
Equations 2,31 and 2.32 can be integrated to give

po= —pe(rsin#) + f(z)
(8l
P = —pgyv + [i(2) (2.34)

Equation 2.34 indicates that the pressure is hydrostatically distributed at any particular cross
section, and the z component of the pressure gradient, dp/dz, is not a function of r or .
The equation of motion in the z direction (Eq. 2.33) can be written in the form

1 & A, 1 ap
s -
Foar ar Moz

and integrated (using the fact that dp/dz = constant) to give
. I Ay ,
re—— = |+ o
ar 2\ 0z

1 op
v, =—(-2X
T dp\ oz

Integrating again we obiain

4 ey Inr + o { 2.35)

Dr. Mohsen Soliman -14-



Since we wish v_ to be finite at the center of the tube (r = 0), it follows that ¢; = O [since

In (0) = —oe]. At the wall (» = R) the velocity must be zero so that
ap
Con — — -
- 4\ oz

and the velocity distribution becomes
d
v, = L R?) (2.36)
4_,1.L oz

Thus, at any cross section the velocity distribution is parabolic.

To obtain a relationship between the volume rate of flow, {2, passing through the tube
and the pressure gradient, we consider the flow through the differential., washer-shaped ring
of Fig. 2.6 b . Since 2. is constant on this ring, the volume rate of flow through the differ-
ential area dA = (27r) dr is

dQ = ,!):(2.”.,-) o

and therefore
Q= 27 l v ddr ( 2.37)

Equation 2,36 for v. can be substituted into Eq. 2.37 . and the resulting equation integrated

to yield
i
O - “"‘"'" ( ‘”) (2.38)

0z

This relationship can be expressed in terms of the pressure drop, Ap. which occurs over a
length, €, along the tube, since

Ap ap
o T Tz
and therefore
d - TRIAP ( 2.39)
sSped

For a given pressure drop per unit length, the volume rate of flow is inversely proportional
to the viscosity and proportional to the tube radius to the fourth power. A doubling of the
tube radius produces a sixitcenfold increase in flow! Equation 2.39 is commonly called
Poiveuille s lanw,

In terims of the mean velocity., V. where V = {!‘/"ﬁ"f\’l, Eq. 2.39 becomes

RAp
v =22 ( 2.40)
sl
The maximum velocity .. occurs at the center of the tube, where from Eq. 2.36
R'- ap R*Ap )
Viax = = — ( 2.41)
oz Fped
=0 that
Jt"I'H:l!‘i = Ev
The velocity distribution can be written in terms of @, as (2.42)
.-E?-: IS 2
= ] — —_— (6.154)
J!Jll'l--'”\i R

As was true for the similar case of flow between parallel plates (sometimes referred to
as plane Poisewille flow), a very detailed description of the pressure and velocity distribution
in tube flow results from this solution to the Navier—Stokes equations. Numerous experi-
ments performed to substantiate the theorctical results show that the theory and experiment
are in agreement for the laminar flow of Newtonian fluids in circular tubes or pipes. The
flow remains laminar for Eeynolds numbers, Re = pV(2R)/e. below 2100, Turbulent flow
in tubes is considered in Chaptler 5.
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2.1.4 Steady, Axial, Laminar Flow in an Annulus

The differential equations (Eqs. 2,31, 2,32, 2.33 ) used in the preceding section for flow
in a tube also apply to the axial flow in the annular space between two fixed. concentric
cylinders (Fig. 2.7 ). Equation 2,35 for the velocity distribution still applies, but for the sta-
tionary annulus the boundary conditions become v, = Oatr = r,and v. = Ofor r = r,. With
these two conditions the constants ¢ and ¢ in Eq. 2,35 can be determined and the veloc-

ity distribution becomes
| i . . !',2 - r',:, r
v, = —(;—)[r" —r,+ —"In —} (2.43)
T4\ az In(r,/r;) 7.

The corresponding volume rate of flow is

" wamyar ([ s CE =
Q= [' v.(2mr)dr = HM(”Z){,}” r n(r./r) l

=

or in terms of the pressure drop, Ap, in length € of the annulus

TAp [!_4 4 (r2 — rf)z}

- 2.44
Bt { )

(_') = 0 L B
In(r,/r;)
The velocity at any radial location within the annular space can be obtained from Eq.

2.43 . The maximum velocity occurs at the radius r = r, where dv_/dr = 0. Thus,

]
re — r7 2
P = [ - } ( 2.45)

An inspection of this result shows that the maximum velocity does not occur at the midpoint
of the annular space, but rather it occurs nearer the inner cylinder. The specific location
depends on £, and r,.

These results for flow through an annulus are only valid if the flow is laminar. A
criterion based on the conventional Reynolds number (which is defined in terms of the tube
diameter) cannot be directly applied to the annulus, since there are really “two™ diameters
involved. For tube cross sections other than simple circular tubes it is common practice to
usc an “effective” diameter, termed the hvdranlic diameter, ;. which is defined as

4 = cross-sectional area

{12, =

wetted perimeter
The wetted perimeter is the perimeter in contact with the fluid. For an annulus
. 22
I) - .Jﬂ'(f“ }‘; ) - ﬂ‘{r - r)
h :ﬂ'(f'ﬂ + J",) =4 i

In terms of the hydraulic diameter. the Reynolds number is Re = pD,V/p (where V =
Q/cross-sectional area), and it is commonly assumed that if this Reynolds number remains

mFIGURE 2.7
The viscous low
through an annulus.

below 2100 the flow will be laminar. A further discussion of the concept of the hydraulic
diameter as it applies to other noncircular cross sections is given in . next sections
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2.1.5 Flow between Long Concentric Cylinders:

Consider a fluid of constant (p, u) between two concentric cylinders, as in Fig. 2.8 .
There is no axial motion or end effect v. = a/dz = 0. Let the inner cylinder rotate at
angular velocity {);. Let the outer cylinder be fixed. There is circular symmetry, so the
velocity does not vary with # and varies only with r.

Fig. 2.8 Coordinate system for
incompressible viscous flow be-
tween a fixed outer cylinder and a
steadily rotating inner cylinder.

The continuity equation for this problem is Eq. (ID.2):

L (_j (F'L?,;l —+ l dﬁ — O — L i (mr) or m}' = const
roar rooae rodr
Note that vg does not vary with 8. Since v, = 0 at both the inner and outer cylinders,

it follows that v. = 0 everywhere and the motion can only be purely circumferential,
vg = ve(r). The ~-momentum equation (ID.6) becomes
. : v, 1 ap 2 Vg
V-V + £V — — L oo+ (Vv — 2
P g . - ap T Ple .H»x 6 =
For the conditions of the present problem. all terms are zero except the last. Therefore
the basic differential equation for flow between rotating cylinders is

1 d duv, Vg
Vzvz——(r ﬁ')z— 2.46
v rodr dr r ( )
This is a linear second-order ordinary differential equation with the solution
Vg = CIF -+ —C2
-

The constants are found by the no-slip condition at the inner and outer cylinders:

Cs
Outer, at r = r,: vg = 0= Cyr, + —

Ly

(o
Inner, at v = r;: vg= iy = Cyr; + —

P

i

The final solution for the velocity distribution is

o . rolr — rir,
Rotating inner cylinder: ve = (ir; o ~ (2.47)

i

Folti — 1T,
The velocity profile closely resembles the sketch in Fig. 2.8 . Variations of this case,
such as a rotating outer cylinder, are given in the problem assignments.
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The classic Couette-flow solution'' of Eq. ( 2.47) describes a physically satisfying con-
cave, two-dimensional, laminar-flow velocity profile as in Fig. 2.8 . The solution is
mathematically exact for an incompressible fluid. However, it becomes unstable at a
relatively low rate of rotation of the inner cylinder, as shown in 1923 in a classic pa-
per by G. I. Taylor [17]. At a critical value of what is now called the Tavlor number,
denoted Ta,

3 2
_ rilr, — 1) Q;
>

Ta L= 1700 (2.48)

crit

2
the plane flow of Fig. 2.8 wvanishes and is replaced by a laminar three-dimensional
flow pattern consisting of rows of nearly square alternating toroidal vortices. An ex-

""Named after M. Couette, whose pioneering paper in 1890 established rotating cylinders as a method,
still used today. for measuring the viscosity of fluids.

(a)
fiz.2.9 Experimental verification
of the instability of flow between a
fixed outer and a rotating inner ib)

cylinder. (@) Toroidal Taylor vor-
tices exist at 1.16 times the critical
speed: (b) at 8.5 times the critical
speed. the vortices are doubly peri-
odic. (After Koschmieder, Ref. 18.)
This instability does not occur if
only the outer cylinder rotates.

perimental demonstration of toroidal “Tavlor vortices™ is shown in Fig. 2.2 g, mea-
sured at Ta = 1.16 Ta_., by Koschmieder [18]. At higher Tayvlor numbers, the vortices
also develop a circumferential periodicity but are still laminar, as illustrated in Fig.
2.9 b At still higher Ta, turbulence ensues. This interesting instabality reminds us that
the MNavier-S5tokes equations, being nonlinear, do admit to multiple (nonunigue ) lami-
nar solutions in addition to the nsual instabilities associated with turbulence and chaotic
dynamic systems.
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Example 2.3:

A viscous liquid (p = 1.18 * 10 kg/m':: o= 0.0045 N - H/l]]j) flows at a rate of 12 ml/s
through a horizontal, 4-mm-diameter tube. (a) Determine the pressure drop along a I-m length
of the tube which is far from the tube entrance so that the only component of velocity is par-
allel to the tube axis. (l'a) IT a 2-mm-diameter rod is placed in the 4-mm-diameter tube to form
a symmetric annulus, what is the pressure drop along a l-m length if the flowrate remains
the same as in part (a)?

§oLuTioN
(1) We first calculate the Reynolds number, Re, to determine whether or not the flow is
laminar. The mean velocity is

Q - (12 ml/s)(107° m”"/ml)
(W/-")DE B (7r/4)(4 mm > 107" m/mm)’

= (0,955 m/s

'V"=

and. therefore,

pVD (118 % 10° kg/nr")(f‘.'.%ﬁ m/s)(4 mm = 10 ! m/mm)
“woo 0.0045 N - s/m’

= 1000

=

Since the Reynolds number is well below the critical value of 2100 we can safely assume
that the flow is laminar. Thus, we can apply Eq. 2.39 which gives for the pressure drop

BulQ
Ap = [
7R
8(0.0045 N - s/m?)(1 m)(12 % 107° m?/s)
(2 mm % 107" m/mm)*

= B.59 kPa (Ans)
(b) For flow in the annulus, the mean velocity is
v Q _ 12 % 10 " m’/s
w(rg = r}) (@2 mm X 107" m/mm)* = (1 mm > 107" m/mm)*]
= 1.27 m/s

and the Reynolds number (based on the hydraulic diameter) is

P2(r, — r)Vv
B H

(1.18 % 10" kg/mM)(2)(2 mm = 1 mm)(10~* m/mm)(1.27 m/s)
- 0.0045 N - s/m’

Re

= 0666

This value is also well below 2100 so the flow in the annulus should also be laminar

From Eq.2.44
Dr. Mohsen Soliman -19-



8l o — )
QPZLQ[;{,‘— r?fu}
T In(r, /r;)
so that
8(0.0045 N - s/mM2)(1 m)(12 =< 107° m?/s
Ap = ( X — X ) > {(2 > 107* m)*

2x 1077 m)P — (1 X 107 m)2]2) !
— (1 < 1072 m)* — LC ) ( )] }

In(2 mm/1 mm)

= 68.2 kPa (Amns)

The pressure drop in the annulus is much larger than that of the tube. This is not
a surprising result, since to maintain the same flow in the annulus as that in the open
tube the average velocity must be larger and the pressure difference along the annulus
must overcome the shearing stresses that develop along both an inner and an outer wall.
Even an annulus with a very small inner diameter will have a pressure drop signifi-
cantly higher than that of an open tube. For example, if the inner diameter is only 1,/100
of the outer diameter, Ap (annulus)/Ap (tube) = 1.28.

e

Example 2.4:
The accepted transition Reynolds number for flow in a circular pipe is Reg 4, = 2300. For flow
through a 5-cm-diameter pipe, at what velocity will this occur at 20°C for (a) airflow and (b) wa-
ter flow?

Solution

Almost all pipe-flow formulas are based on the average velocity V = /A, not centerline or any
other point velocity. Thus transition is specified at pVd/u =~ 2300. With d known, we introduce
the appropriate fluid properties at 20°C from Tables A.3 and A.4:

. pVd _ (1.205 kg/m>)V(0.05 m) _ m
Air: = = 2300 V=07—
(@) Afr “ 1.80 E-5 ke/(m - 5) or S
V. )V(0.05
(b) Water: ~ £Y4_ OB ke/mOVOD M) _ 5355 o y=ooue™
L 0.001 kg/(m - s) s

These are very low velocities, so most engineering air and water pipe flows are turbulent, not
laminar. We might expect laminar duct flow with more viscous fluids such as lubricating oils or
glycerin.

2.2 Flow Through An Inclined Circular Pipe:
a) Method of Using the Moody Chart:

As our nextexample of a specific viscous-flow analysis, we take the classic problem
of flow in a full pipe, driven by pressure or gravity or both. Figure 2.10 shows the
geometry of the pipe of radius R. The x-axis is taken in the flow direction and is in-
clined to the horizontal at an angle &.

