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Part (3)*- It is Named here as Part-6

Introduction to Compressible Flow (Gas Dynamics)

6.1 Introduction: All of our previous chapters have been concerned with “low-speed’
or “incompressible’ tlow, i1.e., where the fluid velocity is much less than its speed of
sound. In fact, we did not even develop an expression for the speed of sound of a fluid.
That i1s done in this chapter.

When a fluid moves at speeds comparable to its speed of sound, density changes be-
come significant and the flow is termed compressible. Such flows are difficult to obtain
in liquids, since high pressures of order 1000 atm are needed to generate sonic veloci-
ties. In gases, however, a pressure ratio of only 2:1 will likely cause sonic flow. Thus
compressible gas flow is quite common, and this subject is often called gas dynamics.

Probably the two most important and distinctive effects of compressibility on flow
are (1) choking, wherein the duct flow rate is sharply limited by the sonic condition,
and (2) shock waves, which are nearly discontinuous property changes in a supersonic
flow. The purpose of this chapter is to explain such striking phenomena and to famil-
1arize the reader with engineering calculations of compressible flow.

We took a brief look in part (1) [Eqgs.a,b,c,d &fbelow] to see when we might safely
neglect the compressibility inherent in every real fluid. We found that the proper cri-
terion for a nearly incompressible flow was a small Mach number Ma = V/ia < 1

where V is the flow velocity and a is the speed of sound of the fluid. Under small-Mach-
number conditions, changes in fluid density are everywhere small in the flow field. The
energy equation becomes uncoupled, and temperature effects can be either ignored or
put aside for later study. The equation of state degenerates into the simple statement that
density is nearly constant. This means that an incompressible flow requires only a mo-
mentum and continuity analysis, as we showed with many examples in parts 1, 2, 3 &4,

When is a given flow approximately incompressible? We can derive a nice criterion
by playing a little fast and loose with density approximations. In essence, we wish to
slipdensity out of the divergence in continuity eq.and approximate a typical term as.

) du
e.g., 7 ~ 527
I (pu) = p Ix (a)
This is equivalent to the strong inequality " dJp < |p ou
, dx dx
| |sv b
P 14

Aswe shall see in this part ., the pressure change is approximately proportional to the
density change and the square of the speed of sound «a of the fluid

&p = a* &p (c)
Meanwhile, if elevation changes are negligible, the pressure is related to the velocity
change by Bernoulli’s equation

" Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental
of Fluid Mechanics” 4" ed., John Wiley & Sons, Inc., 2002.
(2) Frank M. White “Fluid Mechanics”, 4" ed. McGraw Hill, 2002.
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op =~ —pV &V (d)

Combining Egs.(b) to (d)., we obtain an explicit criterion for incompressible flow:

V2 N

e = Ma~ <= 1 ()
where Ma = V/a is the dimensionless Mach number of the flow. How small is small?
The commonly accepted limit is Ma = 0.3

For air at standard conditions, a flow can thus be considered incompressible if the ve-
locity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of air-
flows: automobile and train motions, light aircraft, landing and takeoft of high-speed
aircraft, most pipe flows, and turbomachinery at moderate rotational speeds. Further,
it is clear that almost all liquid flows are incompressible, since flow velocities are small
and the speed of sound is very large.”

*An exception occurs in geophysical flows, where a density change is imposed thermally or mechani-
cally rather than by the flow conditions themselves. An example is fresh water layered upon saltwater or
warm air layered upon cold air in the atmosphere. We say that the fluid is stratified, and we must account
for vertical density changes even if the velocities are small.

This chapter treats compressible flows, which have Mach numbers greater than about
0.3 and thus exhibit nonnegligible density changes. If the density change is significant.
it follows from the equation of state that the temperature and pressure changes are also
substantial. Large temperature changes imply that the energy equation can no longer
be neglected. Therefore the work is doubled from two basic equations to four
1 Continuity equation
2. Momentum equation
3. Energy equation
4. Equation of state
to be solved simultaneously for four unknowns: pressure, density, temperature, and
flow velocity (p. p. T, V). Thus the general theory of compressible flow is quite com-
plicated, and we try here to make further simplifications, especially by assuming a re-
versible adiabatic or isentfropic flow.

6.1.1 The Mach Number:

The Mach number is the dominant parameter in compressible-flow analysis, with dif-
ferent effects depending upon its magnitude. Aerodynamicists especially make a dis-
tinction between the various ranges of Mach number, and the following rough classi-
fications are commonly used:

Ma << 0.3:  incompressible flow, where density effects are negligible.

0.3 < Ma << 0.8:  subsonic flow, where density effects are important but no
shock waves appear.

0.8 < Ma < 1.2: tfransonic flow. where shock waves first appear. dividing sub-
sonic and supersonic regions of the flow. Powered flight in the
transonic region is difficult because of the mixed character of
the flow field.