Before proceeding with a solution to the equations of motion. we can learn a lot by
making a control-volume analysis of the flow between sections 1 and 2 in Fig.2.10 .
The continuity relation, reduces to

Q, = (> = const

or V|:&:V2= >
Ay As
since the pipe is of constant area. The steady-flow energy equation reduces to

Loy L ovig g =L2 4 %a_rzv% + gz2 + ghy (2.49)
P

P 2

since there are no shaft-work or heat-transfer effects. Now assume that the flow is fully
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gy=gsing

Fig. 2.10 Control volume of steady.,
fully developed flow between two
sections in an inclined pipe.

developed (Fig. 2.6). and correct later for entrance effects. Then the kinetic-energy cor-
rection factor &y = @,, and since V|, = V,, Eq. 2.49 now reduces to a
simple expression for the friction-head loss fi,

hf-=(z, +ﬂ1—(32+ﬁ1=$(z+£]=ﬂz+éﬂ
pPE /) PE / PE / P8
The pipe-head loss equals the change in the sum of pressure and gravity head. 1.e., the
change in height of the hydraulic grade line (HGL). Since the velocity head 1s constant
through the pipe, /i, also equals the height change of the energy grade line (EGL). Re-
call that the EGL decreases downstream in a flow with losses unless it passes through
an energy source, e.g., as a pump or heat exchanger.
Finally apply the momentum relation to the control volume in Fig. 2.10, ac-

counting for applied forces due to pressure, gravity, and shear

Ap mR* + pg(wR*) AL sin ¢ — 7,(27wR) AL = m(V, — V) =0 (2.51)
This equation relates Ay to the wall shear stress

ﬂ:+éﬁ=hf=h£ (2.52)
Pg ps R
where we have substituted Az = AL sin ¢ from Fig. 2.10.
So far we have not assumed either laminar or turbulent flow. If we can correlate T,
with flow conditions, we have solved the problem of head loss in pipe flow. Func-
tionally, we can assume that

(2.50)

Tw = Flp. V, u. d, €) (2.53)

where € 1s the wall-roughness height. Then dimensional analysis tells us that
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BTy
pV?
The dimensionless parameter f is called the Darcy friction factor, after Henry Darcy
(1803—-1858), a French engineer whose pipe-flow experiments in 1857 first established
the effect of roughness on pipe resistance.
Combining Eqs. ( 2.52) and ( 2.54 ), we obtain the desired expression for finding pipe-
head loss

—f= F(Rcd. <) (2.54)

-

hy=f

L
7 (2.55)

)

e,
This is the Darcyv-Weisbach eguation, valid tor duct flows of any cross section and for
laminar and turbulent flow. It was proposed by Julius Weisbach. a German professor
who in 1850 published the first modern textbook on hyvdrodynamics.

Our only remaining problem is to find the form of the function F in Eq. (2.54) and
plot it in the Moody chart

b) Method of Solving the Equations of Motions:

For either laminar or turbulent flow, the continuity equation in cylindrical coordinates
is given by

1 o 1 & A

—— + —— +—=0 256

roar trv) r a6 (W) ax : )
We assume that there is no swirl or circumferential variation, vy = @/906 = 0, and fully

developed flow: u = w(r) only. Then Eq. (2.5¢6) reduces to

1 a
— —{ruv,) =0
rodr )
or Fu, = const (2.57)

But at the wall. r = R. v, = 0 (no slip): therefore (2.57) implies that v, = 0 every-
where. Thus in fully developed flow there 1s only one velocity component, i = w(r).
The momentum differential equation in cylindrical coordinates now reduces to

d 1
fol %= —}%—!—pgx—!—?%{w} (2.58)

where 7can represent either laminar or turbulent shear. But the left-hand side vanishes
because u = w(r) only. Rearrange. noting from Fig. 2.10 that g, = g sin ¢
1 a

a ) d
_—— = — — P th) = — + pgz 2.59
Foor (r7) ax P g sin ) dx P <) ¢ )

Since the left-hand side varies only with r and the right-hand side varies only with x,
it follows that both sides must be equal to the same constant.” Therefore we can inte-
grate Eq. (2.59) to find the shear distribution across the pipe, utilizing the fact that

s=0atr =20

1 o
T = Er E{p + pgz) = (const){r) (2.&60)

Ask vour instructor to explain this to vou if necessary.
Thus the shear varies linearly from the centerline to the wall, for either laminar or tur-

bulent flow. This is also shown in Fig. 2.10. At r = R, we have the wall shear

1 Ap + pg Az
—R 261
2 AL (2ol

Tw =

which is identical with our momentum relation (2.52). We can now complete our study
of pipe flow by applyving either laminar or turbulent assumptions to fill out Eq. (2 .&0).
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Laminar Flow Solution:

Mote in Eq. (2. a0) that the HGL slope Jp + pezidy is megative because both pres-
sure and height drop with . For laminar flow., 7 = g dedfder. which we substitute in
Eq. (Z2.s0)

e 1 el
= — K KN = == —+ z 2. &2
Ll > " A ‘ »
Integrate once
o= er & “+ (2. =30
4
The constant ) is evaluated from the no-slip condition at the wall: ¢« = O at r = R
(8] =%R2£—l— 'y (2.5
or ) = —_%REK;‘;L. Introduce into Eq. (2.53) to obtain the exact solution for laminar
fully developaed pipe flow
1 o . .
= —— | ———(p + pgz) (RS — (2S5
A cf\_'l" 2oy W )

The laminar-flow profile is thus a paraboloid falling to zero at the wall and reaching
a maximum at the axis

umax

2
= f—“ [—%{p + pgz)] (2.66)
It resembles the sketch of w(r) given in Fig. 2.10.

The laminar distribution (2.65) is called Hagern-Poiseuille flow to commemorate the
experimental work of G. Hagen in 1839 and J. L. Poiseuille in 1940, both of whom
established the pressure-drop law- The first theoretical derivation ol Eq. (2.635)
was given independently by E. Hagenbach and by F. Neumann around 1859,

Other pipe-flow results follow immediately from Eq. (2.65). The volume flow is

o = [R u dA = LR umax(] — r )27:-;' adr

J R2
1 > _ wR? d _ _
== EunlaxﬁRu == 8;..(. I:_dxi P -+ pgz}:l (2.67)
Thus the average velocity in laminar flow is one-halfl the maximum velocity
_ Qo _ o _ 1
V - A - 7TR2 - ) Hymax (268)

For a horizontal tube (Az = 0). Eq. (2.67) is of the form predicted by Hagen’s exper-
iment.

&;) — M (2.69)
ik
The wall shear is computed from the wall velocity gradient
i 2 ik 1 a
, = e = —/— 15 = —_R|—(p + Z 2.70
T i R SER|GWw T+ ps2) ( )

This gives an exact theory for laminar Darcy friction factor

ST, R(R Vi) 64

f= =T 2 ~ pvd

6
Rcd

o ﬁalu = (271)
This is plotted later in the Moody chart (Fig. 2.13). The fact that f drops off with in-
creasing Rey; should not mislead us into thinking that shear decreases with velocity:
Eq. (2.70) clearly shows that 7, is proportional to i,,..: it is interesting to note that .
is independent of density because the fluid acceleration is zero.
The laminar head loss follows from Eq. (2.55)
5 64 L VE 32ulV  128ulQ

i lam - 2 4
pVd d 2g pea Tpgd

(2.72)

We see that laminar head loss is proportional to V.
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Example 2.5:

An oil with p = 900 kg/m~ and » = 0.0002 m~/s flows upward through an inclined pipe as shown
in Fig. E 2.5 The pressure and elevation are known at sections 1 and 2. 10 m apart. Assuming

EZ253

d=6.cm

Py = 350,000 Pa.z; =0

steady laminar flow. (@) verify that the flow is up. (#) compute A between 1 and 2. and compute
(c)y Q. (d) V. and (e) Re,. Is the flow really laminar?

Part (a)

Part (b)

Part (c¢)

Part (d)

Part (e)

Solution

For later use, calculate
pm= pr= (900 kgfmg}(O.EDU? m</s) = 0.18 kg/(m - s)
7o = AL sin 40° = (10 m)(0.643) = 6.43 m

The flow goes in the direction of falling HGL; therefore compute the hydraulic grade-line height
at each section

350,000
HGL, =7, + B- =0 + =2 — 3965
LT AT e 900(9.807) m
250,000
HGL, = 2, + P2 = 643 + —=——— = 3475
2T T e 900(9.807) n
The HGL is lower at section 2; hence the flow is from 1 to 2 as assumed. Ans. (a)
The head loss is the change in HGL:
hy=HGL, — HGL, = 39.65 m — 3475 m = 4.9 m Ans. (B)

Half the length of the pipe is quite a large head loss.

We can compute O from the various laminar-flow formulas, notably Eq. (2.72)

apgd*hy _ (900)(9.807)(0.06)*(4.9)

— _ 3 -
Q= 12851 128(0.18)(10) 0.0076 m’/s Ans. (c)
Divide @ by the pipe area to get the average velocity
__©Q _ 00076 _ .
TR (0.03) 2.7 m/s Ans. (d)
With V known, the Reynolds number is
Vd  2.7(0.06) .
Re,=—=—"—"=810 Ans. (e
=T 70,0002 s (€)

This is well below the transition value Re, = 2300, and so we are fairly certain the flow is lam-
inar.

Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms, newtons)
for all variables we avoid the need for any conversion factors in the calculations.

Dr. Mohsen Soliman -24-



Example 2.6:

A liquid of specific weight pg = 58 Ib/ft* flows by gravity through a I-ft tank and a 1-ft capil-
lary tube at a rate of 0.15 ft*/h, as shown in Fig. E2.6. Sections 1 and 2 are at atmospheric pres-
sure. Neglecting entrance effects, compute the viscosity of the liquid. O

Solution 1 fit

Apply the steady-flow energy equation (2.49), including the correction factor a: 1

2 2
ﬂ+al—ﬂ+zl=40_2+a2—%+zz+ J,@
pg 28 P 28 E2.6 -

Q =0.15 ft/h
The average exit velocity V; can be found from the volume flow and the pipe size:

0 0 (0.15/3600) ft'/s
=-== = — = 3.32 ft/
A, mR (0.002 ft)? >

Va

Meanwhile p; = p> = p,. and V| = 0 in the large tank. Therefore, approximately.

3 (3.32 ft/s)?
he= 72y — 75 — =2 = 2.0 ft — 2.0 o= 5
AT 2T A, 2(32.2 fi/s?)

= 1.66 ft

where we have introduced e = 2.0 for laminar pipe flow. Note that /iy includes
the entire 2-ft drop through the system and not just the 1-ft pipe length.
With the head loss known, the viscosity follows from our laminar-flow formula (2.72):

32plV _ 32u(1.0 16)(3.32 ft/s)

hy=1.66 ft = 5 3 > = 114,500 p
ped” (38 1bf/1t7)(0.004 ft)
1.66
= —— = 1.45 E-5 slug/(ft - Ans.
or 1L 114,500 slug/(ft - s) s

Note that L in this formula is the pipe length of 1 ft. Finally, check the Reynolds number:

pVd _ (58/32.2 slug/ft')(3.32 ft/s)(0.004 ft)
1.45 E-5 slug/(ft - s)

Re,; = = 1650 laminar

Since this is less than 2300, we conclude that the flow is indeed laminar. Actually, for this head
loss, there is a second (turbulent) solution, as we shall see in Example 2.9.

2.2 Case of Turbulent Flow (this part may be omitted without loss of continuity)

2.2.1 Semi-empirical Turbulent Shear Correlations:

Throughout this chapter we assume constant density and viscosity and no thermal in-
teraction, so that only the continuity and momentum equations are to be solved for ve-
locity and pressure

Continuity: - -+ + — =0

) (2.73)
Momentum: 2] av _ —Vp +pg + V'V
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subject to no slip at the walls and known inlet and exit conditions. (We shall save our
free-surface solutions for Chap. 10.)

Both laminar and turbulent flows satisfy Eqs. (2.73). For laminar flow. where there
are no random fluctuations, we go right to the attack and solve them for a variety of
geometries (as we did before in Sec. 2.1) leaving many more, of course, for the problems.

2.2.2 Reynolds Time-Averaging Concept:

For turbulent flow. because of the fluctuations, every velocity and pressure term in Eqgs.
2.73 is a rapidly varying random function of time and space. At present our mathe-
matics cannot handle such instantaneous fluctuating variables. No single pair of ran-
dom functions Vix, y, z. 1) and p(x, v, 2. 1) is known to be a solution to Eqs. 2.73 .
Moreover, our attention as engineers is toward the average or mean values of velocity,
pressure, shear stress, etc.. in a high-Reynolds-number (turbulent) flow. This approach
led Osborne Reynolds in 1895 to rewrite Eqs. (2.73) in terms of mean or time-averaged
turbulent variables.
The time mean u of a turbulent function u(x, v, z, ) is defined by

l T
u = F L u dt @.74)

where 7T is an averaging period taken to be longer than any significant period of the
fluctuations themselves. The mean values of turbulent velocity and pressure are illus-
trated in Fig.2.11. For turbulent gas and water flows, an averaging period 7= 5 s is
usually quite adequate.

The fluctuation u” is defined as the deviation of u from its average value

' =u—u (2.75)
also shown in Fig.2.11. It follows by definition that a fluctuation has zero mean value

s
T

u P

T
J (u —w)dr=u—u=20 (2.76)
o

-—-P

P

Iig.2.11Definition of mean and
fluctuating turbulent variables:
(a) velocity; (b) pressure.

(a) (b)

However, the mean square of a fluctuation is not zero and is a measure of the inrern-
siry of the turbulence

T
2 I ' w’Zdr # 0 (2.77)

T o

Nor in general are the mean fluctuation products such as #’'v’ and «'p’ zero in a typi-
cal turbulent flow,
Rewvnolds” idea was to split each property into mean plus fluctuating variables

u=u+u" v=v+v° w=w+w’' p=p+p’ (2.78)
Substitute these into Eqs. 2.73 | and take the time mean of each equation. The conti-

nuity relation reduces to
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o + av + ow
dx av oz

=0 (2.79)

which is no different from a laminar continuity relation.

However, each component of the momentum equation 2.73b . after time averaging,
will contain mean values plus three mean products, or correlations, of fluctuating ve-
locities. The most important of these is the momentum relation in the mainstream, or
v direction. which takes the form

L lit ap . o du 5\
P = —— -+t pg.t |- —pu-)
lt X ax X
(2.80)
d ot rard) o i 7\
+ | S puv |+ — | M S puw- |
v o oz o\ 02 /

The three correlation terms —pu'2, —pu'v’, and —pu’'w’ are called turbulent stresses
because they have the same dimensions and occur right alongside the newtonian (lam-
inar) stress terms w(du/dx), etc. Actually, they are convective acceleration terms (which
is why the density appears). not stresses, but they have the mathematical effect of stress
and are so termed almost universally in the literature.

The turbulent stresses are unknown a priori and must be related by experiment to

———————— -

Outer
turbulent
layer

N
k

Fig,2.12 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

lr, y) —

Overlap layer

Viscous wall layer

Ty(x) 0
(a1} (b
geometry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and
boundary-layer flow, the stress —pu’v’ associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

du ap aT
= — + pg, + — 2.81
Pl ax P& ay ( )
Ju _ ——
where T= .-u‘}— —PUYV T Tam + Trurb (2.82)
dv

Figure2.12shows the distribution of 7, and 7,4, from typical measurements across
a turbulent-shear layer near a wall. Laminar shear is dominant near the wall (the wall
laver), and turbulent shear dominates in the owuter layver. There is an intermediate re-
gion, called the overlap laver, where both laminar and turbulent shear are important.
These three regions are labeled in Fig.2.12.

In the outer layer 7, is two or three orders of magnitude greater than 7, and
vice versa in the wall layer. These experimental facts enable us to use a crude but very
effective model for the velocity distribution #(v) across a turbulent wall layer.

Dr. Mohsen Soliman -27-



The Logarithmic-Overlap Law:
We have seen in Fig.2.12 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Owuter layer: Turbulent shear dominates.
3. Owerlap layer: Both types of shear are important.
From now on let us agree to drop the overbar from velocity u. Let 7, be the wall shear
stress, and let & and U represent the thickness and velocity at the edge of the outer
layer, v = &.

For the wall layer, Prandtl deduced in 1930 that # must be independent of the shear-
layer thickness

u = flm. Ty P V) (2.83)

By dimensional analysis, this is equivalent to

PR f e 112
wh == (M ) wk = (—T) (2.84)
i* .V P

Equation ( 2.84) is called the law of the wall, and the quantity «* is termed the friction
velocity because it has dimensions (LT, although it is not actually a flow velocity.

Subsequently, Karman in 1933 deduced that « in the outer layer is independent of
molecular viscosity, but its deviation from the stream velocity U must depend on the
layer thickness & and the other properties

([; — ”}oulcr - g{ﬁ* T‘h"' p" “1) ( 285)
Again, by dimensional analysis we rewrite this as

U—u
M*

— G( :S ) (2.86)

%

where #* has the same meaning as in Eq. (2.84). Equation (2.86) is called the
velocity-defect law for the outer layer.

Both the wall law (2.84) and the defect law (2.86) are found to be accurate for a
wide variety of experimental turbulent duct and boundary-layer flows [1 to 3]. They
are different in form, yet they must overlap smoothly in the intermediate layer. In 1937
C. B. Millikan showed that this can be true only if the overlap-layer velocity varies
logarithmically with y:

i 1 v F

— = —In + B overlap layer (2.87)
u* K v

Over the full range of turbulent smooth wall flows, the dimensionless constants « and
B are found to have the approximate values k = 0.41 and B = 5.0. Equation ( 2.87) is
called the logarithmic-overlap laver.

Thus by dimensional reasoning and physical insight we infer that a plot of u# versus
In v in a turbulent-shear layer will show a curved wall region, a curved outer region,
and a straight-line logarithmic overlap. Figure 2.13shows that this is exactly the case.
The four outer-law profiles shown all merge smoothly with the logarithmic-overlap law
but have different magnitudes because they vary in external pressure gradient. The wall
law is unique and follows the linear viscous relation

+ u v+ "

uB =-—=":" =y (2.88)
u* v

from the wall to about y© = 5, thereafter curving over to merge with the logarithmic

law at about v© = 30.
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Believe it or not, Fig.2.13, which is nothing more than a shrewd correlation of ve-
locity profiles. is the basis for most existing “‘theory”™ of turbulent-shear flows. Notice
that we have not solved any equations at all but have merely expressed the streamwise
velocity in a neat form.

There is serendipity in Fig.2.13: The logarithmic law (2.87). instead of just being a
short overlapping link. actually approximates nearly the entire velocity profile, except
for the outer law when the pressure is increasing strongly downstream (as in a dif-
fuser). The inner-wall law typically extends over less than 2 percent of the profile and
can be neglected. Thus we can use Eq. ( 2.87) as an excellent approximation to solve

30

Outer law profiles:
Strong increasing pressure
Flat plate flow
25 — Pipe flow
Strong decreasing pressure

. Fig 13Experimental verification
7 of the inner-, outer-, and overlap-
layer laws relating velocity profiles
in turbulent wall flow.

20 — Linear ut =y+
viscous '
sublayer, ., &
Eq. (6.22) )
15 — o
hy / \/ ty =5 m/is '
= Logarithmic —,: =R
overlap f y - V=
Eq. (6.21) S R U . S — .
10 — . I N
A y ' I||
Experimental data . I T II |
)
5 = \/
r=R=Tcm
0 | I [
1 10 102 10° 0+ E2.7
+ yu®
* v

nearly every turbulent-flow problem presented in this and the next chapter. Many ad-
ditional applications are given in Refs. 2 and 3.

FExample 2.7

Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The cen-
terline velocity is up = 5 m/fs. Estimate from Fig.2.13 (a) the friction velocity w*, (b) the wall

shear st Part a) (c) the average velocity V = Q/A.

Solution

For pipe flow Fig.2.13shows that the logarithmic law, Eq. (2.87). is accurate all the way to the
center of the tube. From Fig. E2.7 v = R — r should go from the wall to the centerline as shown.
At the center # = up. v = R, and Eq. (6.21) becomes

Hg 1 Ru*

Mo _ 1 + 5.0 1
w041 " » &

Since we know that up = 5 m/s and R = 0.07 m, u* is the only unknown in Eq. (1). Find the
solution by trial and error

wt = 0228 m/s = 22.8 cm/s Ans. (a)

where we have taken » = 1.51 X 107> m%/s for air from Table 1.4.
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Part (h)  Assuming a pressure of 1 atm, we have p = p/(RT) = 1.205 kg/m’. Since by definition u* =
I[rwfp}m, we compute

T = pu*t = (1.205 kg/m*)(0.228 m/s)* = 0.062 kg/(m - s*) = 0.062 Pa  Ans. (b)

This 1s a very small shear stress, but it will cause a large pressure drop in a long pipe (170 Pa
for every 100 m of pipe).

Part (¢) The average velocity V is found by integrating the logarithmic-law velocity distribution

0 1 f*® 9
% ' 2 L u 2ar dr (2)

Introducing u = w*[(1/k) In (vu*/v) + B] from Eq. (2.87 and noting that v = R — r, we can
carry out the integration of Eq. (2), which is rather laborious. The final result is

V =0.835u; = 4.17 m/s Ans. (c)

We shall not bother showing the integration here because it is all worked out and a very neat
formula is given in Eqs. 2,115 and 2.125.

Notice that we started from almost nothing (the pipe diameter and the centerline velocity)
and found the answers without solving the differential equations of continuity and momen-
tum. We just used the logarithmic law, Eq. (2.87), which makes the differential equations un-
necessary for pipe flow. This 1s a powerful technique, but you should remember that all we
are doing is using an experimental velocity correlation to approximate the actual solution to
the problem.

We should check the Reynolds number to ensure turbulent flow

_ Vd _ (417 m/s)(0.14 m)

R |
€4 151 X 10~ mYs

= 38,700

Since this is greater than 4000, the flow is definitely turbulent.

Turbulent Flow Solutions:

For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 2.7 . Assume that Eq. ( 2.87) correlates the lo-
cal mean velocity u(r) all the way across the pipe

u(r)y _l_ In (R — ryu*®
u* K v

+ B (2.89)

where we have replaced vy by R — r. Compute the average velocity from this profile

- . s
Vzgz 12] u*—l—ln—(R nu + B |27 dr
A R< Yo K v

2 * 3
= lu*(— n B4 op ——) (2.90)

2 K v K

Introducing k = 0.41 and B = 5.0, we obtain. numerically,

E

Vo oaan B3 (2.91)

u* v

This looks only marginally interesting until we realize that V/u* is directly related to
the Darcy friction factor
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v _ (‘sz‘-)h‘? _ (--§-)|.f2 (2.92)

ur o\ T I
Moreover, the argument of the logarithm in ( 2.91) is equivalent to
1 PN
RM:I: ?L’:{f .ir.f=|: 1 i f" 1/2
= = —Re (—) (2.93)
v v v 20 A8,

Introducing ( 2.93) and (2.92) into Eq. (2.91), changing to a base-10 logarithm, and re-
arranging, we obtain

—f|l,fz ~ 1.99 log (Re, %) — 1.02 (2.94)

In other words, by simply computing the mean velocity from the logarithmic-law cor-
relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (2.94) in 1935 and then adjusted the constants

slightly to fit friction data better
| 1/2
—7E = 2.0 log (Re, f"%) — 0.8 (2.95)

This is the accepted formula for a smooth-walled pipe. Some numerical values may be
listed as follows:

Re, | 4000 | 10* | 10° | 10° | 107 | 10%

I | 0.0399 | 0.0309 I 0.0180 I 0.0116 | 0.0081 I 0.0059

Thus fdrops by only a factor of 5 over a 10,000-fold increase in Reynolds number. Equa-
tion (2.95) is cumbersome to solve if Re, is known and f is wanted. There are many al-
ternate approximations in the literature from which f can be computed explicitly from Re,

0.316 Re, ' 4000 < Re,; < 10° H. Blasius (1911)
(2.96)

=1, y =2
Reg ) Ref. 9

( 1.8 log 6.9

, /

Blasius, a student of Prandtl, presented his formula in the first correlation ever made
of pipe friction versus Reynolds number. Although his formula has a limited range, it
illustrates what was happening to Hagen’s 1839 pressure-drop data. For a horizontal
pipe, from Eq. (2.96),

2 \ /4 72
p=2L2 g BV 0.316( ) LY
pg d 2g pVd ] d 2g
or Ap = 0.158 Lp** ' Ha—>Ry™ (2.97)

at low turbulent Reynolds numbers. This explains why Hagen’s data for pressure drop
begin to increase as the 1.75 power of the velocity, in Fig.2.8 . Note that Ap varies
only slightly with viscosity, which is characteristic of turbulent flow. Introducing Q =
Lxd®V into Eq. (2.97), we obtain the alternate form

Ap =~ 0.241Lp™" p 4a—+750! 73 (2.98)

For a given flow rate (), the turbulent pressure drop decreases with diameter even more
sharply than the laminar formula (2.72). Thus the quickest way to reduce required
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pumping pressure is to increase the pipe size, although, of course, the larger pipe is
more expensive. Doubling the pipe size decreases Ap by a factor of about 27 for a
given Q.

The maximum velocity in turbulent pipe flow is given by Eq. ( 2.89), evaluated at
r=20
1 Ru*®

== =~ — |n
u* K v

i

ITLax

+ B (2.99)

Combining this with Eq. (2.90), we obtain the formula relating mean velocity to max-
imum velocity

Lf

~(1+ 133VpH~! 2.100)

li:'aill'l'l."_'i,‘{

Some numerical values are

Re, I 4000 I 10* | 10° | 10° | 107 | 108

Vit | 0.790 | 0.811 | 0.849 | 0.875 | 0.893 | 0.907

The ratio varies with the Reynolds number and is much larger than the value of 0.5
predicted for all laminar pipe flow in Eq. (2.68). Thus a turbulent velocity profile, as
shown in Fig. 2.14 ., is very flat in the center and drops oft sharply to zero at the wall.

Effect of Rough Walls:

It was not known until experiments in 1800 by Coulomb [6] that surface roughness has
an effect on friction resistance. It turns out that the effect is negligible for laminar pipe
flow, and all the laminar formulas derived in this section are valid for rough walls also.
But turbulent flow is strongly affected by roughness. In Fig.2.13 the linear viscous sub-
layer only extends out to y© = yu*/y = 5. Thus, compared with the diameter, the sub-
layer thickness v, is only

Ve Sviu* 14.1
== Re. /172 (2.101)

i P*lra bolic
: curve
Hmax .
I
v
Fig. 2.14 Comparison of laminar

and turbulent pipe-flow velocity @
profiles for the same volume flow:

C .7
(@) laminar flow; (b) turbulent flow. _tlf\ (%

—— Hmax —I—’F-

L.

(b)
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Fig. 2.15 Effect of wall roughness

on turbulent pipe flow. (@) The log-

arithmic overlap-velocity profile Eq. (6.55‘:1')"%15(]' (6.54)
shifts down and to the right; (b) ex-

periments with sand-grain rough- N
ness by Nikuradse [7] show a sys- 0.01 | | |

tematic increase of the turbulent 10 104 10 106

friction factor with the roughness

. Re
ratio.

d

(b)
For example, at Re,; = 107, f = 0.0180, and v,/d = 0.001, a wall roughness of about
0.001d will break up the sublayer and profoundly change the wall law in Fig.2.13.

Measurements of #(v) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 2.15a, that a roughness height € will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to In €, where € =
eu*/v. The slope of the logarithm law remains the same, 1/, but the shift outward
causes the constant B to be less by an amount AB = (1/k) In €.

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 2.155. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio €/d. For any given €/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of €™ = eu*/v:

eu” : .
<< 51 hvdraulically smooth walls, no effect of roughness on friction
5
€l .
5= = 70: ftransitional rounghness, moderate Reynolds-number effect
[
eu” : -
= 70: fully rough flow, sublayer totally broken up and friction
15

independent of Reynolds number

For fully rough flow, € > 70, the log-law downshift AB in Fig.2.15 a is

AB=~-L et —35 2.102
1Y
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and the logarithm law modified for roughness becomes

1 | y .
um =—1n _r+ + B —AB=—In=—+ 85 (2.103)
K K €
The viscosity vanishes, and hence fully rough flow is independent of the Reynolds num-

ber. If we integrate Eq. (2.103) to obtain the average velocity in the pipe. we obtain

i
Yo oaam L 32
”:I: e
or fl% = —2.0 log ;fj fully rough flow (2.104)

There is no Reynolds-number effect; hence the head loss varies exactly as the square
of the velocity in this case. Some numerical values of friction factor may be listed:

€/d | 0.00001 | 0.0001 | 0.001 | 0.01 | 0.05

N I 0.00506 | 0.0120 | 0.0196 | 0.0379 | 0.0716

The friction factor increases by 9 times as the roughness increases by a factor of 5000.
In the transitional-roughness region, sand grains behave somewhat differently from
commercially rough pipes, so Fig. 2.15b has now been replaced by the Moody chart.