1.2 << Ma << 3.0:  supersonic flow, where shock waves are present but there are
no subsonic regions.

3.0 < Ma: hvpersonic flow [13]. where shock waves and other flow
changes are especially strong.

The numerical values listed above are only rough guides. These five categories of flow
are appropriate to external high-speed aerodynamics. For internal (duct) flows, the most
important question is simply whether the flow is subsonic (Ma << 1) or supersonic (Ma =
1), because the effect of area changes reverses, as we show in Sec. 9.4. Since super-
sonic-flow effects may go against intuition, you should study these differences carefully.
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6.1.2 The Specific-Heat Ratio:

In addition to geometry and Mach number, compressible-flow calculations also depend
upon a second dimensionless parameter, the specific-heat ratio of the gas:
( = — (6.1)
(.'l'.J'
Earlier. in parts 1 and 4. we used the same symbol kX to denote the thermal conduc-
tivity of a fluid. We apologize for the duplication:; thermal conductivity does not ap-
pear in these later chapters of the text.

Recall from Fig. (a) that & for the common gases decreases slowly with temperature and
lies between 1.0 and 1.7. Variations in & have only a slight effect upon compressible-
flow computations, and air, £ = 1.40, is the dominant fluid of interest. Therefore. although
we assign some problems involving, e.g., steam and CO- and helium, the compressible-
flow tables in App. B are based solely upon the single value £ = 1.40 for air.

1.7

Anmospheric pressure

Fig. (a) Specific-heat ratio of eight
common gases as a function of tem-
perature. (Data from Ref. 12.)

o roco 2000 z0o0 acoo sooo
Temperature. = R

This text contains only a single chapter on compressible flow, but, as usual, whole
books have been written on the subject. References 1 to 6, 26, 29, and 33 are intro-
ductory, fairly elementary treatments, while Refs. 7 to 14, 27 to 28, 31 to 32, and 35
are advanced. From time to time we shall defer some specialized topic to these texts.

We note in passing that there are at least two flow patterns which depend strongly upon
very small density differences. acoustics. and natural convection. Acoustics [9. 14] is the
study of sound-wave propagation, which is accompanied by extremely small changes in
density, pressure, and temperature. Natural convection is the gentle circulating pattern set
up by buoyancy forces in a [luid stratified by uneven heating or uneven concentration of
dissolved materials. Here we are concerned only with steady compressible flow where the
fluid velocity is of magnitude comparable to that of the speed of sound.

6.1.3 The Perfect Gas Relations:

In principle. compressible-flow calculations can be made for any fluid equation of state,
and we shall assign problems involving the steam tables [15]. the gas tables [16], and

liquids [Eq.(g)].

{ The density of a liquid usually decreases slightly with temperature and increases
moderately with pressure. If we neglect the temperature effect. an empirical pressure-

density relation for a liquid is / y 21
=@ () -8 (2

where B and n are dimensionless parameters which vary slightly with temperature and
Pa and p, are standard atmospheric values. Water can be fitted approximately to the

values B = 3000 and n = 7.

Seawater is a variable mixture of water and salt and thus requires three thermody-
namic properties to define its state. These are normally taken as pressure, temperature,
and the salinity S, defined as the welght of the dissolved salt divided by the weight of
the mixture. The average salinity of seawater is 0.035, usually written as 35 parts per
1000, or 35 %e. The average density of seawater is 2.00 slugs/ft”. Strictly speaking.
seawater has three specific heats, all approximately equal to the value for pure water

of 25,200 ft2/(s® - °R) = 4210 m?/(s% - K). }
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But in_fact most elementary treatments are confined to the perfect gas with constant
specific heats Cp

p = pRT R = ¢, — ¢, = const k= = const (6.2)
Cou

For all real gases, ¢, ¢, and k vary with temperature but only moderately; for exam-
ple, ¢, of air increases 30 percent as temperature increases from O to 5S000°F. Since we
rarely deal with such large temperature changes, it is quite reasonable to assume con-
stant specific heats.

Recall from Sec. 1.6 that the gas constant is related to a universal constant A di-

vided by the gas molecular weight A
R..=— 6.3
3:_.,"215 Mgas ( )

where A = 49,720 f*/(s* - °R) = 8314 m*/(s* - K)
For air, M = 28.97, and we shall adopt the following property values for air through-
out this chapter: p = 1717 fi2/(s2 - °R) = 287 m3/(s? - K) k = 1.400

Co = k—f—l = 4293 ft*/(s* - “R) = 718 m?/(s® - K) (6.4)

Cp = Tk_}% = 6010 f°/(s” - “R) = 1005 m?/(s” - K)

Experimental values of k for eight common gases were shown in Fig.(a) . From this
figure and the molecular weight, the other properties can be computed, as in Eqs. (6.4).
The changes in the internal energy 7 and enthalpy /& of a perfect gas are computed
for constant specific heats as
Ui — iy = c (T, — T) hy —hy = c,(T, — T) (6.5)
For variable specific heats one must integrate i = [ ¢, dT and h = [ ¢p dT or use the
gas tables [16]. Most modern thermodynamics texts now contain software for evaluat-
ing propertics of nonideal gases [17].