The Moody Chart:

In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth-
wall [Eq. (2.95)] and fully rough [Eq. (2.104] relations into a clever interpolation for-
mula

— = —2.0 |H:__f

e/cd J \
—— Tt 5 7 2.105)

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [8] into what is now called the Moody chart for pipe friction (Fig.2.16 ). The
Moody chart is probably the most famous and useful figure in fluid mechanics. It is
accurate to £ 15 percent for design calculations over the full range shown in Fig. 2.16.
It can be used for circular and noncircular (Sec. 2.3 ) pipe flows and for open-channel
flows (Chap. 10). The data can even be adapted as an approximation to boundary-layer
flows ( part4 ).
Equation (2.109 is cumbersome to evaluate for fif Re, is known, although it easily yields
to the EES Equation Solver. An alternate explicit formula given by Haaland [33] as
L ~ — 1.8 log 0.2 + (€ld ."I B

— |
] e RL‘ \ 3.7 )

(2.105a)

varies less than 2 percent from Eq. (2.105.

The shaded area in the Moody chart indicates the range where transition from lam-
inar to turbulent flow occurs. There are no reliable friction factors in this range, 2000 <
Re,; << 4000. Notice that the roughness curves are nearly horizontal in the fully rough
regime to the right of the dashed line.

From tests with commercial pipes. recommended values for average pipe roughness
are listed in Table 2.1 .
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Values of (V) for water at 60°F (velocity, fu's = dinmeter, in)

il a2 4 06 a1 2 & 6 Bl 1 40 60 B0 N0 400 GO0 OO 100D W00 4000 mﬁm
‘ | Walues of (V) for atmospheric air af 60°F [ | [ | |
L] E0,000
2 i & B0 0 | 40 |6IZI |lIII| | 200 | 400|600 800 1000 [ 2000 4000 | 6000 L0000 40000 &0000 00000
010 e
.09 - Laminar-Critical |
T flow Tt zoner T ransition
0.08 5 sl rone s 4 Complete trbulence, rough pipes
007 H SIINEENIERERSS 0.05
| e 0.04
0.06 : "
= 0.03
005 FHHE | = 002
SR T 0,015
0.04 P\% -0 -
T ﬁ;__% . = 001wl
| le T T 0008 =
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s R o 0002 3
:_._'.: o S '-:-_- _--_- é
‘B 002 O o B 0.001
m e Ry — 0.0008
S SRS NEEE 0.0006
R — 0.0004
00135 ’3'.:{{,‘ 1= —
(7 ﬂ{% y = _ 0.0002
T — - 0.0001
S
T 0.000.05
0.01
0.009 L
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107 20007 F 4 38 Frpf oot F 30 BT a0yt 48 B8 200f)t 4T Bro” ag0T)d 30 Fef
tr
Revnolds number Re = $ Ej = 0.000,001 % = 0.000.003
Fig. 2.16 The Moody chart for pipe
friction with smooth and rough
walls. This chart is identical to Eq.
2105 for turbulent flow. { From . I o l .
.. aleria L one ) certamty, %
Ref. &, by permission of the ASME.) o — ! — —
Steel Sheet metal. new 0.00016 005 * 6l
Stainless, new 0000007 0002 * 50
Commercial, new 0.00015 0046 + 30
Riveted 0.1 3o +70
Rusted 0.007 20 x50
Iron Cast, new 0.000835 0.26 + 50
Wronght, new 0.00015 0.046 +20
Galvanized, new 0.0003 015 +40
Asphalted cast 0.0004 012 + 50
Brass Dirawn, new (0.000007 0oz + A0
Plastic Drawn tubing 0.000003 0.0015 il
Glass — Smooth Smoath
Concrete Smoothed 0.00013 004 +al
Rough 0.007 20 * 50
Table 2.1 Recommended Rubber Smoothed 0.000033 001 + 60
Roughness Values for Commercial — Wood Stave 0.0016 0.5 + 40
Ducts
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Example 2.8:

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast-
iron pipe carrying water with a mean velocity of 6 ft/s.

Solution

One can estimate the Reynolds number of water and air from the Moody chart. Look across the
top of the chart to V (ft/s) X d (in) = 36, and then look directly down to the bottom abscissa to
find that Reg{(water) = 2.7 X< 10°. The roughness ratio for asphalted cast iron (e = 0.0004 ft) is

£ _ 0.0004 — 0.0008
d — 5

12
Find the line on the right side for e/d = 0.0008, and follow it to the left until it intersects the
vertical line for Re = 2.7 X 10°. Read. approximately, f = 0.02 [or compute f = 0.0197 from

Eq. (2.105a)]. Then the head loss is

LoV 200 (6 ft/s)”
hy= f—=— = (0.02) = 4.5 fi Ans.
"= g2 = 905 3325 "
The pressure drop for a horizontal pipe (z; = z,) is
Ap = pghy = (62.4 Ibf/ft’)(4.5 ft) = 280 Ibf/ft Ans.

Moody points out that this computation, even for clean new pipe. can be considered accurate
only to about = 10 percent.

Example 2.9:

Oi1l, with p = 900 l«:;_;,}f.-"rﬂ3 and » = 0.00001 m</s, flows at 0.2 m™/s through 500 m of 200-mm-
diameter cast-iron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe slopes
down at 107 in the flow direction.

Solution

First compute the velocity from the known flow rate

; o 0.2 m/s )
V= = = 6.4 m/
TR (0.1 m)? mes

Then the Reynolds number is

Vd (6.4 m/sy0.2 m)
Re, — — — 128.000
cd v 0.00001 m2/s

From Table 2.1 . € = 0.26 mum for cast-iron pipe. Then

€ 0.26 mm

— = ——=0. 3

d 200 mm 0.001

*This example was given by Moody in his 1944 paper [8].

Enter the Moody chart on the right at e/d = 0.0013 (yvou will have to interpolate). and move to
the left to intersect with Re = 128.000. Read f= 0.0225 [from Eq. (2.103 for these values we
could compute = 0.0227]. Then the head loss is
LV 500 m (6.4 m/s)”

hy = f= 2 = (0.0225
=1 g5 ¢ ) 02 m 2081 m/sD)

=117 m Ans. (a)

From Eq. ( 2.51) for the inclined pipe,

hy = Ap + 71 — T2 = Ap + L sin 10°
PE PE
or Ap = pglhy — (5300 m) sin 10°] = pg(117 m — 87 m)

= (900 kg/m>)(9.81 m/s?)(30 m) = 265.000 kg/(m - s7) = 265,000 Pa Ans. (b)
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Example 2.10:
Repeat Example 2.6 to see whether there is any possible turbulent-flow solution for a smooth-
walled pipe.

Solution

In Example 2.6 we estimated a head loss /i, = 1.66 ft, assuming laminar exit flow (a = 2.0). For
this condition the friction factor is

: 1 2¢
f= hf% ,.jé

. (0.004 f0)(2)(32.2 ft/s?)
— (1.66 ft) !
O 00332 fis)?

= ().0388

For laminar flow, Re,; = 64/f = 64/0.0388 =~ 1650, as we showed in Example 2.6 . However, from
the Moody chart (Fig. 2.16 ), we see that f = 0.0388 also corresponds to a furbulent smooth-wall
condition, at Re, = 4500. If the flow actually were turbulent, we should change our kinetic-
energy factor to a = 1.06 . whence the corrected /iy = 1.82 ft and = 0.0425. With
f known, we can estimate the Reynolds number from our formulas:

Rey =~ 3250 [Eq. (2.95)] or Rey =~ 3400 [Eq. (2.96b)]

So the flow might have been turbulent, in which case the viscosity of the fluid would have been

_ pVd _ 1803.32)0.004) _ 7.2 X 107° slug/(ft - s) Ans.

capillary-flow Reynolds number below about 1000 to avoid such duplicate solutions.

This is about 55 percent less than our laminar estimate in Example 2.6. The moral is to keep the

Three Types of Pipe Flow Problems:

The Moody chart (Fig. 2.16) can be used to solve almost any problem involving fric-
tion losses in long pipe flows. However, many such problems involve considerable it-
eration and repeated calculations using the chart because the standard Moody chart is
essentially a head-loss chart. One is supposed to know all other variables, compute

. er the c . ce cC e he IS is of t undar g
Re, enter the chart, find f, and hence compute /iy This is one of three fundamental
problems which are commonly encountered in pipe-flow calculations:

l. Given d, L, and V or ¢J, p, u, and g, compute the head loss /iy (head-loss prob-
lem).

2. Givend, L. hg p, p, and g, compute the velocity V or flow rate Q (flow-rate
problem).

3. Given Q. L. he. p, p. and g. compute the diameter d of the pipe (sizing problem).

Only problem 1 is well suited to the Moody chart. We have to iterate to compute velocity

or diameter because both d and V are contained in the ordinate and the abscissa of the chart.
There are two alternatives to iteration for problems of type 2 and 3: (a) preparation

of a suitable new Moody-type chart (see Prob. 2.62 and 2.73): or (/) the use of solver

software, especially the Engineering Equation Solver, known as EES [47], which gives

the answer directly if the proper data are entered.
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Even though velocity (or flow rate) appears in both the ordinate and the abscissa on
the Moody chart, iteration for turbulent flow is nevertheless quite fast, because f varies
so slowly with Re_,. Alternately, in the spirit of Example . we could change the scal-
ing variables to (p. ., d) and thus arrive at dimensionless head loss versus dimension-

less velocity. The result is*
gd’hy _ fReZ
Lv? 2

& = fen(Rey) where { = (2.1006)

Example did this and offered the simple correlation = 0.155 Re) 7>, which is valid
for turbulent flow with smooth walls and Re; = 1 ES5.
A formula valid for all turbulent pipe flows is found by simply rewriting the Cole-
brook interpolation, Eq. (2.105,, in the form of Eq. (2.106):
3
. gd_ hf
& 122 (2.109

ed  1.775
Re, = — (802 log (3‘7 + Tg)

Given ¢, we compute Re, (and hence velocity) directly. Let us illustrate these two ap-
proaches with the following example.

Example 2.11:

Oil, with p = 950 kg/m® and » = 2 E-5 m?/s, flows through a 30-cm-diameter pipe 100 m long with
a head loss of 8 m. The roughness ratio is €/d = 0.0002. Find the average velocity and flow rate.

Direct Solution

First calculate the dimensionless head-loss parameter:

; gd’hy _ (9.81 m/s?)(0.3 m)*8.0 m) _

5.30 E7
L (100 m)(2 E-5 m%/s)?
#The parameter ¢ was suggested by H. Rouse in 1942.
Now enter Eq.2.107 to find the Reynolds number:
"0.0002 1.775 )
= —[8(53 12 ( -
Re, = —[8(5.3 D' log (S5275 + 725 E?) 72.600
The velocity and flow rate follow from the Reynolds number:
2
v— 2 Re, _ (2 E-5 m~/s)(72.600) ~ 4.84 m/s
d 0.3 m
0 = %dz = (4.842)—}(0.3 m)? = 0.342 m/s Ans.
. _. s |-

No iteration is required, but this idea falters if additional losses are present.

[terative Solution

By definition, the friction factor is known except for V:

d 2g 0.3 m \[ 2(9.81 m/s?) , , :
= ."{,«-I 2 (8 m)(: 100 m )[ V2 ] or fVi=0471 (ST units)

To get started, we only need to guess f, compute V = VvV 0.471/f, then get Re, compute a better
f tfrom the Moody chart, and repeat. The process converges fairly rapidly. A good first guess is
the “fully rough” value for e/d = 0.0002, or f = 0.014 from Fig. 2.16. The iteration would be as
follows:
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Guess f== 0.014, then V=V 0.471/0.014 = 5.80 m/s and Re,; = Vd/v = 87.000. At Re,; =
87.000 and €/d = 0.0002, compute fhew = 0.0195 [Eq. 2.105].

New f=0.0195, V= V0.481/0.0195 = 4.91 m/s and Re, = Vd/vr = 73.700. At Re,; =
73,700 and €/d = 0.0002, compute fhew = 0.0201 [Eq. 2.105].

Better f = 0.0201, V = V0.471/0.0201 = 4.84 m/s and Re, = 72.600. At Re,;, = 72,600 and
e/d = 0.0002, compute fhrew = 0.0201 [Eq. 2.105 |.

We have converged to three significant figures. Thus our iterative solution is

V = 4.84 m/s
Q= ‘,f(a[)dz - (4,84)(%)(0,3)2 ~ 0.342 m’/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by engi-
neers. Obviously this repetitive procedure is ideal for a personal computer.

Example 2.12:
Work Moody’s problem (Example 2.8 ) backward, assuming that the head loss of 4.5 ft is known
and the velocity (6.0 ft/s) is unknown.

Direct Solution

Find the parameter {, and compute the Reynolds number from Eq. 2.107 :

_gd’hy (322 fus?)(0.5 f)}(4.5 fo)

= — 7.48 ES
4 L’ (200 f)(1.1 E-5 ft%/s)?
' 0.0008 1.775
Eq.2.107 : Re, = —[8(7.48 E&)|'2 | ( + ~ 274,800
91 €a = ~I8 7 log 37 7.48 ES
Then V=y Rj"’ - A1 E'ﬁéfﬂ'goo) ~ 6.05 ft/s Ans.

We did not get 6.0 ft/s exactly because the 4.5-ft head loss was rounded off in Example2.8 .

[terative Solution

As in Eq.2.75, the friction factor is related to velocity:

d 2g (0.5 ft\[2(322 fsH) ] _ 0.7245
= L8 = (45 fr ~
=l =t J(__ 200 ft )[ V2 ] V2
or V = \/0.7245/f

Knowing &/d = 0.0008, we can guess j and iterate until the velocity converges. Begin with the
fully rough estimate f= 0.019 from Fig.2.16. The resulting iterates are

f1 =0.019: Vi = V0.7245/f; = 6.18 ft/s Rey = Vd _ 280,700
J>=0.0198: Vo = 6.05 fi/s Rey, = 274,900
J5 = 0.01982: Vi = 6.046 fi/s Ans.

The calculation converges rather quickly to the same result as that obtained through direct com-
putation.
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Type 3- Problem: Find the Pipe Diameter:
The Moody chart is especially awkward for finding the pipe size, since d occurs in all
three parameters f. Re, and e/d. Further, it depends upon whether we know the ve-
locity or the flow rate. We cannot know both, or else we could immediately compute
d = Na4Q/( V).

et us assume that we know the flow rate (. Note that this requires us to redefine
the Reynolds number in terms of O:

Vi 4
Re, = ~4 - & 2.108
v mdv
Then. if we choose (. p. w) as scaling parameters (to eliminate ), we obtain the func-

tional relationship

40 .r'(}h y
40 87s ﬂ) (2.109)

Re, = = fcn{ =

dv Lv? O

and can thus solve d when the right-hand side is known. Unfortunately, the writer knows
of no formula for this relation, nor is he able to rearrange Eq. (2.105) into the explicit
form of Eq. (2.109). One could recalculate and plor the relation, and indeed an inge-
nious “‘pipe-sizing’ plot is given in Ref. 13. Here it seems reasonable to forgo a plot
or curve fitted formula and to simply set up the problem as an iteration in terms of the
Moody-chart variables. In this case we also have to set up the friction factor in terms

d 2¢g thffﬁ

f=hTyz=7 Lo (2.110)

(

The following two examples illustrate the iteration.

Example 2.13:
Work Example 2.11backward, assuming that Q = 0.342 m*/s and € = 0.06 mm are known bul
that @ (30 cm) is unknown. Recall L = 100 m, p = 950 kg/m”, v = 2 E-5 m%/s. and hy= 8 m.

[terative Solution

First write the diameter in terms of the friction factor:

7 (9.81 m/s?)8 m)d” . »
B | = 8.28d" © d=~0.655" |
7 S (100 my(0.342 m3;5)2 Ol f %3

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:
4(0.342 m¥/s)y 21,800

Rea = = 2
cd (2 E-5 m/s)d d (2)
€_6ESm 5

d d <

Guess f, compute d from (1), then compute Re, from (2) and €/d from (3). and compute a bet-
ter f from the Moody chart or Eq. 2.105 . Repeat until (fairly rapid) convergence. Having no ini-
tial estimate for f, the writer guesses = 0.03 (about in the middle of the turbulent portion of
the Moody chart). The following calculations result:

f=0.03 d =~ 0.655(0.03)'" = 0.325 m
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_ 21.800

€
— ~ 1.85 E-¢
Re, 0.325 67,000 7 1.85 E-4
Eq. (2.95): Joew = 0.0203 then dpew = 0.301 m

Renew = 72,500 % ~ 2.0 E-4
[

Eq. (2.95): Jetter = 0.0201 and d= 0300 m Ans.

The procedure has converged to the correct diameter of 30 cm given in Example2.11.
Example 2.14:

Work Moody’s problem, Example 2.8, backward to find the unknown (6 in) diameter if the flow
rate Q@ = 1.18 ft*/s is known. Recall L = 200 ft, € = 0.0004 ft, and v = 1.1 E-5 ft%/s.

Solution

Write f. Re, and €/d in terms of the diameter:

72 ghed® 2 (322 fs2N(4.5 fod® s 15
_ _ = 0.642d I = 1.093 !
=78 LO7 T8 (200 fo(1.18 fE)s)? or / D

4(1.18 ft'/s) 136.600
Re., — — 2
4T 1 ES fihs) d d )
0.0004 ft
e _Jua (3)
d d

with everything in BG units, of course. Guess f: compute d from (1), Re, from (2), and €/d from

(3): and then compute a better f from the Moody chart. Repeat until convergence. The writer tra-
ditionally guesses an initial f= 0.03:

f=0.03 d = 1.093(0.03)"° = 0.542 ft

136,600 €
= -0 252, £ ~ 7138 E-
Reg 0,542 252,000 J 7.38 E-4

Jnew = 0.0196 dpew = 0,498 ft Re; = 274,000 Ef = §5.03 E-4

[

Joetter = 0.0198 d = 0.499 ft Ans.

Convergence is rapid, and the predicted diameter is correct, about 6 in. The slight discrepancy
(0.499 rather than 0.500 ft) arises because /iy was rounded to 4.5 ft.

Table 2.2 Nominal and Actual '
Sizes of Schedule 40 Wrought-
Steel Pipe™

~Nominal size, in Actual ID, in

In discussing pipe-sizing problems, we should remark that commercial pipes are
made only in certain sizes. Table 2.2 lists standard water-pipe sizes in the United States.
If the sizing calculation gives an intermediate diameter, the next largest pipe size should
be selected.

0.269
0.364
0.493
0.622
0.824
1.049
1.610
2.067
2.469
3.068

Bl 12 colus e

=

wl\l-ll\-)'—'—

F#Nominal size within 1 percent for 4 in or
larger.
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Flow in Noncircular Ducts (the hydraulic diameter):

It the duct is noncircular, the analysis of fully developed flow follows that of the cir-
cular pipe but is more complicated algebraically. For laminar flow, one can solve the
exact equations of continuity and momentum. For turbulent flow, the logarithm-law ve-
locity profile can be used, or (better and simpler) the hydraulic diameter is an excel-
lent approximation.

For a noncircular duct, the control-volume concept of Fig.2.10 is still valid, but the
cross-sectional area A does not equal 7R* and the cross-sectional perimeter wetted by
the shear stress 22 does not equal 27wR. The momentum equation thus becomes

Ap A + pgA AL sin p — 7, P AL =0
>This section may be omitted without loss of continuity.

or hfzﬁ—l— Az == A—L_ (2.111)
Pg pg A/P

This is identical to Eq. ( 2.52) except that (1) the shear stress is an average value inte-
grated around the perimeter and (2) the length scale A/2” takes the place of the pipe
radius R. For this reason a noncircular duct is said to have a hivdraulic radius Ry. de-
fined by

A cross-sectional area
R,="-= - (2.112)
9P wetted perimeter
This concept receives constant use in open-channel flow . where the chan-

nel cross section is almost never circular. If, by comparison to Eq. (2.54) for pipe flow,
we define the friction factor in terms of average shear

87,

W (2.113)

Jfnep =

where NCD stands for noncircular duct and V = (/4 as usual. Eq. (2.111) becomes

;2
.!?f = }L‘ L v
T 4R, 2g
This is equivalent to Eq. (2.55) for pipe flow except that d is replaced by 4R;,. There-
fore we customarily define the hvdraulic diameter as

(2.114)

. 4.4 4 X area i
D, = — = - = 4R, (2.115)
P wetted perimeter

We should stress that the wetted perimeter includes all surfaces acted upon by the shear
stress. For example, in a circular annulus, both the outer and the inner perimeter should
be added. The fact that I, equals 4R,, is just one of those things: Chalk it up to an en-
gineer’s sense of humor. Note that for the degenerate case of a circular pipe., D, =
47R?*/(27R) = 2R, as expected.

We would therefore expect by dimensional analysis that this friction factor f, based
upon hydraulic diameter as in Eq. (2.113), would correlate with the Reynolds number
and roughness ratio based upon the hydraulic diameter

R V 5

J=F—" By

\,

and this is the way the data are correlated. But we should not necessarily expect the

Moody chart (Fig. 2.16 ) to hold exactly in terms of this new length scale. And it does
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64

R +40% laminar flow
f=1"D ! (2.117)
thoody( Rep, . —D—) +15% turbulent flow
\, by

Now let us look at some particular cases.

Flow between Parallel Plates (laminar or turbulent):

As shown in Fig. 2.17 . flow between parallel plates a distance i apart is the limiting
case of flow through a very wide rectangular channel. For fully developed flow, u =
u(y) only, which satisfies continuity identically. The momentum equation in cartesian
coordinates reduces to

) ‘) )
0=—L 4 pg. + 5T = u (2.118)
dx dv dy
subject to no-slip conditions: « = O at v = *=A. The laminar-flow solution was given
as an example . Here we also allow for the possibility of a sloping chan-
nel, with a pressure gradient due to gravity. The solution is
1 )
u=— [—‘—( p + pg:)](h2 — ) (2.119)
2 dx
If the channel has width b, the volume flow is
~—+ 3
bh /
Q= ’ u(Wb dy = = [—(—(p + pgz)]
J—h 3 dx
h> d 2
or V=L S| TP T P8I | = T Hmax (2.120)
bh 3 dx 3

Note the difference between a parabola [Eq. 2.120 ] and a paraboloid [Eq. 2.68 ]: the
average is two-thirds of the maximum velocity in plane flow and one-half in axisym-
metric flow.

The wall shear stress in developed channel flow is a constant:

Tw = du = h —i(p + pgz (2.121)
dy — dx

This may be nondimensionalized as a friction factor:

8T 24, _ 24

I= pV? - pVh Re,,

(2.122)

These are exact analytic laminar-flow results, so there is no reason to resort to the
hydraulic-diameter concept. However, if we did use D, a discrepancy would arise. The
hydraulic diameter of a wide channel is

i

; b — oo
v=+h
| % /
.‘,
2h I —=\ i ( ‘()
e - "
Y
T W max
Fig.2.17 Fully developed flow be- &
v=—h

tween parallel plates.
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D, = 44 = lim _4@2bh) = 4h (2.123)
P b—= 2b + 4h
or twice the distance between the plates. Substituting into Eq. (2.122), we obtain the in-
teresting result
Parallel plates: Jlam = 0p _ 96 (2.124)
pV(dh) Rep,
Thus, if we could not work out the laminar theory and chose to use the approximation
f= 64/Rep,. we would be 33 percent low. The hydraulic-diameter approximation is
relatively crude in laminar flow, as Eq. (2.117) states.
Just as in circular-pipe flow, the laminar solution above becomes unstable at about
Rep, = 2000: transition occurs and turbulent flow results.
For turbulent flow between parallel plates, we can again use the logarithm law,
eqs.2.84-88. as an approximation across the entire channel, using not y but a wall coor-
dinate ¥, as shown in Fig. 2.17:

E
u(Y) _ Lln Yu

u* K 2

+ B 0<<Y <h (2.125)

This distribution looks very much like the flat turbulent profile for pipe flow in Fig.
2.14 b, and the mean velocity is

-l s \
V= s l udY = u’“(LlnhL+B ——l—) (2.126)
it Jo | K v K
Recalling that V/u* = (8{}‘\)"{2. we see that Eq. (2.126) is equivalent to a parallel-plate
friction law. Rearranging and cleaning up the constant terms., we obtain
?}E ~ 2.0 log (Rep, /) — 1.19 (2.127)

where we have introduced the hydraulic diameter D, = 4h. This is remarkably close
to the pipe-friction law, Eq. ( 2.95 ). Therefore we conclude that the use of the hydraulic
diameter in this turbulent case is quite successful. That turns out to be true for other
noncircular turbulent flows also.
Equation (2.127) can be brought into exact agreement with the pipe law by rewrit-
ing it in the form
1
Fie2
Thus the turbulent friction is predicted most accurately when we use an effective di-
ameter D g equal to 0.64 times the hydraulic diameter. The effect on f itself is much
less, about 10 percent at most. We can compare with Eq. (2.124) for laminar flow, which
predicted

= 2.0 log (0.64 Rep, f'%) — 0.8 (2.128)

"
Parallel plates: D.g = %D;, = =D, (2.129)
8] »

This close resemblance (0.64D;, versus 0.667D;) occurs so often in noncircular duct
flow that we take it to be a general rule for computing turbulent friction in ducts:
4A
D s = D) = —— reasonable accuracy

D_g(laminar theory) extreme accuracy (2.130)

Jones [10] shows that the effective-laminar-diameter idea collapses all data for rectan-
gular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe flow. We
recommend this idea for all noncircular ducts.
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Example 2.15:

Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 2.4
in apart. Find the head loss and pressure drop for each 100 ft of length for p = 1.9 slugs/ft” and
(a) v = 0.00002 ft*/s and (b) » = 0.002 ft*/s. Assume smooth walls.

Solution : part a)

The viscosity w = pr = 3.8 X 1077 slug/(ft - s). The spacing is 24 = 2.4 in = 0.2 ft, and D;, =
45 = 0.4 tt. The Reynolds number is
VD, (6.0 t/s)(0.4 ft)

Re,, — — — 120.000
€D v 0.00002 ft2/s

The flow is therefore turbulent. For reasonable accuracy. simply look on the Moody chart (Fig.
2.16) for smooth walls

. L V2 100 (6.0)?
= 0.0173 hr=f— = 0.0173 = 242 ft Ans.
f =1 Dby 22 04 2(32.0) ns. (a)
Since there is no change in elevation,
Ap = pghy = 1.9(32.2)(2.42) = 148 |bt/ft> Ans. (a)

This is the head loss and pressure drop per 100 ft of channel. For more accuracy, take Deg =
%D, from laminar theory: then

Re.yr = 3(120.000) = 80,000

and from the Moody chart read f= 0.0189 for smooth walls. Thus a better estimate is

100 (6.0)2

li; = 0.0189 = 2.64 ft

s 0.4 2(32.2)
and Ap = 1.9(32.2)(2.64) = 161 Ibf/fit” Better ans. (a)
The more accurate formula predicts friction about 9 percent higher.

part b)

Compute pu = pw = 0.0038 slug/(ft - s). The Reynolds number is 6.0(0.4)/0.002 = 1200: there-
fore the flow is laminar, since Re is less than 2300,
You could use the laminar-flow friction factor, Eq. {2.124)

. _ 96 _ 96 _
Jiam = Rep, 1200 0-08
- 2
from which hy=0.08 20 _OO° _ 455
: 0.4 2(32.2)
and Ap = 1.9(32.2)(11.2) = 684 Ibf/ft” Ans. (b)
Alternately you can finesse the Reynolds number and go directly to the appropriate laminar-flow
formula, Eq. (2.120 o _‘,r,{z_éﬂ
3u L
'; ’; . i
or  Ap =200 WI00038 slugltht - HIA00 LY _ oy yoeyiti - s2) = 684 Ibfie?
(0.1 ft)
Ap 684
and hy = = =112 ft
o T e 19322

This is one of those—perhaps unexpected—problems where the laminar friction is greater than
the turbulent friction.
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Flow through a Concentric Annuls:

Consider steady axial laminar flow in the annular space between two concentric cylin-
ders, as in Fig. 2.18 . There is no slip at the inner (v = /) and outer radius (» = a). For
u = u(r) only. the governing relation is Eq. ( 2.59)

i{-f‘,u“d—u) = Kr K = i{p + pegz) (2.131)
drh dr adx
Integrate this twice
w=1,2K Cylnr+ Cs
4
The constants are found from the two no-slip conditions
1 K
ur=ay=0=—a"—+ CyIna + C>
4
ur=m=0=2102X L c.mp+ s
4
The final solution for the velocity profile is
1 d > > a’ — b’ a
= — | ———(p + pez = —r 4+ —— In — 2.132
H 4@[ dx ’ Pg }][u ! In (b/a) . r ( )
r=a
—-- H(r) T—
Fig. 2.18 Fully developed flow r=b

through a concentric annulus. % ____________________________ L___,x

[—-— H(r)

The volume flow is given by

A e d a’ — b%)?