6.1.4 The Isentropic Process:

The isentropic approximation is common in compressible-flow theory. We compute the
entropy change from the first and second laws of thermodynamics for a pure substance
[17 or 18] dp
T ds = dh — £ (6.6)
o)
Introducing dh = ¢, dT for a perfect gas and solving for ds, we substitute p7" = p/R
from the perfect-gas law and obtain
2 2 - 2
= - dT ~ dp
|Tas=|" e, SE—r [ L (6.7)
1 1 r T 2
It ¢, is variable. the gas tables will be needed. but for constant ¢, we obtain the ana-
lytic results 9 T
- 2 2 >
—Rln‘!—“:cl, ln—*—Rln& (56.8)
1 P T, P
Equations (6.8) are used to compute the entropy change across a shock wave (Sec.6.5),
which is an irreversible process.
For isentropic flow, we set s, = §; and obtain the interesting power-law relations
for an isentropic perfect gas

», T \KAk— 1) VK
P;:( —) :(B;) (6.9)
1 T, 1

These relations are used in Sec. 6.3.

Example 6.1:

T

52 — 8§ = Cp In

Argon flows through a tube such that its initial condition is p, = 1.7 MPa and p, = 18 kg/m’
and its final condition is p, = 248 kPa and T, = 400 K. Estimate (a) the initial temperature, (/)
the final density, (c¢) the change in enthalpy, and (d) the change in entropy of the gas.

Solution
From Table A .4 for argon, R = 208 m?%(s* - K) and k = 1.67. Therefore estimate its specific heat
at constant pressure from Eq. (6.4)
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L kR _ 1.67(208)
T k=1 167 —1
The initial temperature and final density are estimated from the ideal gas law, Eq. (6.2)

~ 519 m?/(s> - K)

_ P 1.7 E6 N/m? . |

T piR (18 kg/n13)[208 m?2/(s* - K)] 454 K Ans. (a)
2

P 248 E3 N/m — 208 kgf’ms Ans. ()

P2 =R T (400 K)[208 mZ/(s2 - K)]
From Eq. (6.5) the enthalpy change is
hy — hy = c(Ty — T)) = 519(400 — 454) = — 28,000 J/kg (or m*/s?) Ans. (¢)
The argon temperature and enthalpy decrease as we move down the tube. Actually, there may

not be any external cooling; i.e., the fluid enthalpy may be converted by friction to increased ki-
netic energy (Sec. 6.7).

7> >
Finally. the entropy change is computed from Eq. (6.8): $2 — §1 = ¢, In ?; — R In i—:
400 0.248 E6
= 519 lnm— 208 lnm
= —66 + 400 = 334 m?/(s* - K) Ans. (d)

The fluid entropy has increased. If there is no heat transfer, this indicates an irreversible process.
Note that entropy has the same units as the gas constant and specific heat.

This problem is not just arbitrary numbers. It correctly simulates the behavior of argon mov-
ing subsonically through a tube with large frictional effects (Sec.6.7).

Example 6.2:

Air flows steadily between two sections in a long straight portion of 4-in.-diameter pipe as
is indicated in Fig. E6.2 . The uniformly distributed temperature and pressure at each sec-
tion are 7, = 540 °R, p, = 100 psia, and T, = 453 °R, p, = 18.4 psia. Calculate the
(a) change in internal energy between sections (1) and (2), (b) change in enthalpy between sec-
tions (1) and (2), and (c) change in density between sections (1) and (2).

Control volume \

. i I
Flow === l/Sectmn (1) Section (2) B D
— ¢

D, =D,=4in. B FIGURE E6.2

Solution:

(a) Assuming air behaves as an ideal gas, we can evaluate the change in
internal energy between sections (1) and (2). Thus

L}’z - EE] = C,D(Tg - T]) (1)
'we have R
= 2
Cy 1 (2)
and from Table 1.7, R = 1716 (ft- Ib)/(slug - °R) and k& = 1.4. Throughout this book,

we use the nominal values of k for common gases listed in Tables 1.7 and 1.8 and con-
sider these values as being representative. From Eq. 2 we obtain
1716

“=a—n
Combining Egs. 1 and 3 yields
it, — ity = co(To — T,) = 4290 (fi - Ib)/(slug - °R)
X (453 °R — 540 °R) = —3.73 X 10° ft - Ib/slug (Ans)
(b) For enthalpy change we use h, — I, = c(T, — Ty) (4)

ft - 1b)/(slug - °R) = 4290 (ft - Ib)/(slug - °R) 3)
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