Q= ] u2ar dr = — | —— (p + pg2) || a* — b* — la” — o) (2.133)
‘b S dx ) In (a/b)

The velocity profile u(r) resembles a parabola wrapped around in a circle to form a

split doughnut, as in Fig. 2.18 . The maximum velocity occurs at the radius

2 32 2
r= _a” — b7 U = Uppax (2.134
2 In (a/b)

This maximum is closer to the inner radius but approaches the midpoint between cylin-
ders as the clearance a — » becomes small. Some numerical values are as follows:

b

a
v — b
a — b

0.01 0.1 0.8

0.2 | 0.5

0.9 | 0.99

| 0.323 | 0.404 | 0.433 | 0.471 | 0.491 | 0.496 I 0.499

Also, as the clearance becomes small, the profile approaches a parabolic distribution,
as if the flow were between two parallel plates.

It is confusing to base the friction factor on the wall shear because there are two
shear stresses, the inner stress being greater than the outer. It is better to define f with
respect to the head loss, as in Eq. (2.114,
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L)h h’.g
I Vv

where V = &4 (2.135)

’n-(az — 5)2)

Jf = hy

The hydraulic diameter for an annulus is

'—’I-'.a-rl[(.f2 — bz)
2ar(a + b)

Dy, = = 2{a — b) 2.136)

It is twice the clearance, rather like the parallel-plate result of twice the distance be-
tween plates [Eq. (2.123)].

Substituting /s Dy, and V into Eq. (2.135), we find that the friction factor for lami-
nar flow in a concentric annulus is of the form

o% ¥ £ = (a — E))z(az — 3)2)
Rep, at — bt — (az — f>2)2;’1n (a/b)

= (2.137

The dimensionless term ¢ is a sort of correction factor for the hydraulic diameter. We
could rewrite Eq. 2.137) as

Concentric annulus: J= o4 Re.gr = LReDk (2.138)
Recgr 4
Some numerical values of f Rep, and D /Dy, = 1/ are given in Table 2.3 .
Table 2.3 Laminar Friction Factors
for a Concentric Annulus
For turbulent flow through a concentric annulus, the analysis might proceed by patch- v/ SRep,  DerlDy =1/g
ing together two logarithmic-law profiles, one going out from the inner wall to meet 00 6.0 1.000
T s ) 0.00001 70.09 0913
the other coming in from the outer wall. We omit such a scheme here and proceed di- - 0.0001 7178 0.892
o ) ) 0.001 74.68 0.857
tectly to the friction factor. According to the general rule proposed in Eq. .130), tur-  o.01 80.11 0.799
TR . . . . 0.05 86.27 0.742
bulent friction is predicted with excellent accuracy by replacing d in the Moody chatt o4 89.37 0.716
. . . - . 0.2 92.35 0.693
by Dege = 2(a = b)/¢, with values listed in Table 2.3.° This idea includes roughness also o3 0471 0.676
. . . : 0.6 95.59 0.670
(replace €/d n the chart by €/D.g). For a quick design number with about 10 percent , os o3 i
1.0 96.0 0.667

accuracy, one can simply use the hydraulic diameter D, = 2(a = b).

Example 2.16:

What should the reservoir level s be to maintain a flow of 0.01 m“/s through the commercial
steel annulus 30 m long shown in Fig. E2.167 Neglect entrance effects and take p = 1000 kg/m’
and » = 1.02 X 107° m?/s for water.

E2 16 Water

Solution

Compute the average velocity and hywdraulic diaameter

> O.01 mSris
v L — 1.99 Ve
A A (O.05 mi1Z — (0.03 -] s
Iy — 2lex — FHy = 2005 — O.OF3) i = OO0

Aapply the steady-—fflow energy ecquation between sections 1 and 2:

1
>

21 %V’]’— + oz, — {J"—’é -+

VE q:zj —+ el
o ’
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But py = p> = ps. V1 = 0, and V> = V in the pipe. Therefore solve for

'!I _ lL 1{!2 _ - o . ‘v_l'z
) D, 2¢g ' 2g
But z; — z»> = fi. the desired reservoir height. Thus, finally,
V2 . L
h = 1 +f— 1

Since V. L. and D, are known, our only remaining problem is to compute the annulus friction
factor f. For a quick approximation, take D.g = D, = 0.04 m. Then
VD, 1.99(0.04)

Re;, = = — 78,000
D v 1.02 < 10~ °

€ _ 0.046 mm

= 0.00115
Dy, 40 mm

SJones and Leung [44] show that data for annular flow also satisfy the effective-laminar-diameter idea.
where € = 0.046 mm has been read from Table 2.1 for commercial steel surfaces. From the
Moody chart, read f= 0.0232. Then, from Eq. (1) above,

30 m
0.04 m

2
h o~ (1.99 m/s)

~ 1+ 0.0232
2(9.81 m/s?) (

) =371l m Crude ans.

For better accuracy, take D,y = Dy,/{ = 0.670D, = 2.68 cm. where the correction factor 0.670

has been read from Table 6.3 for b/a = £+ = 0.6. Then the corrected Reynolds number and rough-
ness ratio are

’
Werr _ 55300 —£

Re.; = = 0.00172

eff

From the Moody chart, read f= 0.0257. Then the improved computation for reservoir height is

_ (1.99 m/s)?
2(9.81 m/s?)

30 m
0.04 m

h ( l + 0.0257

) = 4.09 m Better ans.

The uncorrected hydraulic-diameter estimate is about 9 percent low. Note that we do nof replace
Dy, by D g in the ratio L/Dy, in Eq. (1) since this is implicit in the definition of friction factor.

Flow in Other Noncircular Cross-Sections:

In principle. any duct cross section can be solved analytically for the laminar-flow wve-
locity distribution, volume flow, and friction factor. This is because any cross section
can be mapped onto a circle by the methods of complex variables, and other powerful
analytical techniques are also available. Many examples are given by White [3, pp.
119—122]. Berker [11], and Olson and Wright [12, pp. 315—-317]. Reference 34 is de-
voted entirely to laminar duct flow.

In general, however, most unusual duct sections have strictly academic and not com-
mercial value. We list here only the rectangular and isosceles-triangular sections, in
Table 6.4, leaving other cross sections for you to find in the references.

For turbulent flow in a duct of unusual cross section, one should replace d by Dy,
on the Moody chart if no laminar theory is available. If laminar results are known,
such as Table 2.4 | replace d by Dy = [64/(f Re)]D,;, for the particular geometry of
the duct.

For laminar flow in rectangles and triangles, the wall friction wvaries greatly. be-
ing largest near the midpoints of the sides and zero in the corners. In turbulent flow
through the same sections, the shear is nearly constant along the sides. dropping off
sharply to zero in the corners. This is because of the phenomenon of turbulent sec-
orndary flow, in which there are nonzero mean velocities v and w in the plane of the
cross section. Some measurements of axial velocity and secondary-flow patterns are

Dr. Mohsen Soliman -48-



shown in Fig.7 19 , as sketched by Nikuradse in his 1926 dissertation. The secondary- Table 2.4 Laminar Friction

“ wop . , Constants fRe for Rectangular and
tlow “cells™ drive the mean flow toward the corners, so that the axial-velocity con- Triangular Ducts
fours are similar to the cross section and the wall shear is nearly constant. This Ig *ecctanzutar Isosceles triangle

why the hydraulic-diameter concept is so successful for turbulent flow. Laminar flow |2

in a straight noncircular duct has no secondary flow. An accurate theoretical predic-

bla JRep, g, deg JRep,

tion of turbulent secondary flow has yet to be achieved, although numerical models o.0 96.00 0 48.0
. . _ 0.05 80.01 10 51.6
are improving [36]. 0.1 84.68 20 52.9
0.125 82.34 30 53.3

0.167 78.81 40 52.9

0.25 72.93 50 52.0

0.4 65.47 60 51.1

0.5 62.19 70 49.5

0.75 57.89 80 48.3

1.0 5691 90 48.0

Fig. 2.19 Illustration of secondary
turbulent flow in noncircular ducts:
(a) axial mean-velocity contours:
(b) secondary-flow cellular mo-
tions. (After J. Nikuradse, disserta-
tion, Gottingen, 1926.)

Midplane

Example 2.17:
Air, with p = 0.00237 slug/ft® and » = 0.000157 ft°/s, is forced through a horizontal square
9-by 9-in duct 100 ft long at 25 ft'/s. Find the pressure drop if € = 0.0003 ft.

Solution

Compute the mean velocity and hydraulic diameter

3
v 2B g tus
(0.75 ft)
4A _ 481 in’)
P 36 in

D, = =0in= 075 ft

From Table 2.4 | for b/fa = 1.0, the effective diameter is

64
D= —22 D — 0.843 ft
™ 56091 "
VD..  44.4(0.843)
1 Re.. — —eff _ — 239.000
whenee Cefl = 7 0.000157
e 0.0003 _
— — 0.000356
Dow  0.843

From the Moody chart, read f = 0.0177. Then the pressure drop is
2

Ap = pghy = pg (fDih ;g) = 0,00237(32.2;[0.017?

100  44.47
0.75 2(32.2)

or Ap = 5.5 Ibf/ft” Ans.

Pressure drop in air ducts is usually small because of the low density.
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Questions for the Oral Exam
Viscous Flow Parts (1 & 2)

1- In our study of Fluid Mechanics, we can use one of the following methods:

a- Differential analysis method
b- Integral analysis method
c- Dimensional analysis method with some experimental work

Explain very briefly those methods showing the main differences between them regarding the reason for,
and the output result of each method. Give an example for each method. Do we neglect viscous effects in
any of the above methods? Explain your answer.

2- What is the meaning of Reynolds Number (both physically and mathematically)?. Discuss how it
1s a measure to show the importance of viscous effects in any real flow. Give some examples for
pipe flow and for boundary layer flow. What is the difference between Ideal fluids or Newtonian or
Non-Newtonian fluids?

3- What is the viscosity of a fluid? Why are viscous effects can be neglected in some flows and
why they are very important in other flows? What is the relationship between viscosity and
Reynolds Number?. What is the difference between Ideal fluids or Newtonian fluids or Non-
Newtonian fluids?. Give some examples in both internal flows and external flows.

4- In both real or ideal flow, define the physical meaning and the equation of (a) stream lines, (b)
the no-slip condition. Give some examples in both internal flows and external flows. What is the
difference between Ideal fluids or Newtonian fluids or Non-Newtonian fluids?.

5- Explain what do we mean by saying that Eulerian Velocity vector field is given as:

V =1(t,x,y,z) or ¥V = g(t,1,0,2)? What do we mean by the total or substantial derivative? How do we
get the acceleration, a , of the velocity field V = {(t,x,y,z)? What is the deference between local
acceleration and convective acceleration. In a steady flow, can the acceleration of the flow be a non-
zero value? Explain your answer with an example.

6- Explain what do we mean by saying that Eulerian Pressure scalar field is given as:

P =1(t,x,y,z) or P = g(t,r,0,z)? What do we mean by the total or substantial derivative d/dt? How do
we get dP/dt of the field P = f(t,x,y,z)? What is the deference between local pressure derivative and
convective pressure derivative. In a steady flow, can the total or substantial pressure derivative of
the flow be a non-zero value? Explain your answer with an example.

7- What do we mean (both physically and mathematically) by a fully-developed flow? Give an
example describing the fully-developed velocity field in a circular pipe. How do we get the equation
for this velocity field and also for the average velocity and for the shear stress distribution in this
field.

8- Prove that the time-derivative operator (called total or substantial derivative) following a fluid
particle is: d/dt= 0/ ot+ (V. ¥ ), where V is the gradient operator.

9- What do you know about the conservation equations in Fluid Mechanics? Using the differential
analysis method, stat and discuss two of the main conservation equations of fluid mechanics. Show
all the non-linear terms in those equations. What is the divergence of the velocity vector field?. Can
we write the momentum equations for a Non-Newtonian fluid? How.
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10- What do we mean (both physically and mathematically) by a fully-developed flow? Give an
example describing the fully-developed velocity field between two parallel fixed plates separated by
a small distance, h, with zero pressure drop in the direction of the flow. How do we get the equation
for this velocity field and also for the average velocity and for the shear stress distribution in this
field.

11- What do we mean (both physically and mathematically) by a fully-developed flow? Give an

example describing the fully-developed velocity field between two parallel plates separated by a
small distance, h, with the upper plate moving with a velocity U, in the +ve x-direction and with
zero pressure drop in the direction of the flow. How do we get the equation for this velocity field
and also for the average velocity and for the shear stress distribution in this field.

12- What do we mean (both physically and mathematically) by a fully-developed flow? Give an

example describing the fully-developed velocity field between two parallel plates separated by a
small distance, h, with the upper plate moving with a velocity U, in the -ve x-direction and with
zero pressure drop in the direction of the flow. How do we get the equation for this velocity field
and also for the average velocity and for the shear stress distribution in this field.

13- Using the cartesian coordinates, write down and discuss the meaning of each term and show all
the differences you know between the Navier-Stoke’s equations and the Euler’s equations. Can we
use Euler’s equations to solve the flow in long pipes? Why? What is the relation between Euler’s
equations and Bernolli’s equation?

14-The axial velocity profile, u, in incompressible laminar and turbulent flow in a circular pipe may
be well approximated by : a) u = Uy, (1- r*/R? and b) u = Upyay (1- /R)Y” where R is the pipe
radius. Find the volume flow rate, the mean velocity, shear stress at the wall and the friction force
on the pipe wall if the pipe length is L.

15- A tank of volume V contains a liquid of an initial density p; and a second liquid of a density
denoted by p;, enters the tank steadily with a mass flow rate min and mixes thoroughly with the
fluid in the tank. The liquid level in the tank is kept constant by allowing m,,, flow out of the side of
the tank. Drive an expression for the time rate of change of the density p(t) of the liquid in the tank,
and the time required for the density in the tank to reach the value of py.

16- The diameter of a pipe bend is 300 mm at inlet and 150 mm at outlet, the flow is turned 120° in
a vertical plane. The axis at inlet is horizontal and the center of the outlet section is 1.4m below the
center of inlet section. The total volume of fluid contained in the bend is 0.085m’. Neglecting
friction, find the magnitude and direction of the net force exerted on the bend by water flowing
through it at 0.23 m*/sec if the inlet pressure is 140 kPa.

17- The flow rate is 0.25 m’/s into a convergent nozzle of 0.6 m height at entrance and 0.3m height
at exit. Find the velocity, acceleration and pressure fields through the nozzle. (assume the nozzle
length = 1.5 m)

18- The flow rate is 0.25 m’/s into a divergent nozzle of 0.3 m height at entrance and 0.6m height at
exit. Find the velocity, acceleration and pressure fields through the nozzle. (assume the nozzle
length = 1.5 m)

19- Which of the following motions are kinematically possible for incompressible flow (k and Q
are constants): ) u=kx,v=ky,w=-2k z 1) V,=-Q/R2Jr,Vy=k/2]I r m) V,=k
cos 0 , Vg=-ksin 0
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20- For a 2-D flow field in the xy-plane, the y component of the velocity is given by:

v = y2 — 2x + 2y. Determine a possible x-component for a steady incompressible flow. Is it also
valid for unsteady flow? How many possible x-components are there? Why?.

21- For a 2-D flow field in the xy-plane, the x component of the velocity is given by:

u = y2 — 2x + 2y. Determine a possible y-component for a steady incompressible flow. Is it also
valid for unsteady flow? How many possible x-components are there? Why?.

22- Prove that the equation of continuity for 2-D incompressible flow in polar coordinates is in the
form: 0V,/or + V./r + 1/r (0V¢/00) =0

23- Starting from the Navier-Stokes equations, drive the well known Bernoulli’s equation. State all
the assumptions made.

24- Explain the physical meaning and the mathematical equations for both the divergence operator and the
curl operator as applied on a vector field. Take the velocity field V as an example. (hint: prove that the
divergence of V = the rate of volume expansion of fluid element per unit initial volume) . Prove also that for
an incompressible velocity field, the divergence of V = 0. What is the relationship between the curle of V

and the rotation in the velocity field.

25- Prove that the axial velocity profile in a laminar flow in a tube of radius R is:

u(r) = (- R2/4u) (dp/dx)[1 - (r/R)2 ],where x is along the centerline of the tube.

How can a simple and an accurate viscosity meter be made using equations of laminar flow in a pipe. The
viscosity of fluid passing through a length of a thin tube can be calculated if the volumetric flow rate and
pressure drop are measured and the tube geometry is known?.

A test on such viscosity meter gave the following data: Q = 880 mm?*/sec. , tube diameter, d = 0.5mm , tube
length, L = 1.0 m, the pressure drop, Ap = 1 Mpa. If the specific gravity =1.0, Find the dynamic viscosity, p
of the fluid in the tube (is the flow realy laminar or not ? check on that assumption).
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Word Problems on Part (2):

| In fully developed straight-duct flow, the velocity profiles
do not change (why?), but the pressure drops along the pipe
axis. Thus there is pressure work done on the fluid. I, say,
the pipe is insulated from heat loss, where does this energy
go? Make a thermodynamic analysis of the pipe flow.

2 From the Moody chart (Fig. 2.16). rough surfaces, such as
sand grains or ragged machining, do not affect laminar flow.
Can you explain why? They do affect turbulent flow. Can
you develop, or suggest, an analytical-physical model of tur-
bulent flow near a rough surface which might be used to
predict the known increase in pressure drop?

3 Differentiation of the laminar pipe-flow solution, Eq. (2,65),
shows that the fluid shear stress 7(r) varies linearly from
zero at the axis to 7, at the wall. It is claimed that this 1s
also true, at least in the time mean, for fully developed fur-
bulent flow. Can you verify this claim analytically?

4 A porous medium consists of many tiny tortuous passages,
and Reynolds numbers based on pore size are usually very
low, of order unity. In 1836 H. Darcy proposed that the pres-
sure gradient in a porous medium was directly proportional
to the volume-averaged velocity V of the fluid:

Dr. Mohsen Soliman

5

-53-

Tp=-Lv
=%

where K is termed the permeabilify of the medium. This is
now called Darcy’s law of porous flow. Can you make a
Poiseuille flow model of porous-media flow which verifies
Darcy’s law? Meanwhile, as the Reynolds number increases,
so that VK" > 1, the pressure drop becomes nonlinear,
as was shown experimentally by P. H. Forscheimer as early
as 1782, The flow is still decidedly laminar, et the pres-
sure gradient is quadratic:

Vp=- %‘t" -( | V| V' Darcy-Forscheimer law

where C is an empirical constant. Can you explain the rea-
son for this nonlinear behavior?
One flowmeter device, i wide use in the water supply and
gasoline distribution industries, is the nufafing disk. Look
this up in the library, and explain in a brief report how 1t
works and the advantages and disadvantages of typical de-
signs.



Problems on parts (1) & (2):

1 The velocity in a certain twosdimensional flow field is
given by the equation

V = 2a = 2v1]

where the velocity is in ft/s when x, v, and  are in feet and sec-
onds, respectively. Determine expressions for the local and con-
vective components of acceleration in the x and v directions.
What is the magnitude and direction of the velocity and the ac-
celeration at the point x = y = 2 {it at the time f = 07

;]

2 Repeat Problem 101 the Now field is deseribed by the
equation

Vo= 33 = )i = éyj
where the veloeity is in ft/s when x and y are in feet,

3 The velocity in a certain flow field is given by the equa-
tion

V=i + ) + vk

Determine the expressions for the three reclangular components
of aceeleration,

4 The three components of velocity in a flow field are
given by
w= x4y 4t
vy +yr+ oo’
w= =3z -2 + 4
1 ‘I
(1) Determine the volumetric dilatation rate and interpret the

resulis, (h) Determine an expression for the rotation vector, I8
this an irrotational flow field?

3 Determine an expression for the vorticity of the flow
ficld described by

V= =xy i+ y "j
15 the flow irrotational’?

[§]
ficld

A one=dimensional flow is described by the velocity

u = ay+ by
o= yo= 0
where a and & are constunts, 1s the flow irrotational 7 For what

combination of constants (if any) will the rate of angular de-
formation as given by Eq. 6.18 be zero?

7 For incompressible fuids the volumetrie dilatation rate
must be zeroy that is, ¥ - V= 0, For what combination of con-
stants, @, b, ¢, and @ can the velocity components

H= gy + by
U= ox o+ ooy
W = ()

be used to deseribe an incompressible flow field?

8 An incompressible viscous fluid is placed between two
large parallel plates as shown in Fig, P8, The bottom plate s
fized and the upper plate moves with a constant velocity, U, For
ihese conditions the veloclty distribution between the plaies |8
linear and can be expressed as
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Determine: () the volumetric dilatation rate, (b the rotation
vector, (€) the vorticity, and {tdl) the rate of angular deformation.

i
T 3 Maving
plate
1
: ]
¥
1 { Fixed
plata
B FIGURE PB

9 A viscous fluid is contained in the space between con-
centric eylinders. The inner wall is fixed, and the outer wall ro-
tates with an angular velocity w. (See Fig. P 9a and Video
Vin L Assume that the velocity distribution in the gap is linear
as illustrated in Fig. P96, For the small rectangular element
shiwn in Fig. P 94, determine the rate of change of the right
angle ¥ due to the fluid motion. Express your answer in terms
of 1y, £, and

Foi

-.\T

{a)
B FIGURE P9

(h)

10 Some velocity mensurements in a three-dimensional
incompressible  flow  field indicate  that & = 6xy°  and
v = —4y’z, There is some conflicting data for the veloeity com-
ponent in the 2 direction, One set of data indicates thatw = 4yz°,
and the other set indicates that w = 4yz* — 6y’z, Which set do
you think is correct? Explain,

1 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

H= 2lxy
vt =y

Show that the flow 18 trrotational and satisfies conservation of
Imiss,

12 For each of the following stream functions, with units
of m*/s, determine the magnitude and the angle the velocity
veetor makes with the v-axis at x = 1 m, y = 2 m, Locate any
stagnation points in the flow field,

(n) ofi = xy
by = =2x*+y
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13
field is

The stream function for a certain incompressible flow

o= 10y + &7V sin x

Is this an irrotational flow field? Justify your answer with the
necessary caloulations.

14 The stream function for an incompressible, twio-
dimensional flow field is

ifi = u_vl = hx

where a and b are constants. 15 this an irrotational flow? Ex-

plain.
15

flow ure

The velocity components for an incompressible, plane

v, = Ar”! 4 Broicos
Uy = Rrisind

where A and £ are constanis. Determine the corresponding
stream function.

16 For o certain two-dimensional flow field

o= 0
po=V

(i) What are the comesponding radial and tangential velocity
components? (b Determine the corresponding stream function
expressed in Cartesian coordinates and in cylindrical polar co-
ordinates,

17 Mike use of the control volume shown in Fig. P17
to derive the continuily equation in cylindrical coordinates
(Eq. 2.6 in text).

Valuima alamant
hina thicknass o 2

— ¥

B FIGURE P17

15 Ttis proposed that a two-dimensional, incompressible
flow field be described by the velocity components
= Ay
v o= fy

where A and £ are both positive constants, () Will the conti-
nuity equation be satisfied? (b Is the flow irrotational? (¢) De-

termine the equation for the streamlines and show a sketch of

the streamline that passes through the origin, Indicate the di-
rection of flow along this streamline,

Dr. Mohsen Soliman

19 In a certain steady, two-dimensional flow field the
fluid density varies lincarly with respect to the coordinaie x;
that is, p = Ax where A is o constant. If the x component of ve-
locity ¢ is given by the equation 4 = v, determine an expres-
sion for v,

20 In o twoedimensional, incompressible  flow ficld,
the x component of velocity is given by the equation w = 2x.
(i) Determine the corresponding equation for the y component
of velocity if @ = 0 along the x axis. by For this flow field,
what is the magnitude of the average velocity of the fluid cross-
ing the surface 94 of Fig. P 207 Assume that the velocities
are in feet per second when x and v are in fect.

v, 1t
10 r=—————— A
|
|
|
i Loy fi

B FIGURE P20

21 The radial velocity component in an incompressible,
two-dimensional flow field (v, = 0) is

v, = 2r + 3 sind

Determine the corresponding tangential velocity component, vy,
required to satiafy conservation of mass,

3

The siream function for an incompressible flow field
is given by the equation

o= 3y =y
. 1 il 1 \J I 1 ; I .
where the stream function has the units of m*/s with v and ¥ in
meters, () Sketeh the streamline(s) passing through the origin,

(h} Determine the rate of flow across the straight path AR shown
in Fig, P 22,

v, m
Y
A
0 10 am
B FIGURE P22
23 The streamlines In a certain incompressible, two-

dimengional flow field are all concentrie eircles so that
v, =, Determine the stream function for () v, = Ar and for
ihy v, = Ar~!, where A |s a consiant,
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1 For a two-dimensional incompressible flow in the
x=y plane show that the ; component of the vorticity, {,, varies
in accordance with the equation

A
E a b:

What is the physical interpretation of this equation for a non-
viseous fluid? Hint: This vortlelty fransport equation can be de-
ived from the Navier=Stokes equations by differentiating and
eliminating the pressure between Eqs, 29 aand 29 b

72 The velocity of a fluid particle moving aloig a hori-
zoital streamline that coincides with the v axis i a plane, two-
dimensional, incompressible flow field was experimentally
found to be described by the equation i = ¥, Along this stream-
line determine an expression for (1) the rate of change of the v

compoiient of velocity with respect o y, (h) the aceeleration of

the particle, and (¢) the pressure gradient in the x direction, The
fluid is Newtonian,

73 Two horizontal, infinite, parallel plates are spaced o
distance b apart, A viscous liquid {8 contained between the
plates, The bottom plate is fixed, and the upper plate moves par-
allel to the bottom plate with a veloeity U, Because of the no-
ship boundary condition (see Video V6.5), the liguid motion 18
catised by the liquid being dragged along by the moving bound-
ary, There 1s no pressure gradient in the direction of flow, Note
that this 18 a so-called simple Conetre flow discussed in Section

) Start with the Navier-Stokes equations and determiie
the velocity distribution between the plates, (b) Determine an
expression for the flowrate passing between the plates (for
uiit width), Express your answer in terms of b and U,

74 Oil (SAE 30) at 15.6 °C flows steadily between fixed,
horizontal, parallel plates. The pressure drop per unit length
along the channel is 20 kPa/m, and the distance between the
plates is dmm. The flow is laminar. Determine: (i) the volume
rate of flow (per meter of widih), (b} the magnitude and direc-
tion of the shearing stress acting on the bottom plate, and (¢)
the velocity along the centerline of the channel.

/5 Two fixed, horizontal, parallel plates are spaced 0.2
n. apart. A viscous liquid (1 = 8 % 107 b+ s/ft!, §G = 0.9)
lows between the plaies with a mean velocity of 0.7 ft/s, De-
ermine the pressure drop per unit length in the direction of
low. What is the maximum velocity in the channel?

76 A layer of viscous liquid of constant thickness (no ve-
ocity perpendicular to plate) flows steadily down an infinite,
nelined plane. Determine, by means of the Navier=Stokes
wquations, the relationship between the thickness of the layer
nd the discharge per unit width. The flow is laminar, and as-
ume air resistance is negligible so that the shearing stress at
he free surface is zero.
Dr. Mohsen Soliman

11 A viscous, incompressible fluid flows between the two
infinite, vertical, parallel plates of Fig. P6.77. Determine, by
use of the Navier=5tokes equations, an expression for the pres-
sure gradient in the direction of flow. Express your answer in
terms of the mean velocity. Assume that the flow is laminar,
steady, and uniform.

Diraction of flow

%
=

o A

y
J— #
! &

A £
.-; E
L

 ag oo
___'.'-'"'.f 2 e
- efeet

BHFIGURE P

if

T8 Afluid of density p flows steadily dowmward between
the two vertical, infinite, parallel plates shown in the figure for
Prablem 6,77, The flow is fully developed and laminar, Make
use of the Navier-Stokes equation to determine the relationship
Between the discharge and the other parameters involved, for the
case In which the chaige in pressure along the channel is zero,

79 Due 1o the no-slip condition, as 4 solid is pulled out
of u viscous liquid some of the liquid 1s also pulled along as
deseribed in Example 6,9 and shown in Video V0.5, Based on
the results glven in Example 6,9, show on a dimensionless plot
the veloeity disteibution in the fluid filim (#/V,, va, /) when the
average film velocity, V. is 10% of the belt velocity, Vy,

80 An ineompressible, viscous fluld is placed between
hottzontal, infinite, parallel plates ag is shown in Fig, P6,80, The
two plates move in opposite directions with constant velocitles,
U, and Uy, s shown, The pressure gradient in the v direction s
zeio, and the only body force 18 due 1o the fluid weight, Use the
Navier-Stokes equations 1o deive an expression for the veloc-
ity distribution between the plates, Assume laminar flow,
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b upper plate moves with a velocity of 0.02 fi/s, at what distance
from the bottom plate does the maximum velocity in the gap

: ) between the two plates ocour? Assume laminar flow.
b ¥ I/ =002 ft/fs
o —
X I {
! { T
h
Uz 1.8 in, ’__ﬂ_ﬁ in.—-‘ ¥y
mFIGURE P B0 l L-" Fised
{ b i plats
51 Two immiscible, incompressible, viscous fuids hav- 0.1 in.
ing the sume densities but different viscosities are contained be- i~ y = 100 bt
tween two infinite, horizontal, parallel plates (Fig. P 81). The

|

bottom plaie is fixed and the upper plate moves with a constant mFIGURE P 82

velocity /. Determine the velocity at the interfuce. Express your
answer in terms of U, g, and g, The motion of the fluid is
caused entirely by the movement of the upper plate; that is,
there is no pressure gradient in the x direction. The fluid ve-
locity and shearing stress are continuous across the interface
between the two fluids, Assume laminar flow.

Rd A vertical shaft passes through a bearing and is lubri-
cated with an oil having a viscosity of 0.2 N+ s/m? as shown in
Fig. P 84, Assume that the flow characteristics in the gap be-
tween the shaft and bearing are the same as those for laminar
flow between infinite parallel plates with zero pressure gradi-
ent in the direction of flow. Estimate the torque required to overs
come viscous resistance when the shafi is turning at 80 rev /min.

Shatt
-
—= =75 mm
T - Baaring
Fixed
plata 160 mim
B FIGURE P B1
82 The viscous, incompressible flow between the paral- Qil - =025 mm

lel plates shown in Fig, P82 is cauged by both the motion of e

the bottom plate and a pressure gradient, dp/dy, As noted in® FIGURE P B4

Section 2.1.2, an important dimensionless parameter for this

type of problem is P = —[:hz,fj p ) (Apfaxy where i is the fluid i A viscous fluid is contained between two long con-
viscosity, Make a plot of the dimensionless velogity distribu- centric cylinders. The geometry of the system is such that the
tion (similar to that shown in Fig, 2.31h) for P = 3, For this flow beiween the cylinders is approximaiely the same as the
case where does the maximum velocity oceur? laminar flow between two infinite parallel plates. () Determine
an expression for the torque required to rotate the outer cylin-
der with an angular velocity a. The inner cylinder is fixed. Ex-
press your answer in terms of the geometry of the sysiem, the
viscosity of the fluid, and the angular velocity. b1 For a small,
rectangular element located ot the fixed wall determine an ex-
b pression for the rate of angular deformation of this clement.
¥ {(Sec Video V6.l and Fig. P 9.)

{ y 86 Oil (SAE 30) flows between parallel plates spaced
T 5 mm apart. The bottom plaie is fixed, bui the upper plate moves
) ' with a velocity of 0.2 m/s in the positive x direction. The pres-
W FIGURE P 82 sure gradient is 60 kPa/m, and it is negative. Compute the ve-
locity at various points across the channel and show the resulis
833 A vi:-.cuu:; fluid (specific weight = 80 Ib/ft'; viscos- on a plot. Assume laminar flow.
ity m 005 1b - /1) s ﬂm“""?d I:-EIWEEI\ W ||1I|||.|lt', hori- R Consider a steady, laminar flow through a straight hor-
zontal parallel plates as shown in Fig. P 83, The fluid moves . o e ofaid o ;
_. : - . “Uizontal tube having the constant elliptical cross section given
between the plates under the action of a pressure gradient, and by the equation
the upper plate moves with a velocity U while the hottom plate
is fixed. A U-tube manometer connecied beiween two points
along the bottom indicates a differential reading of 0.1 in. If the a b
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The streamlines are all straight and parallel. Investigaice the pos-
sibility of using an equation for the £ component of velocity of

the form
-I ‘11
W -A(I —1—2——)
i B

as an exact solutlon o this problem, With this velocity distrib-
ution, what is the relationship between the pressure gradient
along the tube and the volume flowrate through the tube?

5 A fluid Is initially at rest between two horizontal, in-
finite, parallel plates, A constant pressure gradient in a direc-
ton parallel to the plates is suddenly applied and the fluid swis
io move, Determine the appropriate differential equation(s), ini-
tial condition, and boundary conditions that govern this type of
flow, You need not solve the equation(s).

B0 T ds known that the velocity distribution for steady,
laminar flow in ¢lreular tubes (either horizontal or vertical) is
parabolie, (See Video Vi.6,) Consider a 10-mim diameter hop-
fzontal tube through which ethyl alechol is flowing with a
steady mean velocity 0,15 m/s, (1) Would you expect the ve-
locity distribution 1o be parabolic in this case? Explain, (h) What
i# the pressure drop per unit length along the tube?

90 A simple flow system 1o be used for sieady flow

leats consists of a constant head ik connected o a length of

4-mim-ciameter wibing as shown in Fig, P90, The liguid has
i \"II'H.HHIII)" of 0,015 N« s/m”, a density of 1200 I\;g/m‘. and dis-
charges into the atmosphere with a mean velocity of 2 m/s, ()
Verify that the flow will be laminar, (b) The flow is fully de-
velaped in the last 3 m of the tube, What is the pressure at the
pressure gage? (¢} What is the magnitude of the wall shearing
stress, 750 (0 the fully developed region?

Frassiira
Loge
l @ it J —
! im !

Diamater = 4 mm
B FIGURE P 1§10

1 A highly viscous Newtonian liquid (p = 1300 kg/m";
jo= 60N - s/m) Is contained in a long, vertical, 150-mm-
diameter tube, Initially the liquid is at rest but when a valve at
the Bottoim of the tube is opened flow commences, Although
the flow i3 slowly changing with time, at any instant the ve-
locity distribution is parabolic, that Is, the flow is quasi-sieady,
(See Video Vo.6,) Some measurements show that the average
velocity, V. 18 changing in accordance with the equation
Vo= 0,06 with Vin m/s when 7 is in th'rlhlﬁ. () Show on a
plot the velocity distribution (v, vs, /) atr = 2 s, where @, is the
velocity and # 13 the radius from the center of the tube, (hl Ver-
ify that the flow i laminar at this instant,
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92 (a) Show that for Poiseuille flow in a tube of radius
R ihe magnitude of the wall shearing stress, 7., can be obiained
from the relationship

4l
T M m—
|( rr.)umu| J'TR"
for a Mewtonian fluid of viscosity p. The volume rate of flow
is (. (b) Determine the magnitude of the wall shearing stress
for a fluid having a viscosity of 0.003 N« «/m* flowing with an
average velocity of 100 mm/s in a 2-mm-diameter tube,

u3 An incompressible Newtonian fluid flows steadily be-
tween two infinitely long, concentric cylinders as shown in
Fig. P6.93. The outer cylinder is fixed, but the inner cylinder
moves with a longitudinal velocity Vi, as shown. For what value
of ¥, will the drag on the inner cylinder be zero? Assume that
the flow is laminar, axisymmetric, and fully developed.

Fiznd wall ~

= Y

S \
B FIGURE P 083
0 An infinitely long, solid, vertical cylinder of radius B

is located in an infinite mass of an incompressible fluid. Start
with the Navier-Stokes equation in the # direction and derive
an expression for the velocity disiribution for the steady flow
case in which the cylinder is rotating about a fixed axis with o
constant angular velocity . You need not consider body forces,
Assume that the flow is axisymmetric and the fluid is at rest at
infinity.

us A viscous fluid is contained between two infinitely
long, vertical, concentric cylinders. The outer cylinder has a ra-
dius 7, and rotates with an angular velocity . The inner cylin-
der ix fixed and hax a radivs r,. Make use of the Navier=Stokes
equations o obtain an exact solution for the velocity distribu-
tion in the gap. Assume that the flow in the gap is axisymmet-
ri¢ (neither velocity nor pressure are functions of angular posi-
tion # within the gap) and that there are no velocity components
other than the tangential componeni. The only body force is the
weight.

U For flow between concentric cylinders, with the outer
cylinder rotating at an angular velocity @ and the inner cylin-
der fixed, it is commonly assumed that the tangential velocity
(#,) distribution in the gap between the cylinders is linear. Based
on the exact solution to this problem (see Problem  95) the ve-
locity distribution in the gap is not linear. For an outer cylinder
with radius r, = 200 in. and an inner eylinder with radius r, =
.20 in., show, with the aid of a plot, how the dimensionless
velocity distribution, #,/r,m, varies with the dimensionless ra-
dial position, r/r,, for the exact and approximate solutions,
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97 A viscous liquid (x=0.0121b-s/f%, p=179
slugs/ft’) flows through the annular space between two hori-
zontal, fixed, concentric cylinders. If the radius of the inner
cylinder is 1.5 in. and the radius of the outer cylinder is 2.5 in.,
what is the pressure drop along the axis of the annulus per foot
when the volume flowrate is 0.14 ft*/s?

95 Plot the velocity profile for the fluid flowing in the
annular space described in Problem P .97, Determine from the
plot the radius at which the maximum velocity occurs and com-
pare with the value predicted from Eq. 245 .

99 Asis shown by Eq. 238 the pressure gradient for
laminar flow through a tube of constant radius is given by the
expression

g 8ud
iz TR

For a tube whose radius is changing very gradually, such as the
one illustrated in Fig. P 99, it is expected that this equation
can be used to approximate the pressure change along the tube
if the actual radius, R(z), is used at each cross section. The fol-
lowing measurements were obtained along a particular tube.

Comprehensive Problem

(4.1 In a certain medical application, water at room temperature

and pressure flows through a rectangular channel of length
L= 10 cm, width s = 1.0 cm, and gap thickness b = 0.30
mm as in Fig. C4.1. The volume flow rate is sinusoidal with
amplitude 0 = 0.50 mL/s and frequency f=20 Hz, ie.,
0 =0 sin (2w 1),

(@) Calculate the maximum Reynolds number (Re = Vb/y)
based on maximum average velocity and gap thickness.
Channel flow like this remains laminar for Re less than about
2000. If Re is greater than about 2000, the flow will be tur-
bulent. Is this flow laminar or turbulent? (b) In this problem,
the frequency is low enough that at any given time, the flow
can be solved as if it were steady at the given flow rate. (This
is called a quasi-steady assumption.) At any arbitrary instant
of time, find an expression for streamwise velocity u as a
function of v, p, dp/dx, and b, where dp/dx is the pressure
gradient required to push the flow through the channel at vol-
ume flow rate (). In addition, estimate the maximum mag-
nitude of velocity component u. (c) At any instant of time,
find a relationship between volume flow rate (0 and pressure
gradient dp/dy. Your answer should be given as an expres-
sion for Q) as a function of dp/d, 5, b, and viscosity . (d)
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o/t |G |l].l 0.2

R(z)/R,

Compare the pressure drop over the length € for this nonuni-
form tube with one having the constant radius R,. Hint: To solve
this problem you will need to numerically integrate the equa-
tion for the pressure gradient given above.

0.3 |{I.4 ‘0.5 ‘0.6 ‘D.? ‘D.E ‘D.'El ‘].G

].l}l}| 0.73 |G.6T‘ 0.65 |£l.6? ‘ 0.80 ‘ 0.80 ‘ 0.7 ‘ 0.73 ‘ 0.77 ‘ 1.00

B FIGURE P 99

100 Show how Eq. 243 is obtained.

101 A wire of diameter d is stretched along the center-
line of a pipe of diameter D). For a given pressure drop per unit
length of pipe, by how much does the presence of the wire re-
duce the flowrate if (a) d/D = 0.1; (h) d/D = 0.017

Estimate the wall shear stress, 7, as a function of Q, i b,
5, and time (1). (e) Finally, for the numbers given in the prob-
lem statement, estimate the amplitude of the wall shear stress,
%, in N/im%,

(4.1 [



